
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning
Lecture 16: ConvNets for NLP and Tree Recursive Neural Networks

Lecture Plan

1. Course organization updates (5 mins)
2. Intro to CNNs (25 mins)
3. Simple CNN for Sentence Classification: Yoon (2014) (10 mins)
4. CNN potpourri (5 mins)
5. Deep CNN for Sentence Classification: Conneau et al. (2017) (10 mins)
6. Tree Recursive Neural Nets, briefly (15 mins)
7. Recursive Neural Tensor Networks and Sentiment Analysis (15 mins)

2

1. Course Organization Updates

Mid-quarter survey
• Fantastic lectures and really interesting content
• I enjoy the lectures a lot. Also I like the coding part of the

problem sets.
• I love how the lectures focus on theory and assignments on

implementation - I feel learning both is hugely beneficial.
•

• Maybe an exam to help reinforce concepts from class
• There could be more timely responses from course staff
• I think that some of the more math-heavy lectures are

better explained with a whiteboard/pen and paper. The
PowerPoints are well made but it can sometimes be hard to
understand the individual steps in a process.

• I would love to see more content about more recent models
like state space models

3

Course Organization Updates

Final Project: The key remaining thing to do
• Final Project Milestone was due yesterday, Wed May 22!
• Make an effort to get feedback in person from your mentor as well in office hours!
• Final project poster session: Mon Jun 10, 11:00am–3:00pm: You need to be there*
• Alumni Center, McCaw Hall and Ford Gardens
• Groundbreaking research! Prizes! Food!

Invited speakers
• We had Nathan Lambert in the previous lecture
• Next Tuesday, May 28 is Adina Williams on Safety
• Attendance is expected for on-campus students; otherwise: “reaction paragraph”

4

Course Organization Updates

GPUs: Cloud Compute for projects
• You’re welcome to use Google Colab, but it

provides limited, inconsistent GPU access
• We recommend paying $10/month for

Colab Pro, which gives better GPU access
• We can’t reimburse you for that.

• We encourage you to use the GCP credits we
got for the class and/or API access through
Together AI, if appropriate for your project

• You’re also welcome to try Kaggle Notebooks
• A vanilla Jupyter notebook, not as fancy

as Colab, but better GPU access
• Some groups have done well using Modal

• Some free hours, then need to pay
5

2. From RNNs to Convolutional Neural Nets

• Recurrent neural nets cannot capture phrases without prefix context
• Often capture too much of last words in final vector

• E.g., softmax for word prediction is usually calculated based on the last step

Monáe walked into the ceremony

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

4.5
3.8

5.5
6.1

1
3.5

1
5

2.5
3.8

6

From RNNs to Convolutional Neural Nets

• Main Convolutional Neural Net (CNN/ConvNet) idea:
• What if we compute vectors for every possible word subsequence of a certain

length?

• Example: “tentative deal reached to keep government open” computes vectors for:
• tentative deal reached, deal reached to, reached to keep, to keep government,

keep government open

• Regardless of whether subsequence is grammatical or a natural linguistic constituent
• Not very linguistically or cognitively plausible

• Then group them afterwards (more soon)

7

What is a convolution anyway?

• 1d discrete convolution generally:

• Convolution is classically used to extract features from images
• Models position-invariant identification
• Longer version in cs231n!

• 2d example à
• Yellow color and red numbers

show filter (=kernel) weights
• Green shows input
• Pink shows output

From Stanford UFLDL wiki
8

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

9

A 1D convolution for text

Apply a filter (or kernel) of size 3

t,d,r −1.0

d,r,t −0.5

r,t,k −3.6

t,k,g −0.2

k,g,o 0.3

3 1 2 −3

−1 2 1 −3

1 1 −1 1

+ bias

➔ non-linearity

0.0 0.50

0.5 0.38

-2.6 0.93

0.8 0.31

1.3 0.21

∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

10

1D convolution for text with padding

Apply a filter (or kernel) of size 3

∅,t,d −0.6

t,d,r −1.0

d,r,t −0.5

r,t,k −3.6

t,k,g −0.2

k,g,o 0.3

g,o,∅ −0.5

3 1 2 −3

−1 2 1 −3

1 1 −1 1

Could also use (zero) padding = 2
Also called “wide convolution”

∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

11

3 channel 1D convolution with padding = 1 and 3 filters

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

12

conv1d, padded with max pooling over time

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

max p 0.3 1.6 1.4

∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

13

conv1d, padded with ave pooling over time

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

ave p −0.87 0.26 0.53

In PyTorch

batch_size = 16
word_embed_size = 4
seq_len = 7
input = torch.randn(batch_size, word_embed_size, seq_len)
conv1 = Conv1d(in_channels=word_embed_size, out_channels=3,
 kernel_size=3) # can add: padding=1
hidden1 = conv1(input)
hidden2 = torch.max(hidden1, dim=2) # max pool

14

Apply 3 filters of size 3

∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

15

Other (maybe less useful) notions: stride = 2

∅,t,d −0.6 0.2 1.4

d,r,t −0.5 −0.1 0.8

t,k,g −0.2 0.1 1.2

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

Local max pool, stride = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

∅ −Inf −Inf −Inf

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

∅,t,d,r −0.6 1.6 1.4

d,r,t,k −0.5 0.3 0.8

t,k,g,o 0.3 0.6 1.2

g,o,∅,∅ −0.5 −0.9 0.1

∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

17

conv1d, k-max pooling over time, k = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

2-max p 0.3 1.6 1.4

−0.2 0.6 1.2

∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

Other somewhat useful notions: dilation = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

1,3,5 0.3 0.0

2,4,6

3,5,7

2 3 1

1 −1 −1

3 1 0

1 3 1

1 −1 −1

3 1 −1

3. Single Layer CNN for Sentence Classification

19

• Yoon Kim (2014): Convolutional Neural Networks for Sentence
Classification. EMNLP 2014. https://arxiv.org/pdf/1408.5882.pdf

• Goal: Sentence classification:
• Mainly positive or negative sentiment of a sentence
• Other tasks like:
• Subjective or objective language sentence
• Question classification: about person, location, number, …

https://arxiv.org/pdf/1408.5882.pdf

Single Layer CNN for Sentence Classification

• A simple use of one convolutional layer and max pooling
• Word vectors: 𝐱" ∈ ℝ#

• Sentence: 𝐱$:& = 𝐱$⊕𝑥'⊕⋯⊕𝐱& (vectors are concatenated)

• Filter applied to concatenation of words in range: 𝐱":"() (symmetric more common)

• Convolutional filter 𝐰 ∈ ℝ*# applied to all possible windows
• Filter is done as a long vector over window of h words
• Filter could be of size h = 2, 3, or 4 words

• To compute feature (one channel) for CNN layer:
• Result is a feature map:

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

1.1

20

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

1.1 3.5 2.4

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Pooling, channels, and classification

• Pooling: max-over-time pooling layer
• Idea: capture most important activation (maximum over time)
• Use multiple filter weights w (i.e., multiple channels)
• From feature map
• Pooled single number:
• Because of max pooling , length of c can be variable

• One convolution layer, followed by one max-pooling
• To obtain final feature vector: (assuming m filters w)
• Used 100 feature maps each of sizes 3, 4, 5

• Simple final softmax layer :

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

21

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

A pitfall when fine-tuning word vectors

22

• Setting: We are training a model for movie review sentiment building on word vectors
• In the training data we have “tedious”, “dull”; in the testing data we have “plodding”
• The pre-trained word vectors have all three similar:
• Question: What happens when we update the word vectors?
• Answer: Words in the training data move around; other words stay where they were

tedious
dull

plodding

dull

tedious

plodding

This can be bad!

A solution: Channel doubling multi-channel input idea

• Initialize model with pre-trained word vectors (e.g., word2vec or Glove)

• Start with two copies

• Backprop into only one set, keep other “static”
• Fine-tuning should be useful for improving word vectors for task
• But there is a problem that words in pre-training (and maybe runtime data) but not

in training data will not move. So, it also makes sense to leave all word vectors
where they are and to only update the parameters above the word vectors
• Having two copies is an attempt to get the best of both worlds

• Both channel sets are added to ci before max-pooling

23

Kim (2014)
From:
Zhang and Wallace
(2015) A Sensitivity
Analysis of (and
Practitioners’ Guide
to) Convolutional
Neural Networks for
Sentence
Classification
https://arxiv.org/pdf/
1510.03820.pdf
(follow on paper, not
famous, but a nice picture)

24

https://arxiv.org/pdf/1510.03820.pdf
https://arxiv.org/pdf/1510.03820.pdf

Experiments on text classification

Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 91.2 79.8 83.4
CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 89.6
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 85.0 89.4
RAE (Socher et al., 2011) 77.7 43.2 82.4 � � � 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 � � � �
RNTN (Socher et al., 2013) � 45.7 85.4 � � � �
DCNN (Kalchbrenner et al., 2014) � 48.5 86.8 � 93.0 � �
Paragraph-Vec (Le and Mikolov, 2014) � 48.7 87.8 � � � �
CCAE (Hermann and Blunsom, 2013) 77.8 � � � � � 87.2
Sent-Parser (Dong et al., 2014) 79.5 � � � � � 86.3
NBSVM (Wang and Manning, 2012) 79.4 � � 93.2 � 81.8 86.3
MNB (Wang and Manning, 2012) 79.0 � � 93.6 � 80.0 86.3
G-Dropout (Wang and Manning, 2013) 79.0 � � 93.4 � 82.1 86.1
F-Dropout (Wang and Manning, 2013) 79.1 � � 93.6 � 81.9 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 � � � � 81.4 86.1
CRF-PR (Yang and Cardie, 2014) � � � � � 82.7 �
SVMS (Silva et al., 2011) � � � � 95.0 � �

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from
Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012).
RNTN: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). DCNN:
Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logistic regres-
sion on top of paragraph vectors (Le and Mikolov, 2014). CCAE: Combinatorial Category Autoencoders with combinatorial
category grammar operators (Hermann and Blunsom, 2013). Sent-Parser: Sentiment analysis-specific parser (Dong et al.,
2014). NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012).
G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). Tree-CRF: Dependency tree
with Conditional Random Fields (Nakagawa et al., 2010). CRF-PR: Conditional Random Fields with Posterior Regularization
(Yang and Cardie, 2014). SVMS : SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded
rules as features from Silva et al. (2011).

to both channels, but gradients are back-
propagated only through one of the chan-
nels. Hence the model is able to fine-tune
one set of vectors while keeping the other
static. Both channels are initialized with
word2vec.

In order to disentangle the effect of the above
variations versus other random factors, we elim-
inate other sources of randomness—CV-fold as-
signment, initialization of unknown word vec-
tors, initialization of CNN parameters—by keep-
ing them uniform within each dataset.

4 Results and Discussion

Results of our models against other methods are
listed in table 2. Our baseline model with all ran-
domly initialized words (CNN-rand) does not per-
form well on its own. While we had expected per-
formance gains through the use of pre-trained vec-
tors, we were surprised at the magnitude of the
gains. Even a simple model with static vectors
(CNN-static) performs remarkably well, giving

competitive results against the more sophisticated
deep learning models that utilize complex pool-
ing schemes (Kalchbrenner et al., 2014) or require
parse trees to be computed beforehand (Socher
et al., 2013). These results suggest that the pre-
trained vectors are good, ‘universal’ feature ex-
tractors and can be utilized across datasets. Fine-
tuning the pre-trained vectors for each task gives
still further improvements (CNN-non-static).

4.1 Multichannel vs. Single Channel Models
We had initially hoped that the multichannel ar-
chitecture would prevent overfitting (by ensuring
that the learned vectors do not deviate too far
from the original values) and thus work better than
the single channel model, especially on smaller
datasets. The results, however, are mixed, and fur-
ther work on regularizing the fine-tuning process
is warranted. For instance, instead of using an
additional channel for the non-static portion, one
could maintain a single channel but employ extra
dimensions that are allowed to be modified during
training.

1749

25

Be careful of fine-points in comparisons!

• Kim (2014) uses dropout, reporting that it gives 2–4 % accuracy improvement!
• But several compared-to systems came earlier and hence didn’t use dropout (from

2012/2014) and would probably gain equally from it

• Still seen as remarkable results from a simple architecture!

• Differences from window architecture we described in an early lecture:
• Many filters and pooling

26

4. Model comparison: Our growing toolkit

• Bag of Vectors: Surprisingly good baseline for simple classification problems
• Especially if followed by a few ReLU layers! (See paper: Deep Averaging Networks)

• Window Model: Good for single word classification for problems that do not need wide
context. E.g., POS, NER

• CNNs: good for classification, need zero padding for shorter phrases, somewhat
implausible/hard to interpret, easy to parallelize on GPUs; efficient and versatile

• Recurrent Neural Networks: Cognitively plausible (reading from left to right), not best
for classification (if just use last state), much slower than CNNs, good for sequence
tagging and classification, good for language models, better with attention

• Transformers: Great for language models, great for sentence calculations; in general,
still the best thing since sliced bread for all NLP problems
• “Vision Transformers” are taking over in vision but some papers argue that CNNs

and transformers have complementary advantages, and you can usefully use both
27

Batch Normalization (BatchNorm)

28

[Ioffe and Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv:1502.03167.]
• Often used in CNNs
• Transform the convolution output of a batch by scaling the activations to have zero

mean and unit variance
• Again, like the familiar Z-transform of statistics
• Related to LayerNorm, which is standard in Transformers, but crucially different:
• LayerNorm calculates statistics across all feature dimensions for each instance independently
• BatchNorm normalizes across all elements and items in a batch for each feature independently

• Use of BatchNorm also makes models much less sensitive to parameter initialization,
since outputs are automatically rescaled
• It also tends to make tuning of learning rates simpler

• PyTorch: nn.BatchNorm1d

Size 1 Convolutions

[Lin, Chen, and Yan. 2013. Network in network. arXiv:1312.4400.]
• Does this concept make sense?!? Yes.
• Size 1 convolutions (“1x1”), a.k.a. Network-in-network (NiN) connections, are

convolutional kernels with kernel_size=1
• A size 1 convolution gives you a fully connected linear layer across channels!
• It can be used to map from many channels to fewer channels
• Size 1 convolutions add additional neural network layers with very few additional

parameters
• Unlike Fully Connected (FC) layer across data item which adds tons of parameters
• This is similar to the per-position feed-forward layers in transformers

29

5. Very Deep Convolutional Networks for Text Classification

• Conneau, Schwenk, Lecun, Barrault. EACL 2017.
• Starting point: sequence models (LSTMs) had been very dominant in NLP
• Also CNNs, Attention, etc., but all the models were basically not very deep – not like

the deep models in Vision
• What happens when we build a vision-like system for NLP?
• Model works up from the character level
• Desire for “NLP from scratch” [raw signal]

30

VD-CNN architecture
The system very much looks like a
vision system in its design, similar to
VGGnet or ResNet

It looks unlike then typical Deep
Learning NLP systems
• It looks a bit more like a

Transformer?

31

s = 1024 chars; 16d embed

Local pooling at each
stage halves temporal
resolution and
doubles number of
features

Result is constant size,
since text is truncated
or padded

Convolutional block in VD-CNN

• Each convolutional block is
two convolutional layers, each
followed by batch norm and a
ReLU nonlinearity

• Convolutions of size 3
• Pad to preserve (or halve

when local pooling) dimension

32

• Use large text classification datasets
• Much bigger than the small datasets used in the Yoon Kim (2014) paper

33

Experiments

34

Experiments

6.
TreeRNNs:
Recursion
in human
language

Are languages recursive?

• Cognitively somewhat debatable (need to head to infinity)
• But: recursive structure is natural/right for describing language
• [The person standing next to [the man from [the company that

purchased [the firm that you used to work at]]]]
• noun phrase containing a noun phrase containing a noun phrase

• It’s a very powerful prior for language structure

36

Penn Treebank tree

37

How should we map phrases into a vector space?

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

Use principle of compositionality
The meaning (vector) of a phrase or
sentence is determined by
(1) the meanings of its words and
(2) the rules that combine them.

x2

x1
0 1 2 3 4 5 6 7 8 9 10

5

4

3

2

1

the country of my birth

the place where I was born

Monday

Tuesday

France
Germany

Socher, Manning, and Ng. ICML, 2011

38

Constituency Sentence Parsing: What we want

9
1

5
3

8
5

9
1

4
3

NP NP

PP

S

7
1

VP

The cat sat on the mat
39

Learn Structure and Representation

NP NP

PP

S

VP

5
2 3

3

8
3

5
4

7
3

The cat sat on the mat

9
1

5
3

8
5

9
1

4
3

7
1

40

Models in this section
can jointly learn parse
trees and compositional
vector representations

Recursive vs. recurrent neural networks

• Recursive neural nets provide
representations for linguistic
phrases

• But they require a tree structure

• Recurrent neural nets
cannot capture phrases
without prefix context

• They often capture too much
of last words in “phrase” vector

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

4.5
3.8

5.5
6.1

1
3.5

1
5

2.5
3.8

41

Recursive Neural Networks for Structure Prediction

on the mat

9
1

4
3

3
3

8
3

8
5

3
3

Neural
Network

8
31.3

Inputs: two candidate children’s representations
Outputs:
1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.

8
5

42

Simple Tree Recursive Neural Network Definition

score = UTp

p = tanh(W + b),

Same W parameters at all nodes
of the tree

8
5

3
3

Neural
Network

8
31.3score = = parent

c1 c2

c1
 c2

43

Parsing a sentence with an RNN (greedily)

Neural
Network

0.1
2
0

Neural
Network

0.4
1
0

Neural
Network

2.3
3
3

9
1

5
3

8
5

9
1

4
3

7
1

Neural
Network

3.1
5
2

Neural
Network

0.3
0
1

The cat sat on the mat

44

Parsing a sentence

9
1

5
3

5
2

Neural
Network

1.1
2
1

Neural
Network

0.1
2
0

Neural
Network

0.4
1
0

Neural
Network

2.3
3
3

5
3

8
5

9
1

4
3

7
1

The cat sat on the mat

45

Parsing a sentence

5
2

Neural
Network

1.1
2
1

Neural
Network

0.1
2
0

3
3

Neural
Network

3.6
8
3

9
1

5
3
5
3

8
5

9
1

4
3

7
1

The cat sat on the mat

46

Parsing a sentence

5
2

3
3

8
3

5
4

7
3

9
1

5
3
5
3

8
5

9
1

4
3

7
1

The cat sat on the mat

47

• The score of a tree is computed
by the sum of the parsing
decision scores at each node:

• x is sentence; y is parse tree

8
5

3
3

RNN

8
31.3

Discussion: Simple TreeRNN

48

• We got some decent results with a single layer TreeRNN like this!
• [Socher, Manning, and Ng. ICML, 2011] got a best paper award!

• A single weight matrix TreeRNN could capture some things but not more
complex, higher order composition and parsing long sentences

• There is no real interaction between the input words

• And the composition function is the same
for all syntactic categories, punctuation, etc.

W

c1 c2

p
Wscore s

7. Recursive Neural Tensor Networks

• Allows two word or phrase vectors to interact multiplicatively

• Not today, but see also Tai, Socher, Manning [2015]: TreeLSTMs
• Work even better

Socher, Perelygin, Wu, Chuang, Manning, Ng, and Potts 2013

Beyond the bag of words: Sentiment detection

Is the tone of a piece of text positive, negative, or neutral?

• Sentiment is that sentiment is “easy”
• Detection accuracy for longer documents ~90%, BUT

… … loved … … … … … great … … … … … … impressed … … … … … …
marvelous … … … …

Stanford Sentiment Treebank

• 215,154 phrases labeled in 11,855 sentences
• Can actually train and test compositions

http://nlp.stanford.edu:8080/sentiment/

Better Dataset Helped All Models

• Hard negation cases are still mostly incorrect
• We also need a more powerful model!

75

76

77

78

79

80

81

82

83

84

Training with Sentence
Labels

Training with Treebank

Bi NB

RNN

MV-RNN

Recursive Neural Tensor Network

Idea: Allow both additive and mediated
multiplicative interactions of vectors

Recursive Neural Tensor Network

Recursive Neural Tensor Network

Recursive Neural Tensor Network

• Use resulting vectors in tree as input to
a classifier like logistic regression

• Train all weights jointly with gradient descent

Positive/Negative Results on Treebank

74

76

78

80

82

84

86

Training with Sentence Labels Training with Treebank

Bi NB
RNN
MV-RNN
RNTN

Classifying Sentences: Accuracy improves to 85.4

Experimental Results on Treebank
• RNTN can capture constructions like X but Y
• RNTN accuracy of 72%, compared to MV-RNN (65%),

biword NB (58%) and RNN (54%)

Negation Results
When negating negatives, positive activation should
increase!

Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning
Lecture 16: ConvNets for NLP and Tree Recursive Neural Networks

