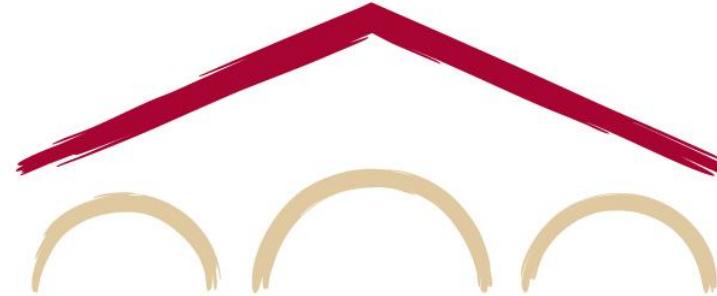


Natural Language Processing with Deep Learning

CS224N/Ling284



Diyi Yang

Lecture 2: Word Vectors

Lecture Plan

Lecture 2: Word Vectors

1. Course organization (3 mins)
2. Word2vec introduction (15 mins)
3. Word2vec objective function gradients (25 mins)
4. Optimization basics (5 mins)
5. Can we capture the essence of word meaning more effectively by counting? (10m)
6. Evaluating word vectors (10 mins)

Key Goal: understand word meaning can be represented by a high-dimensional vector of real numbers and can read word embeddings papers by the end of class

1. Course Organization

- **Audit/Waitlist**
 - For other questions, please email cs224n-win2526-staff@lists.stanford.edu
- **Come to office hours/help sessions!**
 - They started today
 - Come to discuss **final project ideas** as well as the assignments
 - Try to come early, often and off-cycle!
- **TA office hours: 3-hour blocks Mon–Sat, with multiple TAs**
 - Just show up! Our friendly course staff will be on hand to assist you!
 - https://web.stanford.edu/class/cs224n/office_hours.html
- **Instructors' office hours** (in person by default):
 - Diyi: Tuesdays 3:30-4:30pm
 - Yejin: Fridays 4:30-5:30pm

2. How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

- the idea that is represented by a word, phrase, etc.
- the idea that a person wants to express by using words, signs, etc.
- the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

signifier (symbol) \Leftrightarrow signified (idea or thing)

= denotational semantics

How do we have usable meaning in a computer?

Previously commonest NLP solution: Use, e.g., **WordNet**, a thesaurus containing lists of **synonym sets** and **hypercnyms** (“is a” relationships)

e.g., synonym sets containing “good”:

```
from nltk.corpus import wordnet as wn
poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}
for synset in wn.synsets("good"):
    print("{}: {}".format(poses[synset.pos()],
                          ", ".join([l.name() for l in synset.lemmas()])))
```

```
noun: good
noun: good, goodness
noun: good, goodness
noun: commodity, trade_good, good
adj: good
adj (sat): full, good
adj: good
adj (sat): estimable, good, honorable, respectable
adj (sat): beneficial, good
adj (sat): good
adj (sat): good, just, upright
...
adverb: well, good
adverb: thoroughly, soundly, good
```

e.g., hypernyms of “panda”:

```
from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01")
hyper = lambda s: s.hypernyms()
list(pandaclosure(hyper))
```

```
[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]
```

Problems with resources like WordNet

- A useful resource but missing nuance:
 - e.g., “proficient” is listed as a synonym for “good”
This is only correct in some contexts
 - Also, WordNet lists offensive synonyms in some synonym sets without any coverage of the connotations or appropriateness of words
- Missing new meanings of words:
 - e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
 - Impossible to keep up-to-date!
- Subjective
- Requires human labor to create and adapt
- Can’t be used to accurately compute word similarity (see following slides)

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel – a **localist** representation

Means one 1, the rest 0s

Such symbols for words can be represented by **one-hot** vectors:

motel = [0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 1 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Problem with words as discrete symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match documents containing “Seattle hotel”

`motel = [0 0 0 0 0 0 0 0 0 1 0 0 0]`

`hotel = [0 0 0 0 0 0 1 0 0 0 0 0 0]`

But these two vectors are **orthogonal**

There is no natural notion of **similarity** for one-hot vectors!

Solution:

- Could try to rely on WordNet’s list of synonyms to get similarity?
 - But it is well-known to fail badly: incompleteness, etc.
- **Instead: learn to encode similarity in the vectors themselves**

Representing words by their context

- **Distributional semantics:** A word's meaning is given by the words that frequently appear close-by
 - *"You shall know a word by the company it keeps"* (J. R. Firth 1957: 11)
 - One of the most successful ideas of modern statistical NLP!
- When a word w appears in a text, its **context** is the set of words that appear nearby (within a fixed-size window).
- We use the many contexts of w to build up a representation of w

...government debt problems turning into **banking** crises as happened in 2009...

...saying that Europe needs unified **banking** regulation to replace the hodgepodge...

...India has just given its **banking** system a shot in the arm...

These context words will represent **banking**

Word vectors

We will build a dense vector for each word, chosen so that it is similar to vectors of words that appear in similar contexts, measuring similarity as the vector **dot (scalar) product**

$$\begin{aligned} \text{banking} &= \begin{pmatrix} 0.286 \\ 0.792 \\ -0.177 \\ -0.107 \\ 0.109 \\ -0.542 \\ 0.349 \\ 0.271 \end{pmatrix} & \text{monetary} &= \begin{pmatrix} 0.413 \\ 0.582 \\ -0.007 \\ 0.247 \\ 0.216 \\ -0.718 \\ 0.147 \\ 0.051 \end{pmatrix} \end{aligned}$$

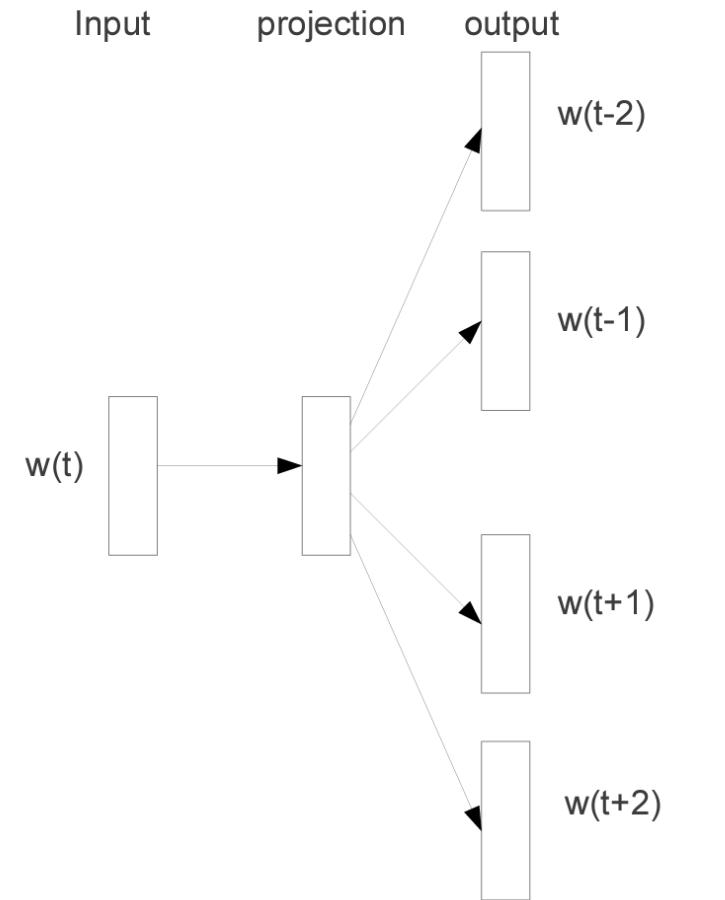
Note: **word vectors** are also called **(word) embeddings** or **(neural) word representations**
They are a **distributed** representation

3. Word2vec: Overview

Word2vec is a framework for learning word vectors
(Mikolov et al. 2013)

Idea:

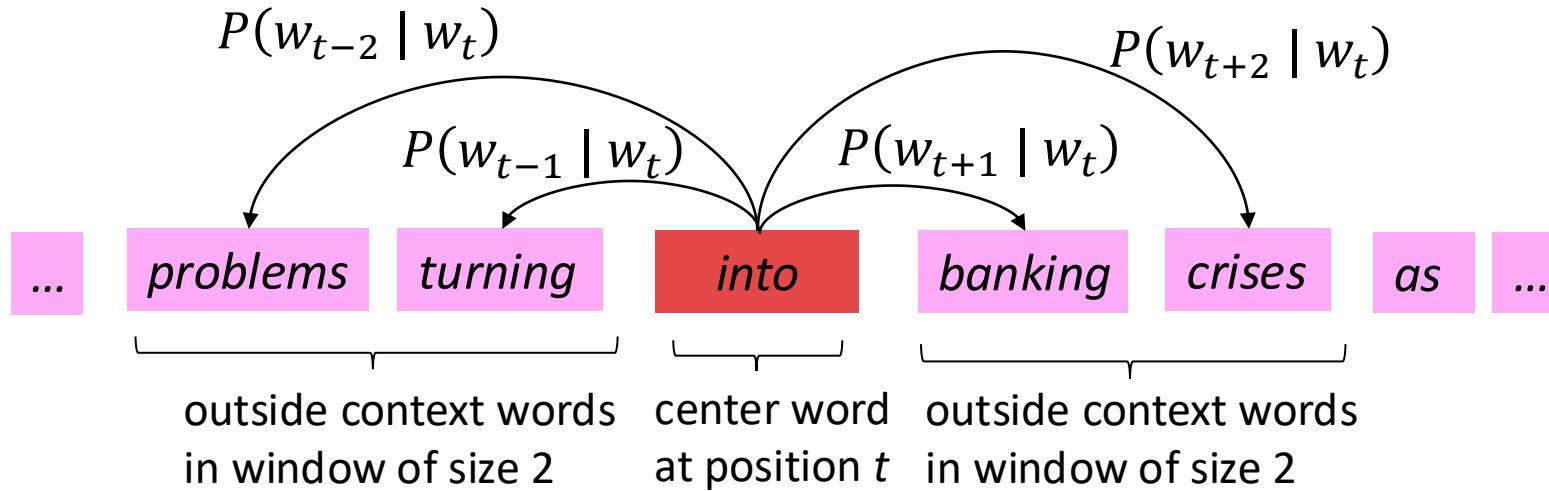
- We have a large corpus (“body”) of text: a long list of words
- Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a center word c and context (“outside”) words o
- Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)
- Keep adjusting the word vectors to maximize this probability



Skip-gram model
(Mikolov et al. 2013)

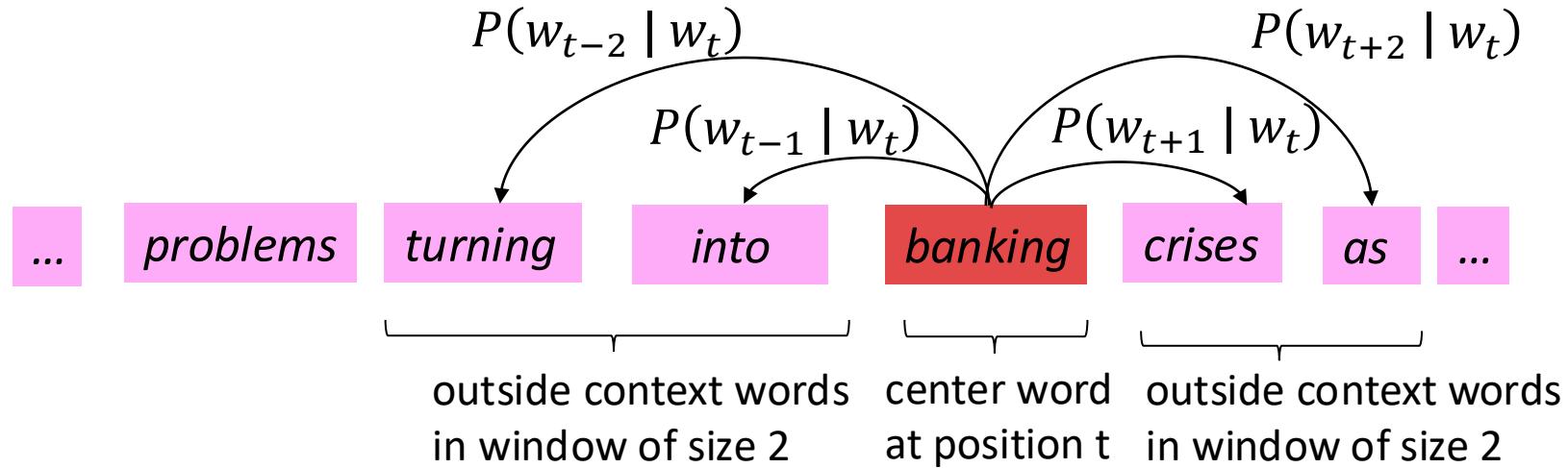
Word2Vec Overview

Example windows and process for computing $P(w_{t+j} | w_t)$



Word2Vec Overview

Example windows and process for computing $P(w_{t+j} | w_t)$



Word2Vec: objective function

For each position $t = 1, \dots, T$, predict context words within a window of fixed size m , given center word w_t . Data likelihood:

$$\text{Likelihood} = L(\theta) = \prod_{t=1}^T \prod_{\substack{-m \leq j \leq m \\ j \neq 0}} P(w_{t+j} | w_t; \theta)$$

θ is all variables to be optimized

sometimes called a *cost* or *loss* function

The **objective function** $J(\theta)$ is the **(average) negative** log likelihood:

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^T \sum_{\substack{-m \leq j \leq m \\ j \neq 0}} \log P(w_{t+j} | w_t; \theta)$$

Minimizing objective function \Leftrightarrow Maximizing predictive accuracy

Word2Vec: objective function

- We want to minimize the objective function:

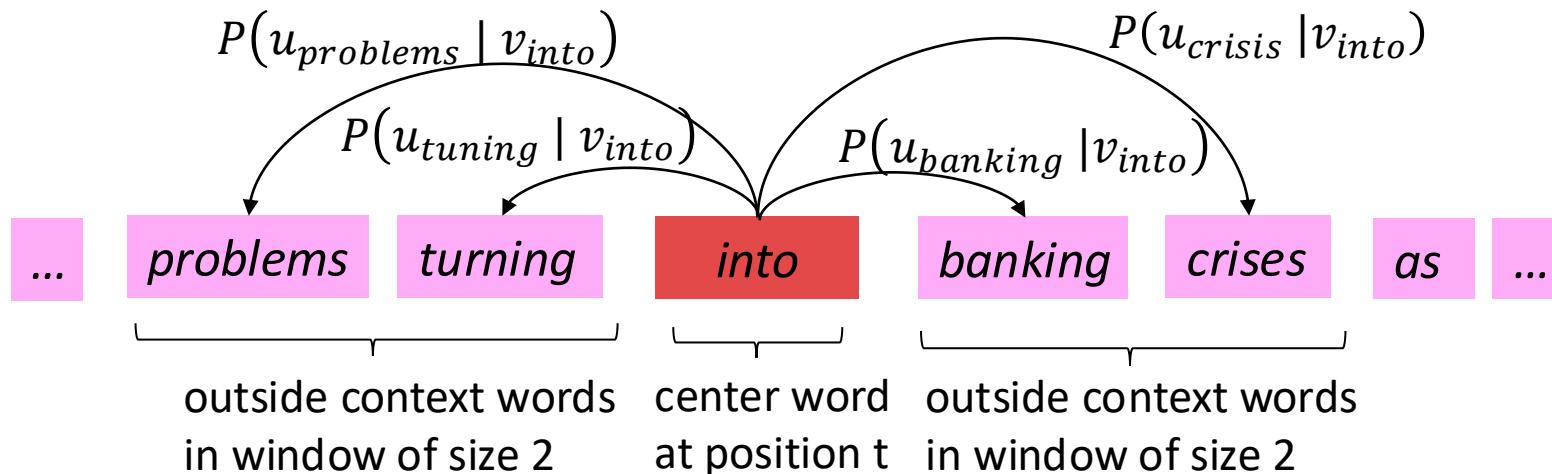
$$J(\theta) = -\frac{1}{T} \sum_{t=1}^T \sum_{\substack{-m \leq j \leq m \\ j \neq 0}} \log P(w_{t+j} | w_t; \theta)$$

- **Question:** How to calculate $P(w_{t+j} | w_t; \theta)$?
- **Answer:** We will use two vectors per word w :
 - v_w when w is a center word
 - u_w when w is a context word
- Then for a center word c and a context word o :

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Word2Vec with Vectors

- Example windows and process for computing $P(w_{t+j} | w_t)$
- $P(u_{problems} | v_{into})$ short for $P(problems | into ; u_{problems}, v_{into}, \theta)$



Word2Vec: prediction function

② Exponentiation makes anything positive

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

① Dot product compares similarity of o and c .
 $u^T v = u \cdot v = \sum_{i=1}^n u_i v_i$
Larger dot product = larger probability

③ Normalize over entire vocabulary to give probability distribution

- This is an example of the **softmax function** $\mathbb{R}^n \rightarrow (0,1)^n$

$$\text{softmax}(x_i) = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)} = p_i$$

- The softmax function maps arbitrary values x_i to a probability distribution p_i

- “max” because amplifies probability of largest x_i
- “soft” because still assigns some probability to smaller x_i
- Frequently used in Deep Learning

Open region

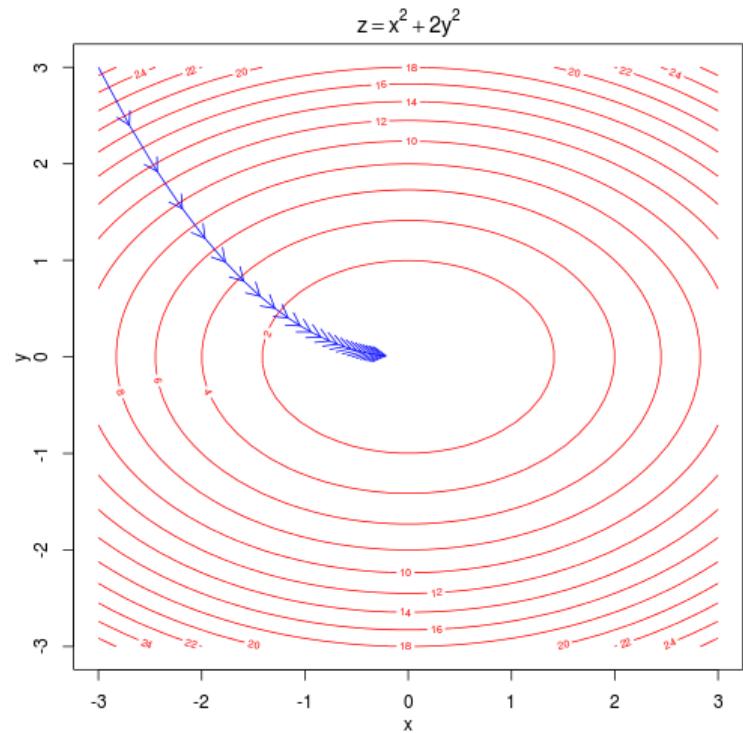
But sort of a weird name because it returns a distribution!

To train the model: Optimize value of parameters to minimize loss

To train a model, we gradually adjust parameters to minimize a loss

- Recall: θ represents **all** the model parameters, in one long vector
- In our case, with d -dimensional vectors and V -many words, we have →
- Remember: every word has two vectors

$$\theta = \begin{bmatrix} v_{aardvark} \\ v_a \\ \vdots \\ v_{zebra} \\ u_{aardvark} \\ u_a \\ \vdots \\ u_{zebra} \end{bmatrix} \in \mathbb{R}^{2dV}$$



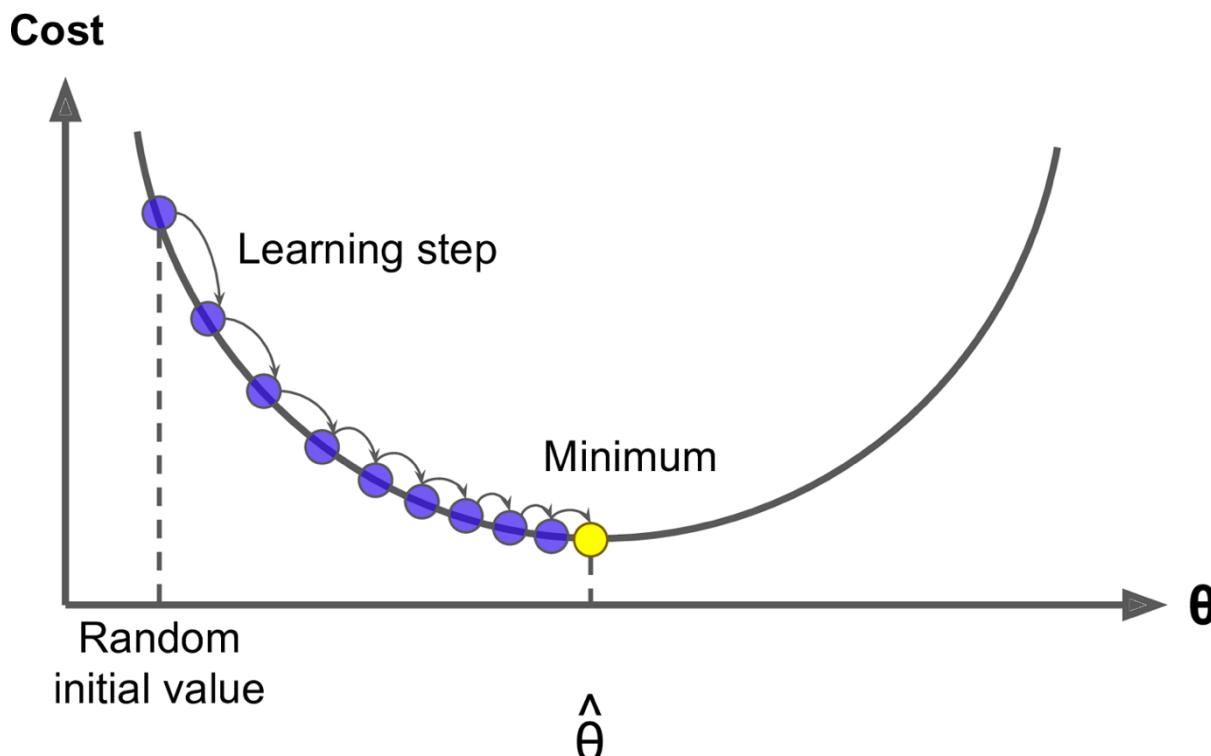
- We optimize these parameters by walking down the gradient (see right figure)
- We compute **all** vector gradients!

Interactive Session!

- $L(\theta) = \prod_{t=1}^T \prod_{\substack{-m \leq j \leq m \\ j \neq 0}} P(w_{t+j} \mid w_t; \theta)$
- For a center word c and a context word o : $P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$

4. Optimization: Gradient Descent

- We have a cost function $J(\theta)$ we want to minimize
- **Gradient Descent** is an algorithm to minimize $J(\theta)$
- **Idea:** for current value of θ , calculate gradient of $J(\theta)$, then take **small step in direction of negative gradient**. Repeat.



Note: Our objectives may not be convex like this ☹

But life turns out to be okay ☺

Gradient Descent

- Update equation (in matrix notation):

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

α = *step size* or *learning rate*

- Update equation (for single parameter):

$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{\partial}{\partial \theta_j^{old}} J(\theta)$$

- Algorithm:

```
while True:  
    theta_grad = evaluate_gradient(J,corpus,theta)  
    theta = theta - alpha * theta_grad
```

Stochastic Gradient Descent

- **Problem:** $J(\theta)$ is a function of **all** windows in the corpus (potentially billions!)
 - So $\nabla_{\theta} J(\theta)$ is **very expensive** to compute
- You would wait a very long time before making a single update!
- **Very** bad idea for pretty much all neural nets!
- **Solution:** **Stochastic gradient descent (SGD)**
 - Repeatedly sample windows, and update after each one
- Algorithm:

Mini Batch Gradient Descent

```
while True:  
    window = sample_window(corpus)  
    theta_grad = evaluate_gradient(J, window, theta)  
    theta = theta - alpha * theta_grad
```

Word2vec parameters

...

and computations

$$\begin{bmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{bmatrix}$$

U

outside

$$\begin{bmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{bmatrix}$$

V

center

$$\begin{bmatrix} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{bmatrix}$$

$U \cdot v_4^T$

dot product

$$\begin{bmatrix} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{bmatrix}$$

$\text{softmax}(U \cdot v_4^T)$

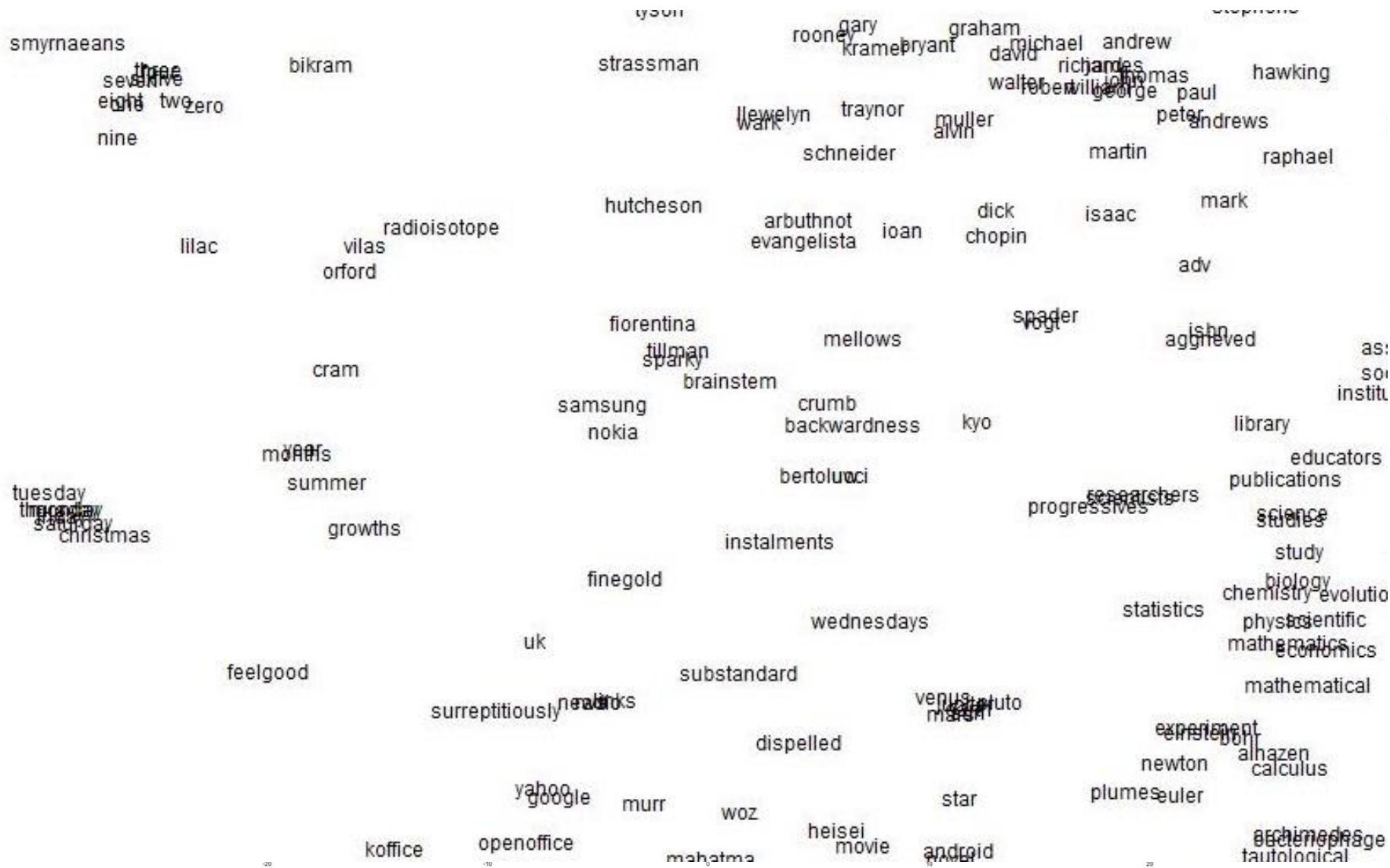
probabilities

“Bag of words” model!

The model makes the same predictions at each position

We want a model that gives a reasonably high probability estimate to *all* words that occur in the context (at all often)

Word2vec maximizes objective function by putting similar words nearby in space



Word2vec algorithm family (Mikolov et al. 2013): More details

Why two vectors? → Easier optimization. Average both at the end

- But can implement the algorithm with just one vector per word ... and it helps a bit

Two model variants:

1. Skip-grams (SG)

Predict context (“outside”) words (position independent) given center word

2. Continuous Bag of Words (CBOW)

Predict center word from (bag of) context words

We presented: **Skip-gram model**

Loss functions for training:

1. Naïve softmax (simple but expensive loss function, when many output classes)
2. More optimized variants like hierarchical softmax
3. Negative sampling

So far, we explained **naïve softmax**

The skip-gram model with negative sampling

- The normalization term is computationally expensive (when many output classes):
- $$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$
 A big sum over words
- Hence, standard word2vec implements the skip-gram model with **negative sampling**
- Main idea: train binary logistic regressions to differentiate a true pair (center word and a word in its context window) versus several “noise” pairs (the center word paired with a random word)

The skip-gram model with negative sampling ([Mikolov et al. 2013](#))

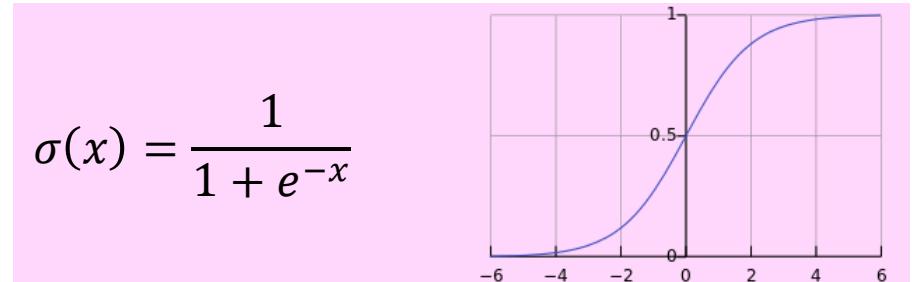
- We take k negative samples (using word probabilities)
- Maximize probability that real outside word appears;
minimize probability that random words appear around center word
- Using notation consistent with this class, we minimize:

$$J_{\text{neg-sample}}(\mathbf{u}_o, \mathbf{v}_c, U) = - \log \sigma(\mathbf{u}_o^T \mathbf{v}_c) - \sum_{k \in \{K \text{ sampled indices}\}} \log \sigma(-\mathbf{u}_k^T \mathbf{v}_c)$$

sigmoid rather than softmax

- The logistic/sigmoid function:
(we'll become good friends soon ☺)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



- Sample with $P(w) = U(w)^{3/4}/Z$, the unigram distribution $U(w)$ raised to the $3/4$ power
 - The power makes less frequent words be sampled more often

Stochastic gradients with negative sampling [aside]

- We iteratively take gradients at each window for SGD
- In each window, we only have at most $2m + 1$ words plus $2km$ negative words with negative sampling, so $\nabla_{\theta}J_t(\theta)$ is very sparse!

$$\nabla_{\theta}J_t(\theta) = \begin{bmatrix} 0 \\ \vdots \\ \nabla_{v_{like}} \\ \vdots \\ 0 \\ \nabla_{u_I} \\ \vdots \\ \nabla_{u_{learning}} \\ \vdots \end{bmatrix} \in \mathbb{R}^{2dV}$$

Stochastic gradients with negative sampling [aside]

- We might only update the word vectors that actually appear!
- Solution: either you need sparse matrix update operations to only update certain **rows** of full embedding matrices U and V , or you need to keep around a hash for word vectors

Rows not columns
in actual DL
packages!

$$|V| \begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix}^d$$

- If you have millions of word vectors and do distributed computing, it is important to not have to send gigantic updates around!

5. Why not capture co-occurrence counts directly?

There's something weird about iterating through the whole corpus (perhaps many times); why don't we just accumulate all the statistics of what words appear near each other?!?

Building a co-occurrence matrix X

- 2 options: windows vs. full document
- Window: Similar to word2vec, use window around each word → captures some syntactic and semantic information (“word space”)
- Word-document co-occurrence matrix will give general topics (all sports terms will have similar entries) leading to “Latent Semantic Analysis” (“document space”)

Example: Window based co-occurrence matrix

- Window length 1 (more common: 5–10)
- Symmetric (irrelevant whether left or right context)
- Example corpus:
 - I like deep learning
 - I like NLP
 - I enjoy flying

counts	I	like	enjoy	deep	learning	NLP	flying	.
I	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
.	0	0	0	0	1	1	1	0

Co-occurrence vectors

- Simple count co-occurrence vectors
 - Vectors increase in size with vocabulary
 - Very high dimensional: require a lot of storage (though sparse)
 - Subsequent classification models have sparsity issues → Models are less robust
- Low-dimensional vectors
 - Idea: store “most” of the important information in a fixed, small number of dimensions: a dense vector
 - Usually 25–1000 dimensions, similar to word2vec
 - How to reduce the dimensionality?

Classic Method: Dimensionality Reduction on X (HW1)

Singular Value Decomposition of co-occurrence matrix X

Factorizes X into $U\Sigma V^T$, where U and V are orthonormal (unit vectors and orthogonal)

$$\begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ * & * & * & * & * \end{bmatrix} = \begin{bmatrix} * & * \\ * & * \\ * & * \end{bmatrix} U \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \Sigma \begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ * & * & * & * & * \end{bmatrix} V^T$$

The diagram illustrates the Singular Value Decomposition (SVD) of a 3x5 matrix X into $U\Sigma V^T$. The matrix X is shown as a 3x5 grid of asterisks (*). It is decomposed into three components: U (orthogonal matrix of left singular vectors, 3x3), Σ (diagonal matrix of singular values, 3x3), and V^T (orthogonal matrix of right singular vectors, 5x5). The Σ matrix is visualized as a 3x3 grid with colored bars representing the singular values: a blue bar of height 2, a pink bar of height 1, and a yellow bar of height 1. The U and V^T matrices are shown as 3x3 grids of asterisks with colored vertical bars representing the unit vectors.

Retain only k singular values, in order to generalize.

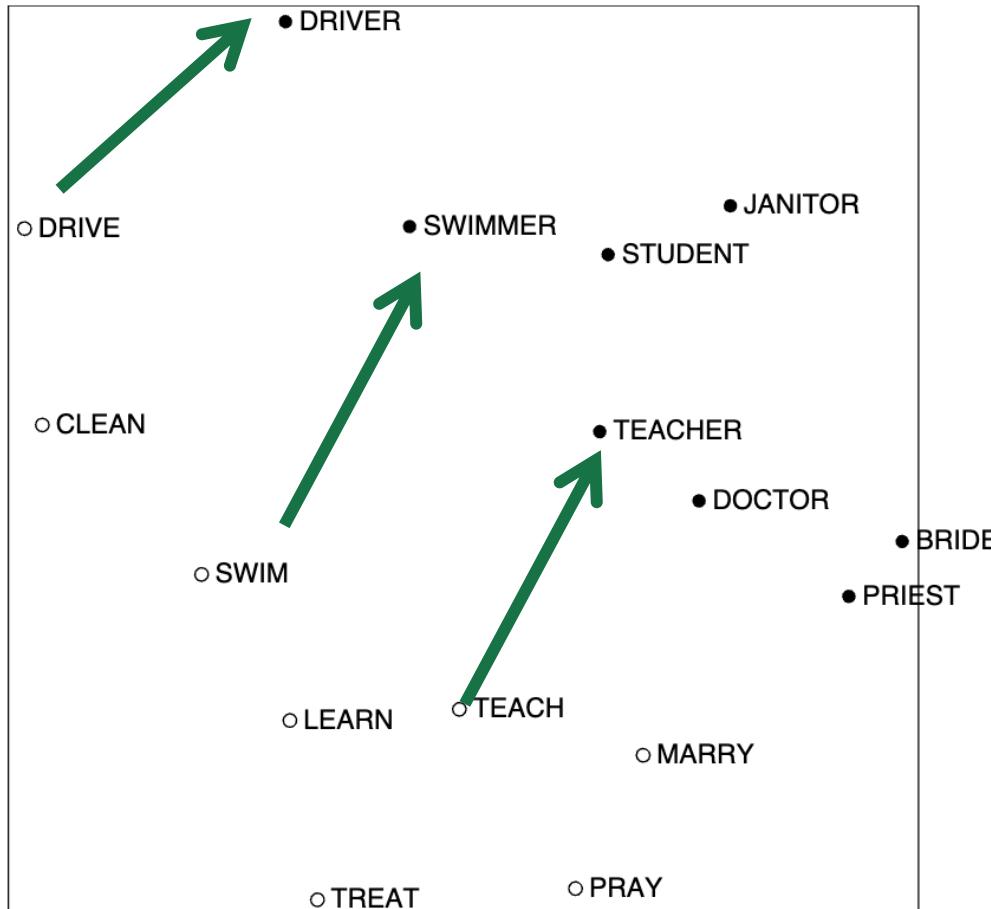
\hat{X} is the best rank k approximation to X , in terms of least squares.

Classic linear algebra result. Expensive to compute for large matrices.

Hacks to X

- Running an SVD on raw counts doesn't work well!!!
- Scaling the counts in the cells can help *a lot*
 - Problem: function words (*the, he, has*) are too frequent → syntax has too much impact. Some fixes:
 - log the frequencies
 - $\min(X, t)$, with $t \approx 100$
 - Ignore the function words
- Ramped windows that count closer words more than further away words
- Use correlations instead of counts, then set negative values to 0
- Etc.

Interesting semantic patterns emerge in the scaled vectors



COALS model from
Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as linear meaning components in a word vector space?

GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as linear meaning components in a word vector space?

A: Log-bilinear model: $w_i \cdot w_j = \log P(i|j)$

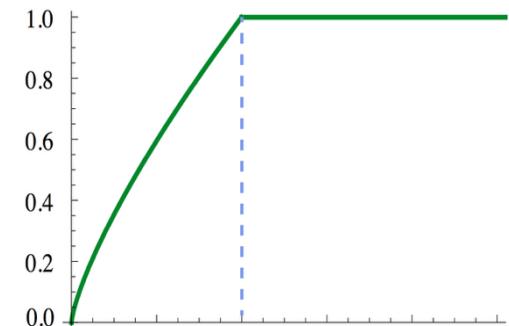
with vector differences

$$w_x \cdot (w_a - w_b) = \log \frac{P(x|a)}{P(x|b)}$$

Loss:
$$J = \sum_{i,j=1}^V f(X_{ij}) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2$$

$f \sim$

- Fast training
- Scalable to huge corpora



6. How to evaluate word vectors?

- Related to general evaluation in NLP: Intrinsic vs. extrinsic
- Intrinsic:
 - Evaluation on a specific/intermediate subtask
 - Fast to compute
 - Helps to understand that system
 - Not clear if it's helpful unless correlation to real task is established
- Extrinsic:
 - Evaluation on a real task
 - Can take a long time to compute accuracy
 - Unclear if the subsystem is the problem or its interaction or other subsystems
 - If replacing exactly one subsystem with another improves accuracy → Winning!

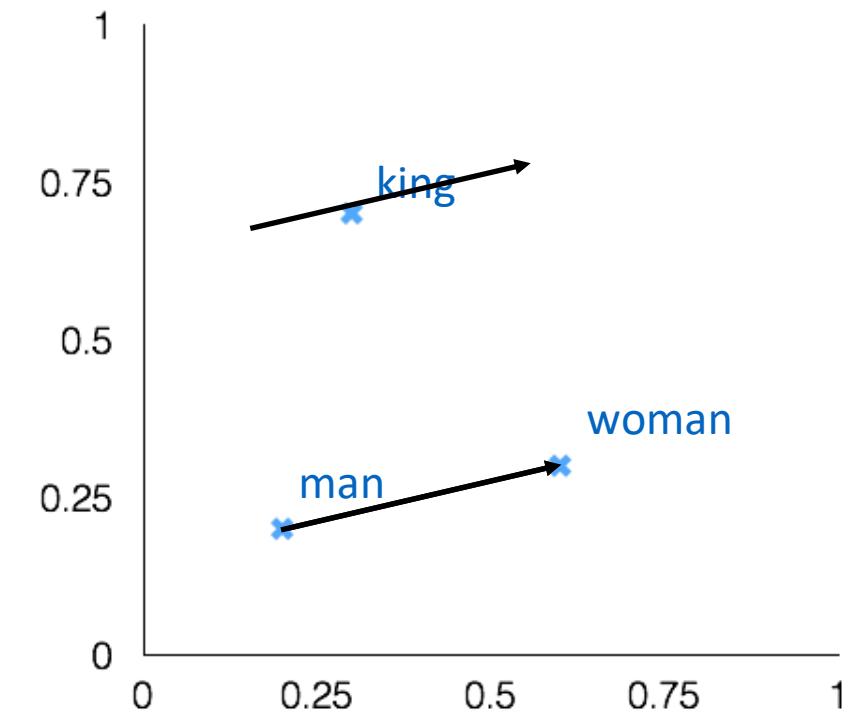
Intrinsic word vector evaluation

- Word Vector Analogies

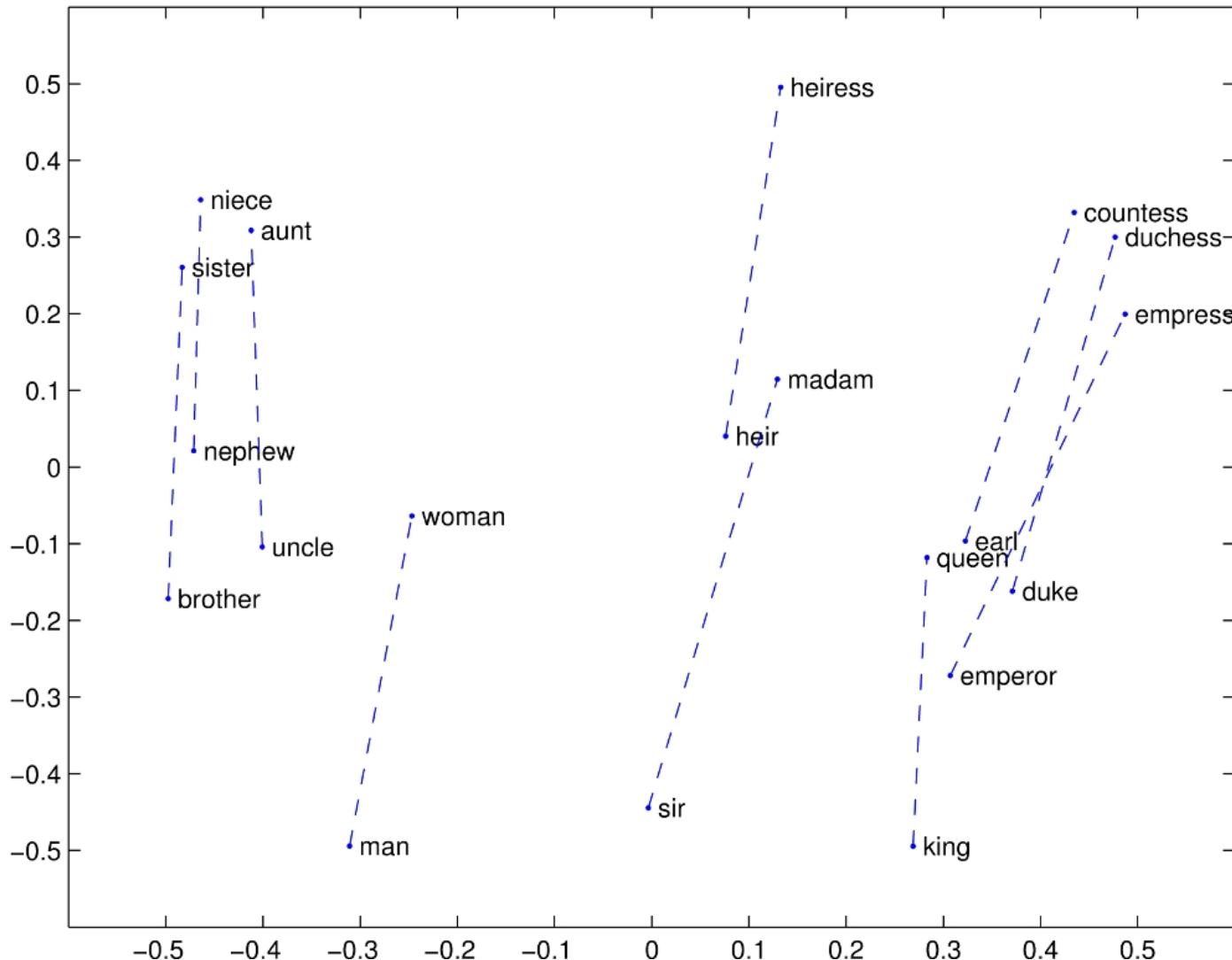
$$\begin{array}{|c|} \hline a:b :: c:? \\ \hline \end{array} \quad \longrightarrow \quad \begin{array}{|c|} \hline d = \arg \max_i \frac{(x_b - x_a + x_c)^T x_i}{\|x_b - x_a + x_c\|} \\ \hline \end{array}$$

man:woman :: king:?

- Evaluate word vectors by how well their cosine distance after addition captures intuitive semantic and syntactic analogy questions
- Discarding the input words from the search (!)**
- Problem: What if the information is there but not linear?



GloVe Visualization



Meaning similarity: Another intrinsic word vector evaluation

- Word vector distances and their correlation with human judgments
- Example dataset: WordSim353

<http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/>

Word 1	Word 2	Human (mean)
tiger	cat	7.35
tiger	tiger	10
book	paper	7.46
computer	internet	7.58
plane	car	5.77
professor	doctor	6.62
stock	phone	1.62
stock	CD	1.31
stock	jaguar	0.92

Correlation evaluation

- Word vector distances and their correlation with human judgments

Model	Size	WS353	MC	RG	SCWS	RW
SVD	6B	35.3	35.1	42.5	38.3	25.6
SVD-S	6B	56.5	71.5	71.0	53.6	34.7
SVD-L	6B	65.7	<u>72.7</u>	75.1	56.5	37.0
CBOW [†]	6B	57.2	65.6	68.2	57.0	32.5
SG [†]	6B	62.8	65.2	69.7	<u>58.1</u>	37.2
GloVe	6B	<u>65.8</u>	<u>72.7</u>	<u>77.8</u>	53.9	<u>38.1</u>
SVD-L	42B	74.0	76.4	74.1	58.3	39.9
GloVe	42B	<u>75.9</u>	<u>83.6</u>	<u>82.9</u>	<u>59.6</u>	<u>47.8</u>
CBOW*	100B	68.4	79.6	75.4	59.4	45.5

Extrinsic word vector evaluation

- One example where good word vectors should help directly: **named entity recognition**: identifying references to a person, organization or location: **Chris Manning** lives in **Palo Alto**.

Model	Dev	Test	ACE	MUC7
Discrete	91.0	85.4	77.4	73.4
SVD	90.8	85.7	77.3	73.7
SVD-S	91.0	85.5	77.6	74.3
SVD-L	90.5	84.8	73.6	71.5
HPCA	92.6	88.7	81.7	80.7
HSMN	90.5	85.7	78.7	74.7
CW	92.2	87.4	81.7	80.2
CBOW	93.1	88.2	82.2	81.1
GloVe	93.2	88.3	82.9	82.2

Lecture Plan

Lecture 2: Word Vectors

1. Course organization (3 mins)
2. Word2vec introduction (15 mins)
3. Word2vec objective function gradients (25 mins)
4. Optimization basics (5 mins)
5. Can we capture the essence of word meaning more effectively by counting? (10m)
6. Evaluating word vectors (10 mins)

Key Goal: understand word meaning can be represented by a high-dimensional vector of real numbers and can read word embeddings papers by the end of class