Natural Language Processing
with Deep Learning

CS224N/Ling284

P

Diyi Yang

Lecture 2: Word Vectors

Lecture Plan

Lecture 2: Word Vectors

Course organization (3 mins)

Word2vec introduction (15 mins)

Word2vec objective function gradients (25 mins)

Optimization basics (5 mins)

Can we capture the essence of word meaning more effectively by counting? (10m)

o kA wheE

Evaluating word vectors (10 mins)

Key Goal: understand word meaning can be represented by a high-dimensional vector of
real numbers and can read word embeddings papers by the end of class

1. Course Organization

Audit/Waitlist

e For other questions, please email cs224n-win2526-staff@lists.stanford.edu
Come to office hours/help sessions!

* They started today

* Come to discuss final project ideas as well as the assignments

* Try to come early, often and off-cycle!
TA office hours: 3-hour blocks Mon-Sat, with multiple TAs

 Just show up! Our friendly course staff will be on hand to assist you!

e https://web.stanford.edu/class/cs224n/office_hours.html

Instructors’ office hours (in person by default):
* Diyi: Tuesdays 3:30-4:30pm
* Yejin: Fridays 4:30-5:30pm

https://web.stanford.edu/class/cs224n/office_hours.html
https://web.stanford.edu/class/cs224n/office_hours.html

2. How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

 theideathatis represented by a word, phrase, etc.

 theidea that a person wants to express by using words, signs, etc.
 theideathatis expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

[signifier (symbol) < signified (idea or thing)]

= denotational semantics

I | { tree & {., ‘, ﬁ’, o} }

How do we have usable meaning in a computer?

Previously commonest NLP solution: Use, e.g., WordNet, a thesaurus containing lists of
synonym sets and hypernyms (“is a” relationships)

e.g., synonym sets containing “good”:

from nltk.corpus import wordnet as wn
poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj',
for synset in wn.synsets("good"):
print("{}: {}".format(poses[synset.pos()],
", ".join([l.name() for 1 in synset.lemmas()])))

'r':'adv'}

noun: good

noun: good, goodness

noun: good, goodness

noun: commodity, trade _good, good

adj: good
adj (sat): full, good
adj: good

adj (sat): estimable, good, honorable, respectable
adj (sat): beneficial, good

adj (sat): good

adj (sat): good, just, upright

adverb: well, good
adverb: thoroughly, soundly, good

e.g., hypernyms of “panda”:

from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01")

hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))

[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living _thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]

Problems with resources like WordNet

A useful resource but missing nuance:

 e.g., “proficient” is listed as a synonym for “good”
This is only correct in some contexts

* Also, WordNet list offensive synonyms in some synonym sets without any
coverage of the connotations or appropriateness of words

* Missing new meanings of words:
* e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
* Impossible to keep up-to-date!
* Subjective
 Requires human labor to create and adapt
e Can’t be used to accurately compute word similarity (see following slides)

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel — a localist representation

Means one 1, the rest Os

!

Such symbols for words can be represented by one-hot vectors:
motel=[000000000010000]

hotel=[000000010000000]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

I 7

Problem with words as discrete symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match
documents containing “Seattle hotel”

motel=[000000000010000]
hotel=[000000010000000]

But these two vectors are orthogonal
There is no natural notion of similarity for one-hot vectors!

Solution:
 Could try to rely on WordNet’s list of synonyms to get similarity?
* But it is well-known to fail badly: incompleteness, etc.

e Instead: learn to encode similarity in the vectors themselves
8

Representing words by their context

Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

* “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

* One of the most successful ideas of modern statistical NLP!

When a word w appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).

We use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

N\ /

These context words will represent banking

Word vectors

We will build a dense vector for each word, chosen so that it is similar to vectors of words
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

e) e I
0.286 0.413
0.792 0.582
-0.177 -0.007
banking = -0.107 monetary = 0.247
0.109 0.216
-0.542 -0.718
0.349 0.147
_ 0-271/ _ 0.0Slj

Note: word vectors are also called (word) embeddings or (neural) word representations
They are a distributed representation

10

3. Word2vec: Overview

Input projection output
: : w(t-2)
Word2vec is a framework for learning word vectors 4
(Mikolov et al. 2013)
¢ | Wit-1)

ldea: o] o
 We have alarge corpus (“body”) of text: a long list of words |
 Every word in a fixed vocabulary is represented by a vector A Wit+1)

* Go through each position t in the text, which has a center
word ¢ and context (“outside”) words o

e Use the similarity of the word vectors for ¢ and o to calculate

the probability of o given c (or vice versa) _
Skip-gram model

 Keep adjusting the word vectors to maximize this probability (Mikolov et al. 2013)

11

Word2Vec Overview

Example windows and process for computing P(WH]- | Wt)

P(we_p | we) P(Weyo | We)

P(wi_q | we) P(Weyq | We)

problems turning banking crises as

| .) _Y_) 1 X)
outside context words center word outside context words
in window of size 2 at position t in window of size 2

12

Word2Vec Overview

Example windows and process for computing P(WH]- | Wt)

P(wi_p | wy) P(Wt+2 |Wt)

problems turning into crises as

\) J
L J
Y Y Y

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

13

Word2Vec: objective function

For each positiont =1, ..., T, predict context words within a window of fixed size m,
given center word w,. Data likelihood:

Likelihood = L(8) = l l l l P(WH_]- | w; 0)

@ is all variables ‘ t=1 —msj=m
to be optimized

1 sometimes called a cost or loss function
The objective function J(@) is the (average) log likelihood:
1
J(0) = ——logL(H) = —Z Z logP(WH] | w; 0)
—ms<j<m
Jj#0

I Minimizing objective function & Maximizing predictive accuracy
14

Word2Vec: objective function

We want to minimize the objective function:

T
1
J(8) = _Ty‘ 7 log P(Weyj | we; 6)

t=1-msj<m
j#0

* Question: How to calculate P(WH]- | wy; 0) ?

 Answer: We will use two vectors per word w:
* v, When wis acenter word
* u,, when wis a context word

e Then for a center word ¢ and a context word o:

exp (Ug ;)
ZWEV exp (u\7;v vc)

P(olc) =

15

Word2Vec with Vectors

* Example windows and process for computing P(WH]- | Wt)

. P(uproblems | vmto) short for P(problems | into ; Uprobiemss Vinto 0)

P(uproblems ') P(ucrisis |vint0)

P(utuning | Vinto P{Upanking |vint0)

problems turning banking crises as
L . J _Y_) L X)
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

16

Word2Vec: prediction function

(@ Exponentiation makes anything positive
(D Dot product compares similarity of o and c.

/ ! !
T U'V=U-"V=),;_1U;
€Xp)/ Larger dot product = larger probability
T
ZWEV exp (uwvc)
\ @ Normalize over entire vocabulary

to give probability distribution

P(olc) =

* This is an example of the softmax function R™ — (0,1)" ~—_ Open

exp (xi) region

softmax(x;) = < = p;

i=1€xp(x;)

e The softmax function maps arbitrary values x; to a probability distribution p;

* “max” because amplifies probability of largest x; :
") : . . \ But sort of a weird name
* “soft” because still assigns some probability to smaller x; because it returns a distribution!

* Frequently used in Deep Learning

17

To train the model: Optimize value of parameters to minimize loss

To train a model, we gradually adjust parameters to minimize a loss

e Recall: 8 represents all the - 7 I

Vaardvark

model parameters, in one v,
long vector

* |n our case, with

. . o Vzebra 2dV e
d-dimensional vectors and 0=1 R
aardvark N\
V-many words, we have =2 Uy SRS
* Remember: every word has : S R— |
two vectors S
| Uzebra i - . | . | | |

 We optimize these parameters by walking down the gradient (see right figure)

 We compute all vector gradients!
18

Interactive Session!

o L(O) =171 Momsjzm P(Wesj | Wi 6)
j*0
exp(ulve)

Y ey expulve)

* For acenter word c and a context word o: P(o|c) =

4. Optimization: Gradient Descent

* We have a cost function J(8) we want to minimize
« Gradient Descent is an algorithm to minimize J(0)

* Idea: for current value of 8, calculate gradient of J(8), then take small step in direction
of negative gradient. Repeat.

Cost
A Note: Our
objectives
. may not
: Learning step be convex
i like this ®
|
: Minimum But life turns
: out to be
: | okay ©
Random > 0
initial value

D>

27

Gradient Descent

« Update equation (in matrix notation):

Hrew — Oold . &V@J(Q)
I

a = step size or learning rate

* Update equation (for single parameter):

new __ pold
e = 051 — @ T (0)

e Algorithm:

while True:
theta_grad = evaluate gradient(J,corpus,theta)
theta = theta - alpha * theta grad

28

Stochastic Gradient Descent

Problem: /(6) is a function of all windows in the corpus (potentially billions!)
« So Vg J(0) is very expensive to compute
* You would wait a very long time before making a single update!

 Very bad idea for pretty much all neural nets!
e Solution: Stochastic gradient descent (SGD) Mini Batch

* Repeatedly sample windows, and update after each one

. Gradient Descent
e Algorithm:

while True:
window = sample window(corpus)
theta grad = evaluate gradient(J,window,theta)
theta = theta - alpha * theta grad

29

Word2vec parameters and computations

U
outside

V

center

U-v," softmax(U - v,7)

dot product probabilities

“Bag of words” model!

—The model makes the same predictions at each position

I 30

We want a model that gives a reasonably high
probability estimate to all words that occur in the
context (at all often)

Word2vec maximizes objective function by
putting similar words nearby in space

yavn e
ry raham
smyrnaeans ; roon%‘rﬂamebn{an%l gapighael andrew
bikram strassman rich ;
o walebeanghiie s "
e Gero
nine letyn traynor Mifler Petendrews
schneider martin raphael
hutcheson dick - mark
o arbuthnot .) ISaac
lilac (faoketone evangelista 93" chopin
orford adv
fiorentina Shrster i
S mellows agtitved o
cram . o
brainstem instit
samsung crumb _
nokia backwardness kyo library
maR#s ; educators
tuesda summer bertolueci - publications
tmas e instalments
study
finggold tatist chentﬂgmggvolutio
wednesdays SEEIES phystggentific
uk matheeaimics
feelgood substandard s mathematical
surreptitious!y FREWS “kdpfuto _
dispelled S P
newton 2Chltulus
YPRRIe murr star plumessuler

WOZ

heisei . s BEAERBERS e
31 koffice quenofﬁce mahatma movie andepid) taumlnnirﬁ g

ftsne_out$YL1)

Word2vec algorithm family (Mikolov et al. 2013): More details

Why two vectors? = Easier optimization. Average both at the end
* But can implement the algorithm with just one vector per word ... and it helps a bit
Two model variants:
1. Skip-grams (SG)
Predict context (“outside”) words (position independent) given center word

2. Continuous Bag of Words (CBOW)

Predict center word from (bag of) context words
We presented: Skip-gram model

Loss functions for training:
1. Naive softmax (simple but expensive loss function, when many output classes)
2. More optimized variants like hierarchical softmax
3. Negative sampling

So far, we explained naive softmax
32

The skip-gram model with negative sampling

33

The normalization term is computationally expensive (when many output classes):

eXp (ugvc)

P(olc) =

ZWEV exp (u\’l;vvc) = A big sum over words

Hence, standard word2vec implements the skip-gram model with negative sampling

Main idea: train binary logistic regressions to differentiate a true pair (center word and
a word in its context window) versus several “noise” pairs (the center word paired with
a random word)

The skip-gram model with negative sampling (Mikolov et al. 2013) I

 We take k negative samples (using word probabilities)

* Maximize probability that real outside word appears;
minimize probability that random words appear around center word

* Using notation consistent with this class, we minimize:

]neg—sample (uo» Ve, U) = — log U(ugvc) - z log 0(_u£vc)

ke{K sampled indices}
sigmoid rather than softmax

1+ e

* The logistic/sigmoid function: 1 /

05+

(we’ll become good friends soon ©) olx) =T = /

« Sample with P(w)=U(w)34/Z, the unigram distribution U(w) raised to the 3/4 power
 The power makes less frequent words be sampled more often

34

https://arxiv.org/abs/1310.4546

Stochastic gradients with negative sampling [aside]

 We iteratively take gradients at each window for SGD

* In each window, we only have at most 2m + 1 words plus 2km negative
words with negative sampling, so Vg/:(8) is very sparse!

Vo (0)= | 0 c R24V

Ulearning
35

Stochastic gradients with negative sampling [aside]

 We might only update the word vectors that actually appear!

e Solution: either you need sparse matrix update operations to ROWS Not colummns
only update certain rows of full embedding matrices U and V, <«—— inactual DL
or you need to keep around a hash for word vectors packages!

|V|[

e If you have millions of word vectors and do distributed
computing, it is important to not have to send gigantic
updates around!

0000
0000

Q
0000
0000
0000

36

5. Why not capture co-occurrence counts directly?

There’s something weird about iterating through the whole corpus (perhaps many times);
why don’t we just accumulate all the statistics of what words appear near each other?!?

Building a co-occurrence matrix X
e 2 options: windows vs. full document

* Window: Similar to word2vec, use window around each word = captures some
syntactic and semantic information (“word space”)

Word-document co-occurrence matrix will give general topics (all sports terms will
have similar entries) leading to “Latent Semantic Analysis” (“document space”)

37

Example: Window based co-occurrence matrix

e Window length 1 (more common: 5-10)
e Symmetric (irrelevant whether left or right context)

e Example corpus:

e |like deep learning
e |like NLP
| enjoy flying

counts |1 Liike | enioy | deep | learning | NuP | iving |.
0 0 0 0

enjoy

deep

learning
NLP

flying

©O O O O O L N O
©O O P O r O O N
©O P O O O O O P
©O O ©O r O O B
~r O O O »r O O
~r O O O O O P
~r O O O O » O
© P P P O O O O

38

Co-occurrence vectors

* Simple count co-occurrence vectors
* Vectors increase in size with vocabulary
* Very high dimensional: require a lot of storage (though sparse)
* Subsequent classification models have sparsity issues = Models are less robust

e Low-dimensional vectors

* |dea: store “most” of the important information in a fixed, small number of
dimensions: a dense vector

e Usually 25-1000 dimensions, similar to word2vec
e How to reduce the dimensionality?

39

Classic Method: Dimensionality Reduction on X (HW1)

Singular Value Decomposition of co-occurrence matrix X

Factorizes X into UZV', where U and V are orthonormal (unit vectors and orthogonal)

% k k¥ * k|
(O S S x|l |l®x = ® * *
X ¥ X X x| =|w * ¥ |® * ® * =
X ¥ X X X S S L. A .
k r M B AN SN SN . i
X |I; el iy g

VT

Retain only k singular values, in order to generalize.

X is the best rank k approximation to X, in terms of least squares.

Classic linear algebra result. Expensive to compute for large matrices.
40

Hacks to X

Running an SVD on raw counts doesn’t work well!!!

Scaling the counts in the cells can help a lot

* Problem: function words (the, he, has) are too frequent = syntax has too much
impact. Some fixes:
* logthe frequencies
min(X, t), with t = 100
* Ignore the function words

Ramped windows that count closer words more than further away words

Use correlations instead of counts, then set negative values to O
* Etc.

41

Interesting semantic patterns emerge in the scaled vectors

42

COALS model from

Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

/ ¢ DRIVER

o DRIVE

o CLEAN

o SWIM

OLEARN

o TREAT

¢ SWIMMER

EACH

¢ JANITOR
¢ STUDENT

¢ TEACHER

¢ DOCTOR

e PRIE

o MARRY

BRIDE
ST

o PRAY

GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space?

GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space?

A: Log-bilinear model: w; - w; = log P(i|7)
P(z|a)
with vector differences Wy - (’wa, — ’wb) = log P(:I:|b)
2
Loss: J = z w wJ+b +b logXij)
i,j=1 f ~

e Fast training

e Scalable to huge corpora

6. How to evaluate word vectors?

e Related to general evaluation in NLP: Intrinsic vs. extrinsic

e Intrinsic:
* Evaluation on a specific/intermediate subtask
* Fast to compute
* Helps to understand that system
* Not clear if it’s helpful unless correlation to real task is established

e Extrinsic:
e Evaluation on a real task
* Can take a long time to compute accuracy
* Unclear if the subsystem is the problem or its interaction or other subsystems
* |If replacing exactly one subsystem with another improves accuracy =2 Winning!

45

Intrinsic word vector evaluation

Word Vector Analogies

T
a:b:c:? — d = arg max (wb — Ty T .CIZ'C) Ly
v be—xa_l_wcH

man:woman :: king:?

e Evaluate word vectors by how well their cosine

. . Y . 0.75 /swg/'
distance after addition captures intuitive

semantic and syntactic analogy questions

0.5
e Discarding the input words from the search (!)
woman
* Problem: What if the information is there but 0.95 man
not linear?
0

0 0.25 0.5 0.75 1

46

GloVe Visualization

I
0.5F r heiress N
|
0.4 ;F -
; niece i = countess
0.3F *aunt [I duchess-
I%ister: I S
/
N I .
0.2 : I ; / ff /- empress
| | ! /
0.1k I | " madam ;1 i
: U5 [1l
[heir /
l / 7
of | inepten .(L -
' ‘ s woman ! r
L I / / / /1 i
-0.1 r ! UnCIE | / ' queeearfrlf'
! brother l / ’ / I duke
-0.2F / [/ i
/ | ,//
/ emperor
~0.3F , e :
[
/ [
-0.41 / I .
{gir |
-0.5F !man Lking 4
| 1 | | 1 | | 1 | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

47

Meaning similarity: Another intrinsic word vector evaluation

 Word vector distances and their correlation with human judgments

 Example dataset: WordSim353
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Word 1__Word 2__Human (mean)_

tiger cat 7.35
tiger tiger 10

book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62

stock CD 1.31
I stock jaguar 0.92
48

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Correlation evaluation

 Word vector distances and their correlation with human judgments

Model Size [WS353 MC RG SCWS RW
SVD 6B | 35.3 35.1 425 383 25.6
SVD-S 6B | 56.5 715 71.0 53.6 34.7
SVD-L 6B | 657 727 175.1 565 37.0
CBOW'™ 6B | 57.2 656 682 57.0 325
SGT 6B | 628 652 69.7 58.1 372
GloVe 6B | 65.8 727 77.8 539 38.1
SVD-L 42B| 74.0 764 74.1 583 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 68.4 79.6 754 59.4 455

Extrinsic word vector evaluation

 One example where good word vectors should help directly: named entity
recognition: identifying references to a person, organization or location:
Chris Manning lives in Palo Alto.

Model | Dev Test ACE MUC7
Discrete | 91.0 854 774 73.4
SVD 90.8 857 77.3 73.7
SVD-S | 91.0 855 77.6 74.3
SVD-L | 90.5 84.8 73.6 71.5
HPCA | 92.6 88.7 81.7 80.7
HSMN | 90.5 85.7 78.7 74.7
CW 922 874 81.7 80.2
CBOW | 93.1 88.2 82.2 81.1
GloVe | 93.2 88.3 82.9 82.2

50

Lecture Plan

Lecture 2: Word Vectors

Course organization (3 mins)

Word2vec introduction (15 mins)

Word2vec objective function gradients (25 mins)

Optimization basics (5 mins)

Can we capture the essence of word meaning more effectively by counting? (10m)

o kA wheE

Evaluating word vectors (10 mins)

Key Goal: understand word meaning can be represented by a high-dimensional vector of
real numbers and can read word embeddings papers by the end of class

51

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: 1. Course Organization
	Slide 4: 2. How do we represent the meaning of a word?
	Slide 5: How do we have usable meaning in a computer?
	Slide 6: Problems with resources like WordNet
	Slide 7: Representing words as discrete symbols
	Slide 8: Problem with words as discrete symbols
	Slide 9: Representing words by their context
	Slide 10: Word vectors
	Slide 11: 3. Word2vec: Overview
	Slide 12: Word2Vec Overview
	Slide 13: Word2Vec Overview
	Slide 14: Word2Vec: objective function
	Slide 15: Word2Vec: objective function
	Slide 16: Word2Vec with Vectors
	Slide 17: Word2Vec: prediction function
	Slide 18: To train the model: Optimize value of parameters to minimize loss
	Slide 19: Interactive Session!
	Slide 27: 4. Optimization: Gradient Descent
	Slide 28: Gradient Descent
	Slide 29: Stochastic Gradient Descent
	Slide 30: Word2vec parameters … and computations
	Slide 31: Word2vec maximizes objective function by putting similar words nearby in space
	Slide 32: Word2vec algorithm family (Mikolov et al. 2013): More details
	Slide 33: The skip-gram model with negative sampling
	Slide 34: The skip-gram model with negative sampling (Mikolov et al. 2013)
	Slide 35: Stochastic gradients with negative sampling [aside]
	Slide 36: Stochastic gradients with negative sampling [aside]
	Slide 37: 5. Why not capture co-occurrence counts directly?
	Slide 38: Example: Window based co-occurrence matrix
	Slide 39: Co-occurrence vectors
	Slide 40: Classic Method: Dimensionality Reduction on X (HW1)
	Slide 41: Hacks to X
	Slide 42: Interesting semantic patterns emerge in the scaled vectors
	Slide 43: GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences
	Slide 44: GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences
	Slide 45: 6. How to evaluate word vectors?
	Slide 46: Intrinsic word vector evaluation
	Slide 47: GloVe Visualization
	Slide 48: Meaning similarity: Another intrinsic word vector evaluation
	Slide 49: Correlation evaluation
	Slide 50: Extrinsic word vector evaluation
	Slide 51: Lecture Plan

