
Natural Language Processing
with Deep Learning

CS224N/Ling284

Diyi Yang

Lecture 2: Word Vectors

Lecture Plan

2

Lecture 2: Word Vectors

1. Course organization (3 mins)

2. Word2vec introduction (15 mins)

3. Word2vec objective function gradients (25 mins)

4. Optimization basics (5 mins)

5. Can we capture the essence of word meaning more effectively by counting? (10m)

6. Evaluating word vectors (10 mins)

Key Goal: understand word meaning can be represented by a high-dimensional vector of
real numbers and can read word embeddings papers by the end of class

1. Course Organization

• Audit/Waitlist

• For other questions, please email cs224n-win2526-staff@lists.stanford.edu

• Come to office hours/help sessions!

• They started today

• Come to discuss final project ideas as well as the assignments

• Try to come early, often and off-cycle!

• TA office hours: 3-hour blocks Mon–Sat, with multiple TAs

• Just show up! Our friendly course staff will be on hand to assist you!

• https://web.stanford.edu/class/cs224n/office_hours.html

• Instructors’ office hours (in person by default):

• Diyi: Tuesdays 3:30-4:30pm

• Yejin: Fridays 4:30-5:30pm

3

https://web.stanford.edu/class/cs224n/office_hours.html
https://web.stanford.edu/class/cs224n/office_hours.html

2. How do we represent the meaning of a word?

4

Definition: meaning (Webster dictionary)

• the idea that is represented by a word, phrase, etc.

• the idea that a person wants to express by using words, signs, etc.

• the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

signifier (symbol) ⟺ signified (idea or thing)

= denotational semantics

tree ⟺ { , , , …}

How do we have usable meaning in a computer?

5

Previously commonest NLP solution: Use, e.g., WordNet, a thesaurus containing lists of
synonym sets and hypernyms (“is a” relationships)

[Synset('procyonid.n.01'),

Synset('carnivore.n.01'),

Synset('placental.n.01'),

Synset('mammal.n.01'),

Synset('vertebrate.n.01'),

Synset('chordate.n.01'),

Synset('animal.n.01'),

Synset('organism.n.01'),

Synset('living_thing.n.01'),

Synset('whole.n.02'),

Synset('object.n.01'),

Synset('physical_entity.n.01'),

Synset('entity.n.01')]

noun: good

noun: good, goodness

noun: good, goodness

noun: commodity, trade_good, good

adj: good

adj (sat): full, good

adj: good

adj (sat): estimable, good, honorable, respectable

adj (sat): beneficial, good

adj (sat): good

adj (sat): good, just, upright

…

adverb: well, good

adverb: thoroughly, soundly, good

e.g., synonym sets containing “good”: e.g., hypernyms of “panda”:
from nltk.corpus import wordnet as wn

poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}

for synset in wn.synsets("good"):

 print("{}: {}".format(poses[synset.pos()],

 ", ".join([l.name() for l in synset.lemmas()])))

from nltk.corpus import wordnet as wn

panda = wn.synset("panda.n.01")

hyper = lambda s: s.hypernyms()

list(panda.closure(hyper))

Problems with resources like WordNet

6

• A useful resource but missing nuance:

• e.g., “proficient” is listed as a synonym for “good”
This is only correct in some contexts

• Also, WordNet list offensive synonyms in some synonym sets without any
coverage of the connotations or appropriateness of words

• Missing new meanings of words:

• e.g., wicked, badass, nifty, wizard, genius, ninja, bombest

• Impossible to keep up-to-date!

• Subjective

• Requires human labor to create and adapt

• Can’t be used to accurately compute word similarity (see following slides)

Representing words as discrete symbols

7

In traditional NLP, we regard words as discrete symbols:
 hotel, conference, motel – a localist representation

Such symbols for words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Means one 1, the rest 0s

Problem with words as discrete symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match
documents containing “Seattle hotel”

 motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
 hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

But these two vectors are orthogonal

There is no natural notion of similarity for one-hot vectors!

Solution:

• Could try to rely on WordNet’s list of synonyms to get similarity?

• But it is well-known to fail badly: incompleteness, etc.

• Instead: learn to encode similarity in the vectors themselves

Sec. 9.2.2

8

Representing words by their context

9

• Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).

• We use the many contexts of w to build up a representation of w

…government debt problems turning into banking crises as happened in 2009…

…saying that Europe needs unified banking regulation to replace the hodgepodge…

…India has just given its banking system a shot in the arm…

These context words will represent banking

Word vectors

10

We will build a dense vector for each word, chosen so that it is similar to vectors of words
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

Note: word vectors are also called (word) embeddings or (neural) word representations
They are a distributed representation

banking =

0.286
0.792

−0.177
−0.107

0.109
−0.542

0.349
0.271

monetary =

0.413
0.582

−0.007
0.247
0.216

−0.718
0.147
0.051

3. Word2vec: Overview

Word2vec is a framework for learning word vectors

(Mikolov et al. 2013)

Idea:

• We have a large corpus (“body”) of text: a long list of words

• Every word in a fixed vocabulary is represented by a vector

• Go through each position t in the text, which has a center
word c and context (“outside”) words o

• Use the similarity of the word vectors for c and o to calculate
the probability of o given c (or vice versa)

• Keep adjusting the word vectors to maximize this probability

11

Skip-gram model
(Mikolov et al. 2013)

Word2Vec Overview

Example windows and process for computing 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑤𝑡+1 | 𝑤𝑡

𝑃 𝑤𝑡+2 | 𝑤𝑡

𝑃 𝑤𝑡−1 | 𝑤𝑡

𝑃 𝑤𝑡−2 | 𝑤𝑡

12

Word2Vec Overview

Example windows and process for computing 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑤𝑡+1 | 𝑤𝑡

𝑃 𝑤𝑡+2 | 𝑤𝑡

𝑃 𝑤𝑡−1 | 𝑤𝑡

𝑃 𝑤𝑡−2 | 𝑤𝑡

13

Word2Vec: objective function

14

For each position 𝑡 = 1, … , 𝑇, predict context words within a window of fixed size m,
given center word 𝑤𝑡. Data likelihood:

𝐿 𝜃 = ෑ

𝑡=1

𝑇

ෑ

−𝑚≤𝑗≤𝑚
𝑗≠0

𝑃 𝑤𝑡+𝑗 | 𝑤𝑡; 𝜃

The objective function 𝐽 𝜃 is the (average) negative log likelihood:

𝐽 𝜃 = −
1

𝑇
log 𝐿(𝜃) = −

1

𝑇
෍

𝑡=1

𝑇

෍
−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡; 𝜃

Minimizing objective function ⟺ Maximizing predictive accuracy

Likelihood =

𝜃 is all variables
to be optimized

sometimes called a cost or loss function

Word2Vec: objective function

15

• We want to minimize the objective function:

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍
−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡; 𝜃

• Question: How to calculate 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡; 𝜃 ?

• Answer: We will use two vectors per word w:

• 𝑣𝑤 when w is a center word

• 𝑢𝑤 when w is a context word

• Then for a center word c and a context word o:

𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)

Word2Vec with Vectors

• Example windows and process for computing 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡

• 𝑃 𝑢𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 | 𝑣𝑖𝑛𝑡𝑜 short for P 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 | 𝑖𝑛𝑡𝑜 ; 𝑢𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠, 𝑣𝑖𝑛𝑡𝑜 , 𝜃

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑢𝑏𝑎𝑛𝑘𝑖𝑛𝑔 |𝑣𝑖𝑛𝑡𝑜

𝑃 𝑢𝑐𝑟𝑖𝑠𝑖𝑠 |𝑣𝑖𝑛𝑡𝑜

𝑃 𝑢𝑡𝑢𝑛𝑖𝑛𝑔 | 𝑣𝑖𝑛𝑡𝑜

𝑃 𝑢𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 | 𝑣𝑖𝑛𝑡𝑜

16

Word2Vec: prediction function

𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)

• This is an example of the softmax function ℝ𝑛 → (0,1)𝑛

softmax 𝑥𝑖 =
exp(𝑥𝑖)

σ𝑗=1
𝑛 exp(𝑥𝑗)

= 𝑝𝑖

• The softmax function maps arbitrary values 𝑥𝑖 to a probability distribution 𝑝𝑖

• “max” because amplifies probability of largest 𝑥𝑖

• “soft” because still assigns some probability to smaller 𝑥𝑖

• Frequently used in Deep Learning

① Dot product compares similarity of o and c.
 𝑢𝑇𝑣 = 𝑢 ⋅ 𝑣 = σ𝑖=1

𝑛 𝑢𝑖𝑣𝑖

Larger dot product = larger probability

③ Normalize over entire vocabulary
to give probability distribution

17

② Exponentiation makes anything positive

Open
region

But sort of a weird name
because it returns a distribution!

To train the model: Optimize value of parameters to minimize loss

18

To train a model, we gradually adjust parameters to minimize a loss

• Recall: 𝜃 represents all the
model parameters, in one
long vector

• In our case, with
d-dimensional vectors and
V-many words, we have →

• Remember: every word has
two vectors

• We optimize these parameters by walking down the gradient (see right figure)

• We compute all vector gradients!

Interactive Session!

19

• 𝐿 𝜃 = ς𝑡=1
𝑇 ς−𝑚≤𝑗≤𝑚

𝑗≠0

𝑃 𝑤𝑡+𝑗 | 𝑤𝑡; 𝜃

• For a center word c and a context word o: 𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)

4. Optimization: Gradient Descent

• We have a cost function 𝐽 𝜃 we want to minimize

• Gradient Descent is an algorithm to minimize 𝐽 𝜃

• Idea: for current value of 𝜃, calculate gradient of 𝐽 𝜃 , then take small step in direction
of negative gradient. Repeat.

Note: Our
objectives
may not
be convex
like this 

But life turns
out to be
okay ☺

27

• Update equation (in matrix notation):

• Update equation (for single parameter):

• Algorithm:

Gradient Descent

𝛼 = step size or learning rate

28

Stochastic Gradient Descent

• Problem: 𝐽 𝜃 is a function of all windows in the corpus (potentially billions!)

• So is very expensive to compute

• You would wait a very long time before making a single update!

• Very bad idea for pretty much all neural nets!

• Solution: Stochastic gradient descent (SGD)

• Repeatedly sample windows, and update after each one

• Algorithm:

29

Mini Batch
Gradient Descent

Word2vec parameters … and computations

•
•
•
•
•
•

 •
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

 •
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

 U V 𝑈 ⋅ 𝑣4
𝑇 softmax(𝑈 ⋅ 𝑣4

𝑇)

 outside center dot product probabilities

 The model makes the same predictions at each position

30

We want a model that gives a reasonably high
probability estimate to all words that occur in the
context (at all often)

“Bag of words” model!

Word2vec maximizes objective function by
putting similar words nearby in space

31

Word2vec algorithm family (Mikolov et al. 2013): More details

Why two vectors? → Easier optimization. Average both at the end

• But can implement the algorithm with just one vector per word … and it helps a bit

Two model variants:

1. Skip-grams (SG)

 Predict context (“outside”) words (position independent) given center word

2. Continuous Bag of Words (CBOW)

 Predict center word from (bag of) context words

We presented: Skip-gram model

Loss functions for training:

1. Naïve softmax (simple but expensive loss function, when many output classes)

2. More optimized variants like hierarchical softmax

3. Negative sampling

So far, we explained naïve softmax
32

The skip-gram model with negative sampling

• The normalization term is computationally expensive (when many output classes):

• 𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)

• Hence, standard word2vec implements the skip-gram model with negative sampling

• Main idea: train binary logistic regressions to differentiate a true pair (center word and
a word in its context window) versus several “noise” pairs (the center word paired with
a random word)

33

A big sum over words

The skip-gram model with negative sampling (Mikolov et al. 2013)

• We take k negative samples (using word probabilities)

• Maximize probability that real outside word appears;
minimize probability that random words appear around center word

• Using notation consistent with this class, we minimize:

𝐽𝑛𝑒𝑔−𝑠𝑎𝑚𝑝𝑙𝑒 𝒖𝑜 , 𝒗𝑐 , 𝑈 = − log 𝜎 𝒖𝑜
𝑇𝒗𝑐 − ෍

𝑘∈ 𝐾 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛𝑑𝑖𝑐𝑒𝑠

log 𝜎 −𝒖𝑘
𝑇𝒗𝑐

• The logistic/sigmoid function:
(we’ll become good friends soon ☺)

• Sample with P(w)=U(w)3/4/Z, the unigram distribution U(w) raised to the 3/4 power

• The power makes less frequent words be sampled more often

34

𝜎 𝑥 =
1

1 + 𝑒−𝑥

sigmoid rather than softmax

https://arxiv.org/abs/1310.4546

Stochastic gradients with negative sampling [aside]

• We iteratively take gradients at each window for SGD

• In each window, we only have at most 2m + 1 words plus 2km negative
words with negative sampling, so ∇𝜃𝐽𝑡(𝜃) is very sparse!

35

Stochastic gradients with negative sampling [aside]

• We might only update the word vectors that actually appear!

• Solution: either you need sparse matrix update operations to
only update certain rows of full embedding matrices U and V,
or you need to keep around a hash for word vectors

• If you have millions of word vectors and do distributed
computing, it is important to not have to send gigantic
updates around!

[]|V|

d

36

Rows not columns
in actual DL
packages!

5. Why not capture co-occurrence counts directly?

37

There’s something weird about iterating through the whole corpus (perhaps many times);
why don’t we just accumulate all the statistics of what words appear near each other?!?

Building a co-occurrence matrix X

• 2 options: windows vs. full document

• Window: Similar to word2vec, use window around each word → captures some
syntactic and semantic information (“word space”)

• Word-document co-occurrence matrix will give general topics (all sports terms will
have similar entries) leading to “Latent Semantic Analysis” (“document space”)

Example: Window based co-occurrence matrix

38

• Window length 1 (more common: 5–10)

• Symmetric (irrelevant whether left or right context)

• Example corpus:

• I like deep learning

• I like NLP

• I enjoy flying

counts I like enjoy deep learning NLP flying .

I 0 2 1 0 0 0 0 0

like 2 0 0 1 0 1 0 0

enjoy 1 0 0 0 0 0 1 0

deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1

NLP 0 1 0 0 0 0 0 1

flying 0 0 1 0 0 0 0 1

. 0 0 0 0 1 1 1 0

Co-occurrence vectors

39

• Simple count co-occurrence vectors

• Vectors increase in size with vocabulary

• Very high dimensional: require a lot of storage (though sparse)

• Subsequent classification models have sparsity issues → Models are less robust

• Low-dimensional vectors

• Idea: store “most” of the important information in a fixed, small number of
dimensions: a dense vector

• Usually 25–1000 dimensions, similar to word2vec

• How to reduce the dimensionality?

Classic Method: Dimensionality Reduction on X (HW1)

40

Singular Value Decomposition of co-occurrence matrix X

Factorizes X into UΣVT, where U and V are orthonormal (unit vectors and orthogonal)

Retain only k singular values, in order to generalize.
෠𝑋 is the best rank k approximation to X , in terms of least squares.
Classic linear algebra result. Expensive to compute for large matrices.

k
X

Hacks to X

41

• Running an SVD on raw counts doesn’t work well!!!

• Scaling the counts in the cells can help a lot

• Problem: function words (the, he, has) are too frequent → syntax has too much
impact. Some fixes:

• log the frequencies

• min(X, t), with t ≈ 100

• Ignore the function words

• Ramped windows that count closer words more than further away words

• Use correlations instead of counts, then set negative values to 0

• Etc.

Interesting semantic patterns emerge in the scaled vectors

42

COALS model from
Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space?

A: Log-bilinear model:

with vector differences

GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space?

• Fast training

• Scalable to huge corpora

Loss:

6. How to evaluate word vectors?

• Related to general evaluation in NLP: Intrinsic vs. extrinsic

• Intrinsic:

• Evaluation on a specific/intermediate subtask

• Fast to compute

• Helps to understand that system

• Not clear if it’s helpful unless correlation to real task is established

• Extrinsic:

• Evaluation on a real task

• Can take a long time to compute accuracy

• Unclear if the subsystem is the problem or its interaction or other subsystems

• If replacing exactly one subsystem with another improves accuracy → Winning!

45

Intrinsic word vector evaluation

• Word Vector Analogies

• Evaluate word vectors by how well their cosine
distance after addition captures intuitive
semantic and syntactic analogy questions

• Discarding the input words from the search (!)

• Problem: What if the information is there but
not linear?

man:woman :: king:?

a:b :: c:?

king

man

woman

46

GloVe Visualization

47

Meaning similarity: Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments

• Example dataset: WordSim353
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

48

Word 1 Word 2 Human (mean)

tiger cat 7.35

tiger tiger 10

book paper 7.46

computer internet 7.58

plane car 5.77

professor doctor 6.62

stock phone 1.62

stock CD 1.31

stock jaguar 0.92

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Correlation evaluation

• Word vector distances and their correlation with human judgments

49

Extrinsic word vector evaluation

• One example where good word vectors should help directly: named entity
recognition: identifying references to a person, organization or location:
Chris Manning lives in Palo Alto.

50

Lecture Plan

51

Lecture 2: Word Vectors

1. Course organization (3 mins)

2. Word2vec introduction (15 mins)

3. Word2vec objective function gradients (25 mins)

4. Optimization basics (5 mins)

5. Can we capture the essence of word meaning more effectively by counting? (10m)

6. Evaluating word vectors (10 mins)

Key Goal: understand word meaning can be represented by a high-dimensional vector of
real numbers and can read word embeddings papers by the end of class

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: 1. Course Organization
	Slide 4: 2. How do we represent the meaning of a word?
	Slide 5: How do we have usable meaning in a computer?
	Slide 6: Problems with resources like WordNet
	Slide 7: Representing words as discrete symbols
	Slide 8: Problem with words as discrete symbols
	Slide 9: Representing words by their context
	Slide 10: Word vectors
	Slide 11: 3. Word2vec: Overview
	Slide 12: Word2Vec Overview
	Slide 13: Word2Vec Overview
	Slide 14: Word2Vec: objective function
	Slide 15: Word2Vec: objective function
	Slide 16: Word2Vec with Vectors
	Slide 17: Word2Vec: prediction function
	Slide 18: To train the model: Optimize value of parameters to minimize loss
	Slide 19: Interactive Session!
	Slide 27: 4. Optimization: Gradient Descent
	Slide 28: Gradient Descent
	Slide 29: Stochastic Gradient Descent
	Slide 30: Word2vec parameters … and computations
	Slide 31: Word2vec maximizes objective function by putting similar words nearby in space
	Slide 32: Word2vec algorithm family (Mikolov et al. 2013): More details
	Slide 33: The skip-gram model with negative sampling
	Slide 34: The skip-gram model with negative sampling (Mikolov et al. 2013)
	Slide 35: Stochastic gradients with negative sampling [aside]
	Slide 36: Stochastic gradients with negative sampling [aside]
	Slide 37: 5. Why not capture co-occurrence counts directly?
	Slide 38: Example: Window based co-occurrence matrix
	Slide 39: Co-occurrence vectors
	Slide 40: Classic Method: Dimensionality Reduction on X (HW1)
	Slide 41: Hacks to X
	Slide 42: Interesting semantic patterns emerge in the scaled vectors
	Slide 43: GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences
	Slide 44: GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences
	Slide 45: 6. How to evaluate word vectors?
	Slide 46: Intrinsic word vector evaluation
	Slide 47: GloVe Visualization
	Slide 48: Meaning similarity: Another intrinsic word vector evaluation
	Slide 49: Correlation evaluation
	Slide 50: Extrinsic word vector evaluation
	Slide 51: Lecture Plan

