Natural Language Processing with Deep Learning
CS224N/Ling284

Christopher Manning
Lecture 7: Machine Translation, Sequence-to-Sequence and Attention
Lecture Plan

Today we will:

1. Introduce a new task: Machine Translation [15 mins], which is a major use-case of
2. A new neural architecture: sequence-to-sequence [45 mins], which is improved by
3. A new neural technique: attention [20 mins]

• Announcements
 • Please accept your Azure Lab Assignment (to get GPU)! Today!!! See Ed.
 • Assignment 3 is due today – I hope your dependency parsers are parsing text!
 • Assignment 4 out today – covered in this lecture, you get 9 days for it (!), due Thu
 • Get started early! It’s bigger – and harder coding-wise – than the previous assignments 😞
 • Starting with Ass 4, the TAs will no longer look at and debug your code for you!
 • Thursday’s lecture is about choosing final projects
 • In person office hours every day! (At the moment they’re less crowded than online!)
Section 1: Pre-Neural Machine Translation
Machine Translation

Machine Translation (MT) is the task of translating a sentence \(x \) from one language (the source language) to a sentence \(y \) in another language (the target language).

\[x: \quad \text{L'homme est né libre, et partout il est dans les fers} \]

\[y: \quad \text{Man is born free, but everywhere he is in chains} \]

– Rousseau
The early history of MT: 1950s

- Machine translation research began in the early 1950s on machines less powerful than high school calculators (before term “A.I.” coined!)
- Concurrent with foundational work on automata, formal languages, probabilities, and information theory
- MT heavily funded by military, but basically just simple rule-based systems doing word substitution
- Human language is more complicated than that, and varies more across languages!
- Little understanding of natural language syntax, semantics, pragmatics
- Problem soon appeared intractable

1 minute video showing 1954 MT: https://youtu.be/K-HfpsHPmvw
The early history of MT: 1950s
1990s-2010s: Statistical Machine Translation

- **Core idea**: Learn a probabilistic model from data
- Suppose we’re translating French \(\rightarrow\) English.
- We want to find the best English sentence \(y\), given French sentence \(x\)

\[
\arg\max_y P(y|x)
\]

- Use Bayes Rule to break this down into two components to be learned separately:

\[
= \arg\max_y P(x|y)P(y)
\]

Translation Model
Models how words and phrases should be translated *(fidelity)*. Learnt from parallel data.

Language Model
Models how to write good English *(fluency)*. Learnt from monolingual data.
1990s-2010s: Statistical Machine Translation

• Question: How to learn translation model $P(x|y)$?
• First, need large amount of parallel data (e.g., pairs of human-translated French/English sentences)

Ancient Egyptian

Demotic

Ancient Greek

The Rosetta Stone
Learning alignment for SMT

- **Question**: How to learn translation model $P(x|y)$ from the parallel corpus?

- Break it down further: Introduce latent a variable into the model: $P(x, a|y)$

where a is the **alignment**, i.e. word-level correspondence between source sentence x and target sentence y.
What is alignment?

Alignment is the correspondence between particular words in the translated sentence pair.

- Typological differences between languages lead to complicated alignments!
- Note: Some words have no counterpart

Alignment is complex

Alignment can be many-to-one

Alignment is complex

Alignment can be **one-to-many**

Alignment is complex

Alignment can be many-to-many (phrase-level)

Learning alignment for SMT

- We learn $P(x, a|y)$ as a combination of several factors, including:
 - Probability of particular words aligning (also depends on position in sent)
 - Probability of particular words having a particular fertility (number of corresponding words)
 - etc.
- Alignments a are latent variables: They aren’t explicitly specified in the data!
 - Require the use of special learning algorithms (like Expectation-Maximization) for learning the parameters of distributions with latent variables
 - In older days, we used to do a lot of that in CS 224N, but now see CS 228!
Decoding for SMT

- We could enumerate every possible y and calculate the probability? \rightarrow Too expensive!
- Answer: Impose strong independence assumptions in model, use dynamic programming for globally optimal solutions (e.g. Viterbi algorithm).
- This process is called *decoding*
Decoding for SMT

Chapter 6: Decoding

1990s-2010s: Statistical Machine Translation

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details we haven’t mentioned here
- Systems had many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena
 - Required compiling and maintaining extra resources
 - Like tables of equivalent phrases
 - Lots of human effort to maintain
 - Repeated effort for each language pair!
Section 2: Neural Machine Translation
2014

(dramatic reenactment)
2014

Neural Machine Translation

MT research

(dramatic reenactment)
What is Neural Machine Translation?

• Neural Machine Translation (NMT) is a way to do Machine Translation with a single end-to-end neural network

• The neural network architecture is called a sequence-to-sequence model (aka seq2seq) and it involves two RNNs
Neural Machine Translation (NMT)
The sequence-to-sequence model

Encoder RNN produces an encoding of the source sentence.

Encoding of the source sentence. Provides initial hidden state for Decoder RNN.

Target sentence (output)

Decoder RNN is a Language Model that generates target sentence, conditioned on encoding.

Note: This diagram shows test time behavior: decoder output is fed in as next step’s input.
Sequence-to-sequence is versatile!

- The general notion here is an **encoder-decoder** model
 - One neural network takes input and produces a neural representation
 - Another network produces output based on that neural representation
 - If the input and output are sequences, we call it a seq2seq model

- Sequence-to-sequence is useful for **more than just MT**
- Many NLP tasks can be phrased as sequence-to-sequence:
 - **Summarization** (long text → short text)
 - **Dialogue** (previous utterances → next utterance)
 - **Parsing** (input text → output parse as sequence)
 - **Code generation** (natural language → Python code)
Neural Machine Translation (NMT)

• The sequence-to-sequence model is an example of a Conditional Language Model
 - Language Model because the decoder is predicting the next word of the target sentence y
 - Conditional because its predictions are also conditioned on the source sentence x

• NMT directly calculates $P(y|x)$:

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \ldots P(y_T|y_1, \ldots, y_{T-1}, x)$$

 Probability of next target word, given target words so far and source sentence x

• Question: How to train an NMT system?
• (Easy) Answer: Get a big parallel corpus...
 • But there is now exciting work on “unsupervised NMT”, data augmentation, etc.
Training a Neural Machine Translation system

\[J = \frac{1}{T} \sum_{t=1}^{T} J_t \]

= negative log prob of “he”

= negative log prob of “with”

= negative log prob of <END>

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Backpropagation operates “end-to-end”.
Multi-layer deep encoder-decoder machine translation net

[Sutskever et al. 2014; Luong et al. 2015]

The hidden states from RNN layer i are the inputs to RNN layer $i+1$
Multi-layer RNNs in practice

• Multi-layer or stacked RNNs allow the network to compute more complex representations
 • The lower RNNs should compute lower-level features and the higher RNNs should compute higher-level features.
• High-performing RNNs are usually multi-layer (but aren’t as deep as convolutional or feed-forward networks)
• For example: In a 2017 paper, Britz et al. find that for Neural Machine Translation, 2 to 4 layers is best for the encoder RNN, and 4 layers is best for the decoder RNN
 • Often 2 layers is a lot better than 1, and 3 might be a little better than 2
 • Usually, skip-connections/dense-connections are needed to train deeper RNNs (e.g., 8 layers)
• Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.
 • You will learn about Transformers later; they have a lot of skipping-like connections

Greedy decoding

• We saw how to generate (or “decode”) the target sentence by taking argmax on each step of the decoder.

• This is greedy decoding (take most probable word on each step).

• Problems with this method?
Problems with greedy decoding

- Greedy decoding has no way to undo decisions!
 - **Input**: *il a m’entarté*
 (he hit me with a pie)
 - → *he ____*
 - → *he hit ____*
 - → *he hit a ____*
 (whoops! no going back now...)

- How to fix this?
Exhaustive search decoding

- Ideally, we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) \cdot P(y_2|y_1, x) \cdot P(y_3|y_1, y_2, x) \cdots \cdot P(y_T|y_1, \ldots, y_{T-1}, x)$$

$$= \prod_{t=1}^{T} P(y_t|y_1, \ldots, y_{t-1}, x)$$

- We could try computing all possible sequences y
 - This means that on each step t of the decoder, we’re tracking V^t possible partial translations, where V is vocab size
 - This $O(V^T)$ complexity is far too expensive!
Beam search decoding

- **Core idea:** On each step of decoder, keep track of the \(k \) most probable partial translations (which we call *hypotheses*)
 - \(k \) is the beam size (in practice around 5 to 10, in NMT)

- A hypothesis \(y_1, \ldots, y_t \) has a *score* which is its log probability:

\[
\text{score}(y_1, \ldots, y_t) = \log P_{LM}(y_1, \ldots, y_t | x) = \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)
\]
 - Scores are all negative, and higher score is better
 - We search for high-scoring hypotheses, tracking top \(k \) on each step

- Beam search is **not guaranteed** to find optimal solution
- But **much more efficient** than exhaustive search!
Beam search decoding: example

Beam size = $k = 2$. Blue numbers = score(y_1, \ldots, y_t) = $\sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$
Beam search decoding: example

Beam size = $k = 2$. Blue numbers = $\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

\[-0.7 = \log P_{LM}(he|<\text{START}>)}\]

\[-0.9 = \log P_{LM}(I|<\text{START}>)}\]

Take top k words and compute scores
Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)

For each of the k hypotheses, find top k next words and calculate scores:

\(-1.7 = \log P_{LM}(hit|<START> he) + -0.7\)

\(-2.9 = \log P_{LM}(struck|<START> he) + -0.7\)

\(-1.6 = \log P_{LM}(was|<START> I) + -0.9\)

\(-1.8 = \log P_{LM}(got|<START> I) + -0.9\)
Beam search decoding: example

Beam size = $k = 2$. Blue numbers = $\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$

Of these k^2 hypotheses, just keep k with highest scores
Beam search decoding: example

Beam size = \(k = 2 \). Blue numbers = \[\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x) \]

For each of the \(k \) hypotheses, find top \(k \) next words and calculate scores:

- \(-2.8 = \log P_{LM}(a|\langle\text{START}\rangle \text{ he hit}) + -1.7\)
- \(-2.5 = \log P_{LM}(me|\langle\text{START}\rangle \text{ he hit}) + -1.7\)
- \(-2.9 = \log P_{LM}(hit|\langle\text{START}\rangle \text{ I was}) + -1.6\)
- \(-3.8 = \log P_{LM}(struck|\langle\text{START}\rangle \text{ I was}) + -1.6\)
Beam search decoding: example

Beam size = $k = 2$. Blue numbers = $\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

Of these k^2 hypotheses, just keep k with highest scores
Beam search decoding: example

Beam size = $k = 2$. Blue numbers = \(\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x) \)

For each of the k hypotheses, find top k next words and calculate scores.
Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y₁, ..., yₜ) = \(\sum_{i=1}^{t} \log P_{LM}(y_i|y_1, ..., y_{i-1}, x) \)

Of these \(k^2 \) hypotheses, just keep \(k \) with highest scores
Beam search decoding: example

Beam size = $k = 2$. Blue numbers = $\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

For each of the k hypotheses, find top k next words and calculate scores.
Beam search decoding: example

Beam size = $k = 2$. Blue numbers = $\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

Of these k^2 hypotheses, just keep k with highest scores
Beam search decoding: example

Beam size = $k = 2$. Blue numbers = score(y_1, \ldots, y_t) = $\sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

For each of the k hypotheses, find top k next words and calculate scores.
Beam search decoding: example

Beam size = \(k = 2 \). Blue numbers = \(\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x) \)

This is the top-scoring hypothesis!
Beam search decoding: example

Beam size = \(k = 2 \). Blue numbers = \(\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x) \)

Backtrack to obtain the full hypothesis.
Beam search decoding: stopping criterion

• In greedy decoding, usually we decode until the model produces an <END> token
 • For example: <START> he hit me with a pie <END>

• In beam search decoding, different hypotheses may produce <END> tokens on different timesteps
 • When a hypothesis produces <END>, that hypothesis is complete.
 • Place it aside and continue exploring other hypotheses via beam search.

• Usually we continue beam search until:
 • We reach timestep T (where T is some pre-defined cutoff), or
 • We have at least n completed hypotheses (where n is pre-defined cutoff)
Beam search decoding: finishing up

• We have our list of completed hypotheses.
• How to select top one with highest score?
• Each hypothesis \(y_1, \ldots, y_t \) on our list has a score

\[
\text{score}(y_1, \ldots, y_t) = \log P_{LM}(y_1, \ldots, y_t | x) = \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)
\]

• Problem with this: longer hypotheses have lower scores

• Fix: Normalize by length. Use this to select top one instead:

\[
\frac{1}{t} \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)
\]
Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities

- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized

- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs
Disadvantages of NMT?

Compared to SMT:

• NMT is less interpretable
 • Hard to debug

• NMT is difficult to control
 • For example, can’t easily specify rules or guidelines for translation
 • Safety concerns!
How do we evaluate Machine Translation?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - n-gram precision (usually for 1, 2, 3 and 4-grams)
 - Plus a penalty for too-short system translations

- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - So a good translation can get a poor BLEU score because it has low n-gram overlap with the human translation 😞

You’ll see BLEU in detail in Assignment 4!

MT progress over time

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal; NMT 2019 FAIR on newstest2019]

NMT: perhaps the biggest success story of NLP Deep Learning?

Neural Machine Translation went from a fringe research attempt in 2014 to the leading standard method in 2016

- **2014**: First seq2seq paper published

- **2016**: Google Translate switches from SMT to NMT – and by 2018 everyone has

 - This is amazing!
 - **SMT** systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a small group of engineers in a few months
So, is Machine Translation solved?

• **Nope!**

• Many difficulties remain:
 • Out-of-vocabulary words
 • Domain mismatch between train and test data
 • Maintaining context over longer text
 • Low-resource language pairs
 • Failures to accurately capture sentence meaning
 • Pronoun (or zero pronoun) resolution errors
 • Morphological agreement errors

Further reading: “Has AI surpassed humans at translation? Not even close!”
https://www.skynettoday.com/editorials/state_of_nmt
So is Machine Translation solved?

- **Nope!**
- Using **common sense** is still hard
So is Machine Translation solved?

- **Nope!**
- NMT picks up **biases** in training data

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c
So is Machine Translation solved?

- Nope!
- Uninterpretable systems do strange things
- (But I think this problem has been fixed in Google Translate by 2021.)

Explanation: https://www.skynettoday.com/briefs/google-nmt-prophecies
NMT research continues

NMT is a **flagship task** for NLP Deep Learning

- NMT research has **pioneered** many of the recent **innovations** of NLP Deep Learning
- NMT research continues to **thrive**
 - Researchers have found **many, many improvements** to the “vanilla” seq2seq NMT system we’ve just presented
- But we’ll present next **one improvement** so integral that it is the new vanilla…

ATTENTION
Assignment 4: Cherokee-English machine translation!

- Cherokee is an endangered Native American language – about 2000 fluent speakers
- Extremely low resource: About 20k parallel sentences available, most from the bible
- ᏧᏝᏎᏫ ᏧᎾᏳᎹᏕᏒᏫᏓᏱ ᏧᏚᏔᏫ ᏧᎨᏏᏫᏖᏫᏓᏱ. ᏧᏚᏔᏫ ᏧᏫᏏᏪᏦᏕᏒᏫᏓᏱ ᏧᏚᏔᏫ ᏧᏝᏎᏬᏎᏗᏫᏓᏱ ᏧᏚᏔᏫ ᏧᎨᏏᏫᏖᏫᏓᏱ ᏧᏚᏔᏫ ᏧᏝᏎᏬenthal. Long ago were seven boys who used to spend all their time down by the townhouse playing games, rolling a stone wheel along the ground, sliding and striking it with a stick
- Writing system is a syllabary of symbols for each CV unit (85 letters)
- Many thanks to Shiyue Zhang, Benjamin Frey, and Mohit Bansal from UNC Chapel Hill for the resources for this assignment!

- Cherokee is not available on Google Translate! 😭
Cherokee

- Cherokee originally lived in western North Carolina and eastern Tennessee
- Most speakers now in Oklahoma, following the Trail of Tears; some in NC
- Writing system invented by Segwoya (often written Sequoyah) around 1820 – someone who grew up illiterate
 - Very effective: In the following decades Cherokee literacy was higher than for white people in the southeastern United States
- https://www.cherokee.org
Section 3: Attention
Sequence-to-sequence: the bottleneck problem

- **Encoding of the source sentence.**
- **Target sentence (output)**

Source sentence (input):
- *il*
- *a*
- *m’*
- *entarté*

Target sentence (output):
- *he*
- *hit*
- *me*
- *with*
- *a*
- *pie*
- *<END>*

Problems with this architecture?
Sequence-to-sequence: the bottleneck problem

Encoding of the source sentence. This needs to capture all information about the source sentence. Information bottleneck!

Source sentence (input)

Target sentence (output)
Attention

- **Attention** provides a solution to the bottleneck problem.

- **Core idea**: on each step of the decoder, *use direct connection to the encoder to focus on a particular part* of the source sequence.

- First, we will show via diagram (no equations), then we will show with equations.
Sequence-to-sequence with attention

Encoder RNN

Attention scores

dot product

Decoder RNN

Source sentence (input)

il a m’ entarté <START>
Sequence-to-sequence with attention

Encoder RNN

Source sentence (input)

il a m’ entarté

Decoder RNN

Attention scores

dot product

<START>
Sequence-to-sequence with attention

Source sentence (input)

Encoder RNN

Attention scores

Decoder RNN

dot product

il a m' entarté <START>
Sequence-to-sequence with attention
Sequence-to-sequence with attention

On this decoder timestep, we’re mostly focusing on the first encoder hidden state (“he”)

Take softmax to turn the scores into a probability distribution
Sequence-to-sequence with attention

Use the attention distribution to take a weighted sum of the encoder hidden states.

The attention output mostly contains information from the hidden states that received high attention.
Sequence-to-sequence with attention

Source sentence (input)

Concatenate attention output with decoder hidden state, then use to compute \(\hat{y}_1 \) as before.
Sequence-to-sequence with attention

Sometimes we take the attention output from the previous step, and also feed it into the decoder (along with the usual decoder input). We do this in Assignment 4.
Sequence-to-sequence with attention

Encoder RNN

Attention scores

Attention distribution

Source sentence (input)

Decoder RNN

Attention output

\(\hat{y}_3 \)

\(me \)
Sequence-to-sequence with attention

Source sentence (input)

Encoder RNN

Attention scores

Attention distribution

Attention output

Decoder RNN

with

\(\hat{y}_4\)
Sequence-to-sequence with attention
Sequence-to-sequence with attention

Encoder RNN

Source sentence (input)

il a m’ entarté

Attention distribution

Attention scores

Attention output

Decoder RNN

he hit me with a

\(\hat{y}_6 \)

\(\text{pie} \)
Attention: in equations

- We have encoder hidden states \(h_1, \ldots, h_N \in \mathbb{R}^h \)
- On timestep \(t \), we have decoder hidden state \(s_t \in \mathbb{R}^h \)
- We get the attention scores \(e^t \) for this step:
 \[
e^t = [s_t^T h_1, \ldots, s_t^T h_N] \in \mathbb{R}^N
 \]
- We take softmax to get the attention distribution \(\alpha^t \) for this step (this is a probability distribution and sums to 1)
 \[
 \alpha^t = \text{softmax}(e^t) \in \mathbb{R}^N
 \]
- We use \(\alpha^t \) to take a weighted sum of the encoder hidden states to get the attention output \(a_t \)
 \[
a_t = \sum_{i=1}^N \alpha_i^t h_i \in \mathbb{R}^h
 \]
- Finally we concatenate the attention output \(a_t \) with the decoder hidden state \(s_t \) and proceed as in the non-attention seq2seq model
 \[
 [a_t; s_t] \in \mathbb{R}^{2h}
 \]
Attention is great!

• **Attention significantly improves NMT performance**
 • It’s very useful to allow decoder to focus on certain parts of the source

• **Attention provides more “human-like” model of the MT process**
 • You can look back at the source sentence while translating, rather than needing to remember it all

• **Attention solves the bottleneck problem**
 • Attention allows decoder to look directly at source; bypass bottleneck

• **Attention helps with the vanishing gradient problem**
 • Provides shortcut to faraway states

• **Attention provides some interpretability**
 • By inspecting attention distribution, we see what the decoder was focusing on
 • We get (soft) alignment for free!
 • This is cool because we never explicitly trained an alignment system
 • The network just learned alignment by itself
There are several attention variants

- We have some values $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$ and a query $s \in \mathbb{R}^{d_2}$

- Attention always involves:
 1. Computing the attention scores $e \in \mathbb{R}^N$
 2. Taking softmax to get attention distribution α:
 $$\alpha = \text{softmax}(e) \in \mathbb{R}^N$$
 3. Using attention distribution to take weighted sum of values:
 $$a = \sum_{i=1}^{N} \alpha_i h_i \in \mathbb{R}^{d_1}$$
 thus obtaining the attention output a (sometimes called the context vector)

There are multiple ways to do this
Attention variants

There are several ways you can compute \(e \in \mathbb{R}^N \) from \(h_1, \ldots, h_N \in \mathbb{R}^{d_1} \) and \(s \in \mathbb{R}^{d_2} \):

Basic dot-product attention: \(e_i = s^T h_i \in \mathbb{R} \)
- Note: this assumes \(d_1 = d_2 \). This is the version we saw earlier.

Multiplicative attention: \(e_i = s^T W h_i \in \mathbb{R} \) [Luong, Pham, and Manning 2015]
- Where \(W \in \mathbb{R}^{d_2 \times d_1} \) is a weight matrix. Perhaps better called “bilinear attention”

Reduced-rank multiplicative attention: \(e_i = s^T (U^T V) h_i = (Us)^T (V h_i) \)
- For low rank matrices \(U \in \mathbb{R}^{k \times d_2}, V \in \mathbb{R}^{k \times d_1}, k \ll d_1, d_2 \)

Additive attention: \(e_i = v^T \tanh(W_1 h_i + W_2 s) \in \mathbb{R} \) [Bahdanau, Cho, and Bengio 2014]
- Where \(W_1 \in \mathbb{R}^{d_3 \times d_1}, W_2 \in \mathbb{R}^{d_3 \times d_2} \) are weight matrices and \(v \in \mathbb{R}^{d_3} \) is a weight vector.
- \(d_3 \) (the attention dimensionality) is a hyperparameter
- “Additive” is a weird/bad name. It’s really using a feed-forward neural net layer.

Attention variants

There are several ways you can compute $e \in \mathbb{R}^N$ from $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$ and $s \in \mathbb{R}^{d_2}$:

- **Basic dot-product attention**: $e_i = s^T h_i \in \mathbb{R}$
 - Note: this assumes $d_1 = d_2$
 - This is the version we saw earlier

- **Multiplicative attention**: $e_i = s^T W h_i \in \mathbb{R}$
 - Where $W \in \mathbb{R}^{d_2 \times d_1}$ is a weight matrix

- **Additive attention**: $e_i = v^T \tanh(W_1 h_i + W_2 s) \in \mathbb{R}$
 - Where $W_1 \in \mathbb{R}^{d_3 \times d_1}$, $W_2 \in \mathbb{R}^{d_3 \times d_2}$ are weight matrices and $v \in \mathbb{R}^{d_3}$ is a weight vector.
 - d_3 (the attention dimensionality) is a hyperparameter

Attention is a *general* Deep Learning technique

- We’ve seen that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- **However**: You can use attention in many architectures (not just seq2seq) and many tasks (not just MT)

More general definition of attention:
- Given a set of vector *values*, and a vector *query*, **attention** is a technique to compute a weighted sum of the values, dependent on the query.

- We sometimes say that the *query* *attends to* the values.
- For example, in the seq2seq + attention model, each decoder hidden state (query) *attends to* all the encoder hidden states (values).
Attention is a *general* Deep Learning technique

More general definition of attention:
- Given a set of vector *values*, and a vector *query*, *attention* is a technique to compute a weighted sum of the values, dependent on the query.

Intuition:
- The weighted sum is a *selective summary* of the information contained in the values, where the query determines which values to focus on.
- Attention is a way to obtain a *fixed-size representation of an arbitrary set of representations* (the values), dependent on some other representation (the query).

Upshot:
- Attention has become the powerful, flexible, general way pointer and memory manipulation in all deep learning models. A new idea from after 2010! From NMT!
Summary of today’s lecture

• We learned some history of Machine Translation (MT)

• Since 2014, Neural MT rapidly replaced intricate Statistical MT

• Sequence-to-sequence is the architecture for NMT (uses 2 models: encoder and decoder)

• Attention is a way to focus on particular parts of the input
 • Improves sequence-to-sequence a lot!