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Lecture Plan
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Lecture 2: Word Vectors

1. Course organization (3 mins)

2. Word2vec introduction (15 mins)

3. Word2vec objective function gradients (25 mins)

4. Optimization basics (5 mins)

5. Can we capture the essence of word meaning more effectively by counting? (10m)

6. Evaluating word vectors (10 mins)

Key Goal: understand word meaning can be represented by a high-dimensional vector of 
real numbers and can read word embeddings papers by the end of class



1. Course Organization

• Audit/Waitlist

• For other questions, please email cs224n-win2526-staff@lists.stanford.edu

• Come to office hours/help sessions!

• They started today

• Come to discuss final project ideas as well as the assignments

• Try to come early, often and off-cycle!

• TA office hours: 3-hour blocks Mon–Sat, with multiple TAs

• Just show up! Our friendly course staff will be on hand to assist you!

• https://web.stanford.edu/class/cs224n/office_hours.html 

• Instructors’ office hours (in person by default):

• Diyi: Tuesdays 3:30-4:30pm

• Yejin: Fridays 4:30-5:30pm
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https://web.stanford.edu/class/cs224n/office_hours.html
https://web.stanford.edu/class/cs224n/office_hours.html


2. How do we represent the meaning of a word?
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Definition: meaning (Webster dictionary)

• the idea that is represented by a word, phrase, etc.

• the idea that a person wants to express by using words, signs, etc.

• the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

signifier (symbol) ⟺ signified (idea or thing)

= denotational semantics

tree ⟺ { , , , …}



How do we have usable meaning in a computer?
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Previously commonest NLP solution: Use, e.g., WordNet, a thesaurus containing lists of 
synonym sets and hypernyms (“is a” relationships) 

[Synset('procyonid.n.01'), 

Synset('carnivore.n.01'), 

Synset('placental.n.01'), 

Synset('mammal.n.01'), 

Synset('vertebrate.n.01'), 

Synset('chordate.n.01'), 

Synset('animal.n.01'), 

Synset('organism.n.01'), 

Synset('living_thing.n.01'), 

Synset('whole.n.02'), 

Synset('object.n.01'), 

Synset('physical_entity.n.01'), 

Synset('entity.n.01')]

noun: good 

noun: good, goodness 

noun: good, goodness 

noun: commodity, trade_good, good 

adj: good 

adj (sat): full, good 

adj: good 

adj (sat): estimable, good, honorable, respectable 

adj (sat): beneficial, good 

adj (sat): good 

adj (sat): good, just, upright 

…

adverb: well, good 

adverb: thoroughly, soundly, good

e.g., synonym sets containing “good”: e.g., hypernyms of “panda”:
from nltk.corpus import wordnet as wn

poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}

for synset in wn.synsets("good"):

    print("{}: {}".format(poses[synset.pos()], 

            ", ".join([l.name() for l in synset.lemmas()])))

from nltk.corpus import wordnet as wn

panda = wn.synset("panda.n.01")

hyper = lambda s: s.hypernyms()

list(panda.closure(hyper))



Problems with resources like WordNet
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• A useful resource but missing nuance:

• e.g., “proficient” is listed as a synonym for “good”
This is only correct in some contexts

• Also, WordNet list offensive synonyms in some synonym sets without any 
coverage of the connotations or appropriateness of words

• Missing new meanings of words:

• e.g., wicked, badass, nifty, wizard, genius, ninja, bombest

• Impossible to keep up-to-date!

• Subjective

• Requires human labor to create and adapt

• Can’t be used to accurately compute word similarity (see following slides)



Representing words as discrete symbols
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In traditional NLP, we regard words as discrete symbols: 
   hotel, conference, motel – a localist representation

Such symbols for words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Means one 1, the rest 0s



Problem with words as discrete symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match 
documents containing “Seattle hotel”

   motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
   hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

But these two vectors are orthogonal

There is no natural notion of similarity for one-hot vectors!

Solution:

• Could try to rely on WordNet’s list of synonyms to get similarity?

• But it is well-known to fail badly: incompleteness, etc.

• Instead: learn to encode similarity in the vectors themselves

Sec. 9.2.2
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Representing words by their context
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• Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words that appear nearby 
(within a fixed-size window).

• We use the many contexts of w to build up a representation of w

…government debt problems turning into banking crises as happened in 2009…

…saying that Europe needs unified banking regulation to replace the hodgepodge…

…India has just given its banking system a shot in the arm…

These context words will represent banking



Word vectors
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We will build a dense vector for each word, chosen so that it is similar to vectors of words 
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

Note: word vectors are also called (word) embeddings or (neural) word representations
They are a distributed representation

banking  =

0.286
0.792

−0.177
−0.107

0.109
−0.542

0.349
0.271

monetary  =

0.413
0.582

−0.007
0.247
0.216

−0.718
0.147
0.051



3. Word2vec: Overview

Word2vec is a framework for learning word vectors

(Mikolov et al. 2013)

Idea:

• We have a large corpus (“body”) of text: a long list of words

• Every word in a fixed vocabulary is represented by a vector

• Go through each position t in the text, which has a center 
word c and context (“outside”) words o

• Use the similarity of the word vectors for c and o to calculate 
the probability of o given c (or vice versa)

• Keep adjusting the word vectors to maximize this probability
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Skip-gram model 
(Mikolov et al. 2013) 



Word2Vec Overview

Example windows and process for computing 𝑃 𝑤𝑡+𝑗  | 𝑤𝑡

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑤𝑡+1 | 𝑤𝑡

𝑃 𝑤𝑡+2 | 𝑤𝑡

𝑃 𝑤𝑡−1 | 𝑤𝑡

𝑃 𝑤𝑡−2 | 𝑤𝑡
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Word2Vec Overview

Example windows and process for computing 𝑃 𝑤𝑡+𝑗  | 𝑤𝑡

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑤𝑡+1 | 𝑤𝑡

𝑃 𝑤𝑡+2 | 𝑤𝑡

𝑃 𝑤𝑡−1 | 𝑤𝑡

𝑃 𝑤𝑡−2 | 𝑤𝑡
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Word2Vec: objective function

14

For each position 𝑡 = 1, … , 𝑇, predict context words within a window of fixed size m, 
given center word 𝑤𝑡. Data likelihood:

𝐿 𝜃 = ෑ

𝑡=1

𝑇

ෑ

−𝑚≤𝑗≤𝑚
𝑗≠0

𝑃 𝑤𝑡+𝑗  | 𝑤𝑡; 𝜃

The objective function 𝐽 𝜃  is the (average) negative log likelihood:

𝐽 𝜃 = −
1

𝑇
log 𝐿(𝜃) = −

1

𝑇
෍

𝑡=1

𝑇

෍
−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑃 𝑤𝑡+𝑗  | 𝑤𝑡; 𝜃

Minimizing objective function ⟺ Maximizing predictive accuracy

Likelihood =

𝜃 is all variables 
to be optimized

sometimes called a cost or loss function



Word2Vec: objective function

15

• We want to minimize the objective function:

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍
−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑃 𝑤𝑡+𝑗  | 𝑤𝑡; 𝜃

• Question: How to calculate 𝑃 𝑤𝑡+𝑗  | 𝑤𝑡; 𝜃  ?

• Answer: We will use two vectors per word w:

• 𝑣𝑤  when w is a center word

• 𝑢𝑤  when w is a context word

• Then for a center word c and a context word o:

𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)



Word2Vec with Vectors

• Example windows and process for computing 𝑃 𝑤𝑡+𝑗  | 𝑤𝑡

• 𝑃 𝑢𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 | 𝑣𝑖𝑛𝑡𝑜  short for P 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 | 𝑖𝑛𝑡𝑜 ; 𝑢𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠, 𝑣𝑖𝑛𝑡𝑜 , 𝜃

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑢𝑏𝑎𝑛𝑘𝑖𝑛𝑔 |𝑣𝑖𝑛𝑡𝑜

𝑃 𝑢𝑐𝑟𝑖𝑠𝑖𝑠 |𝑣𝑖𝑛𝑡𝑜

𝑃 𝑢𝑡𝑢𝑛𝑖𝑛𝑔 | 𝑣𝑖𝑛𝑡𝑜

𝑃 𝑢𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠  | 𝑣𝑖𝑛𝑡𝑜
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Word2Vec: prediction function

𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)

• This is an example of the softmax function ℝ𝑛 → (0,1)𝑛

softmax 𝑥𝑖 =
exp(𝑥𝑖)

σ𝑗=1
𝑛 exp(𝑥𝑗)

= 𝑝𝑖

• The softmax function maps arbitrary values 𝑥𝑖  to a probability distribution 𝑝𝑖

• “max” because amplifies probability of largest 𝑥𝑖

• “soft” because still assigns some probability to smaller 𝑥𝑖

• Frequently used in Deep Learning

① Dot product compares similarity of o and c.
 𝑢𝑇𝑣 = 𝑢 ⋅ 𝑣 = σ𝑖=1

𝑛 𝑢𝑖𝑣𝑖

Larger dot product = larger probability

③ Normalize over entire vocabulary 
to give probability distribution

17

② Exponentiation makes anything positive

Open 
region

But sort of a weird name 
because it returns a distribution!



To train the model: Optimize value of parameters to minimize loss
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To train a model, we gradually adjust parameters to minimize a loss

• Recall: 𝜃 represents all the 
model parameters, in one
long vector

• In our case, with 
d-dimensional vectors and 
V-many words, we have →

• Remember: every word has 
two vectors

• We optimize these parameters by walking down the gradient (see right figure)

• We compute all vector gradients!



Interactive Session!
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• 𝐿 𝜃 = ς𝑡=1
𝑇 ς−𝑚≤𝑗≤𝑚

𝑗≠0

𝑃 𝑤𝑡+𝑗  | 𝑤𝑡; 𝜃

• For a center word c and a context word o:   𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)



4. Optimization: Gradient Descent

• We have a cost function 𝐽 𝜃  we want to minimize

• Gradient Descent is an algorithm to minimize 𝐽 𝜃  

• Idea: for current value of 𝜃, calculate gradient of 𝐽 𝜃 , then take small step in direction 
of negative gradient. Repeat.

Note: Our 
objectives
may not 
be convex
like this 

But life turns 
out to be 
okay ☺

27



• Update equation (in matrix notation):

• Update equation (for single parameter):

• Algorithm:

Gradient Descent

𝛼 = step size or learning rate

28



Stochastic Gradient Descent

• Problem: 𝐽 𝜃  is a function of all windows in the corpus (potentially billions!)

• So                 is very expensive to compute

• You would wait a very long time before making a single update!

• Very bad idea for pretty much all neural nets!

• Solution: Stochastic gradient descent (SGD)

• Repeatedly sample windows, and update after each one

• Algorithm:

29

Mini Batch 
Gradient Descent



Word2vec parameters         …            and computations
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      U                           V                             𝑈 ⋅ 𝑣4
𝑇            softmax(𝑈 ⋅ 𝑣4

𝑇)

   outside             center                       dot product       probabilities

                                                            The model makes the same predictions at each position
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We want a model that gives a reasonably high 
probability estimate to all words that occur in the 
context (at all often)

“Bag of words” model!



Word2vec maximizes objective function by 
putting similar words nearby in space
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Word2vec algorithm family (Mikolov et al. 2013): More details

Why two vectors? → Easier optimization. Average both at the end

• But can implement the algorithm with just one vector per word … and it helps a bit

Two model variants:

1. Skip-grams (SG)

  Predict context (“outside”) words (position independent) given center word

2. Continuous Bag of Words (CBOW)

  Predict center word from (bag of) context words

We presented: Skip-gram model
 

Loss functions for training:

1. Naïve softmax (simple but expensive loss function, when many output classes)

2. More optimized variants like hierarchical softmax

3. Negative sampling

So far, we explained naïve softmax
32



The skip-gram model with negative sampling 

• The normalization term is computationally expensive (when many output classes):

• 𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)

• Hence, standard word2vec implements the skip-gram model with negative sampling

• Main idea: train binary logistic regressions to differentiate a true pair (center word and 
a word in its context window) versus several “noise” pairs (the center word paired with 
a random word)

33

A big sum over words



The skip-gram model with negative sampling (Mikolov et al. 2013)

• We take k negative samples (using word probabilities)

• Maximize probability that real outside word appears; 
minimize probability that random words appear around center word

• Using notation consistent with this class, we minimize:

𝐽𝑛𝑒𝑔−𝑠𝑎𝑚𝑝𝑙𝑒 𝒖𝑜 , 𝒗𝑐 , 𝑈 = −  log 𝜎 𝒖𝑜
𝑇𝒗𝑐 − ෍

𝑘∈ 𝐾 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛𝑑𝑖𝑐𝑒𝑠

log 𝜎 −𝒖𝑘
𝑇𝒗𝑐  

• The logistic/sigmoid function: 
(we’ll become good friends soon ☺)

• Sample with P(w)=U(w)3/4/Z, the unigram distribution U(w) raised to the 3/4 power

• The power makes less frequent words be sampled more often

34

𝜎 𝑥 =
1

1 + 𝑒−𝑥

sigmoid rather than softmax 

https://arxiv.org/abs/1310.4546


Stochastic gradients with negative sampling [aside]

• We iteratively take gradients at each window for SGD

• In each window, we only have at most 2m + 1 words plus 2km negative 
words with negative sampling, so ∇𝜃𝐽𝑡(𝜃) is very sparse!

35



Stochastic gradients with negative sampling [aside]

• We might only update the word vectors that actually appear!

• Solution: either you need sparse matrix update operations to 
only update certain rows of full embedding matrices U and V, 
or you need to keep around a hash for word vectors

• If you have millions of word vectors and do distributed 
computing, it is important to not have to send gigantic 
updates around!

[            ]|V|

d

36

Rows not columns 
in actual DL 
packages!



5. Why not capture co-occurrence counts directly?

37

There’s something weird about iterating through the whole corpus (perhaps many times); 
why don’t we just accumulate all the statistics of what words appear near each other?!?

Building a co-occurrence matrix X

• 2 options: windows vs. full document 

• Window: Similar to word2vec, use window around each word → captures some 
syntactic and semantic information (“word space”)

• Word-document co-occurrence matrix will give general topics (all sports terms will 
have similar entries) leading to “Latent Semantic Analysis” (“document space”)



Example: Window based co-occurrence matrix
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• Window length 1 (more common: 5–10)

• Symmetric (irrelevant whether left or right context)

• Example corpus: 

• I like deep learning

• I like NLP

• I enjoy flying

counts I like enjoy deep learning NLP flying .

I 0 2 1 0 0 0 0 0

like 2 0 0 1 0 1 0 0

enjoy 1 0 0 0 0 0 1 0

deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1

NLP 0 1 0 0 0 0 0 1

flying 0 0 1 0 0 0 0 1

. 0 0 0 0 1 1 1 0



Co-occurrence vectors
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• Simple count co-occurrence vectors

• Vectors increase in size with vocabulary

• Very high dimensional: require a lot of storage (though sparse)

• Subsequent classification models have sparsity issues → Models are less robust

• Low-dimensional vectors

• Idea: store “most” of the important information in a fixed, small number of 
dimensions: a dense vector

• Usually 25–1000 dimensions, similar to word2vec

• How to reduce the dimensionality?



Classic Method: Dimensionality Reduction on X (HW1)

40

Singular Value Decomposition of co-occurrence matrix X

Factorizes X into UΣVT, where U and V are orthonormal (unit vectors and orthogonal)

 

Retain only k singular values, in order to generalize.
෠𝑋 is the best rank k approximation to X , in terms of least squares. 
Classic linear algebra result. Expensive to compute for large matrices.

k
X



Hacks to X 
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• Running an SVD on raw counts doesn’t work well!!!

• Scaling the counts in the cells can help a lot

• Problem: function words (the, he, has) are too frequent → syntax has too much 
impact. Some fixes: 

• log the frequencies

• min(X, t), with t ≈ 100

• Ignore the function words

• Ramped windows that count closer words more than further away words

• Use correlations instead of counts, then set negative values to 0

• Etc.



Interesting semantic patterns emerge in the scaled vectors

42

COALS model from
Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence 



GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as 
linear meaning components in a word vector space?



A: Log-bilinear model:

with vector differences

GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as 
linear meaning components in a word vector space?

•  Fast training

•  Scalable to huge corpora 

Loss:



6. How to evaluate word vectors?

• Related to general evaluation in NLP: Intrinsic vs. extrinsic

• Intrinsic:

• Evaluation on a specific/intermediate subtask

• Fast to compute

• Helps to understand that system

• Not clear if it’s helpful unless correlation to real task is established

• Extrinsic:

• Evaluation on a real task

• Can take a long time to compute accuracy

• Unclear if the subsystem is the problem or its interaction or other subsystems

• If replacing exactly one subsystem with another improves accuracy → Winning!

45



Intrinsic word vector evaluation

• Word Vector Analogies

• Evaluate word vectors by how well their cosine 
distance after addition captures intuitive 
semantic and syntactic analogy questions

• Discarding the input words from the search (!)

• Problem: What if the information is there but 
not linear?

man:woman :: king:?

a:b :: c:?

king

man

woman

46



GloVe Visualization

47



Meaning similarity: Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments

• Example dataset: WordSim353 
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

48

Word 1 Word 2 Human (mean)

tiger cat 7.35

tiger tiger 10

book paper 7.46

computer internet 7.58

plane car 5.77

professor doctor 6.62

stock phone 1.62

stock CD 1.31

stock jaguar 0.92

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/


Correlation evaluation

• Word vector distances and their correlation with human judgments

49



Extrinsic word vector evaluation

• One example where good word vectors should help directly: named entity 
recognition: identifying references to a person, organization or location:  
Chris Manning lives in Palo Alto.

50



Lecture Plan

51

Lecture 2: Word Vectors

1. Course organization (3 mins)

2. Word2vec introduction (15 mins)

3. Word2vec objective function gradients (25 mins)

4. Optimization basics (5 mins)

5. Can we capture the essence of word meaning more effectively by counting? (10m)

6. Evaluating word vectors (10 mins)

Key Goal: understand word meaning can be represented by a high-dimensional vector of 
real numbers and can read word embeddings papers by the end of class
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