
Natural Language Processing
with Deep Learning

CS224N/Ling284

Diyi Yang

Lecture 3: Neural Network Foundations

Lecture Plan

2

Lecture 2: Neural Network Foundations

1. Course logistics (3 mins) + Word2vec evaluation (7 mins)

2. Introducing neural networks (10 mins)

3. Matrix calculus (25 mins)

4. Backpropagation (35 mins)

Key Goal: the mathematics and practical implementation of how neural networks are
trained by backpropagation

1. Course Logistics

3

Assignment 2 is all about making sure you really understand the math of neural networks
… then we’ll let the software do it! It also teaches us about dependency parsing

This will be a tough week for some! → Make sure to get help if you need it:

Visit office hours! Read tutorial materials on the syllabus!

PyTorch tutorial: 1:30-2:20pm this Friday NVIDIA Auditorium

A great chance to get an intro to PyTorch, a key deep learning package!

Poster session: March 16, 12:15-3:15pm, AOERC. In-person presence required for in-
person students; other exceptions see Ed forum post (due week 3)

Recap from Lecture 2: How to evaluate word vectors?

• Related to general evaluation in NLP: Intrinsic vs. extrinsic

• Intrinsic:

• Evaluation on a specific/intermediate subtask

• Fast to compute

• Helps to understand that system

• Not clear if it’s helpful unless correlation to real task is established

• Extrinsic:

• Evaluation on a real task

• Can take a long time to compute accuracy

• Unclear if the subsystem is the problem or its interaction or other subsystems

• If replacing exactly one subsystem with another improves accuracy → Winning!

4

Intrinsic word vector evaluation

• Word Vector Analogies

• Evaluate word vectors by how well their cosine
distance after addition captures intuitive
semantic and syntactic analogy questions

• Discarding the input words from the search (!)

• Problem: What if the information is there but
not linear?

man:woman :: king:?

a:b :: c:?

king

man

woman

5

GloVe Visualization

6

Meaning similarity: Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments

• Example dataset: WordSim353
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

7

Word 1 Word 2 Human (mean)

tiger cat 7.35

tiger tiger 10

book paper 7.46

computer internet 7.58

plane car 5.77

professor doctor 6.62

stock phone 1.62

stock CD 1.31

stock jaguar 0.92

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Correlation evaluation

• Word vector distances and their correlation with human judgments

8

Extrinsic word vector evaluation

• One example where good word vectors should help directly: named entity
recognition: identifying references to a person, organization or location:
Chris Manning lives in Palo Alto.

9

2. Deep Learning Classification: Named Entity Recognition (NER)

• The task: find and classify names in text, by labeling word tokens, for example:

Last night , Paris Hilton wowed in a sequin gown .

 PER PER

Samuel Quinn was arrested in the Hilton Hotel in Paris in April 1989 .

PER PER LOC LOC LOC DATE DATE

• Possible uses:

• Tracking mentions of particular entities in documents

• For question answering, answers are usually named entities

• Relating sentiment analysis to the entity under discussion

• Often followed by Entity Linking/Canonicalization into a Knowledge Base such as Wikidata

10

Simple NER: Window classification using binary logistic classifier

• Idea: classify each word in its context window of neighboring words

• Train logistic classifier on hand-labeled data to classify center word {yes/no} for each
class based on a concatenation of word vectors in a window

• Really, we usually use multi-class softmax, but we’re trying to keep it simple ☺

• Example: Classify “Paris” as +/– location in context of sentence with window length 2:

 the museums in Paris are amazing to see .

Xwindow = [xmuseums xin xParis xare xamazing]T

• Resulting vector xwindow = x ∈ R5d

• To classify all words: run classifier for each class on the vector centered on each word
in the sentence

11

Classification review and notation

• Supervised learning: we have a training dataset consisting of samples

 {xi,yi}
N

i=1

• xi are inputs, e.g., words (indices or vectors!), sentences, documents, etc.

• Dimension d

• yi are labels (one of C classes) we try to predict, for example:

• classes: sentiment (+/–), named entities, buy/sell decision

• other words

• later: multi-word sequences

12

Neural classification

13

• Typical ML/stats softmax classifier:

• Learned parameters θ are just elements
of W (not input representation x, which has sparse symbolic features)

• Classifier gives linear decision boundary, which can be limiting

• A neural network classifier differs in that:

• We learn both W and (distributed!) representations for words

• The word vectors x re-represent one-hot vectors, moving them
around in an intermediate layer vector space, for easy classification
with a (linear) softmax classifier

• Conceptually, we have an embedding layer: x = Le

• We use deep networks—more layers—that let us re-represent and
compose our data multiple times, giving a non-linear classifier

But typically, it is linear
relative to the pre-final
layer representation

NER: Binary classification for center word being location

• We do supervised training and want high score if it’s a location

 𝐽𝑡 𝜃 = 𝜎 𝑠 =
1

1 + 𝑒−𝑠

14

x = [xmuseums xin xParis xare xamazing]

predicted model
probability of class

f = Some element-
wise non-linear
function, e.g.,
logistic, tanh, ReLU

∈ R5d

Embedding of
1-hot words

tanh is just a rescaled and shifted sigmoid (2×as steep, [−1,1]):

Logistic and tanh are still used (e.g., logistic to get a probability); however, often, for deep networks, the first
thing to try is ReLU: it trains quickly and performs well due to good gradient backflow.

ReLU has a negative “dead zone” that recent proposals mitigate

Non-linearities, old and new

logistic (“sigmoid”) tanh ReLU (Rectified Linear Unit)

tanh(z)= 2logistic(2z)-1

1

0

1

−1

ReLU 𝑧 = max(𝑧, 0)

Leaky ReLU / Parametric ReLU

0

Non-linearities, old and new

GELU (Gaussian error linear unit);
frequently used with Transformers

SiLU
Sigmoid linear unit

Swish

GLU (gated linear unit) uses a gate/switch

GLU(x) = (𝑥𝑉 + 𝑣) ⊗ 𝜎(𝑥𝑊 + 𝑏)

SwiGLU (Swish-gated linear unit)

GELU(x) = 𝑥 ∙ 𝑃 𝑋 ≤ 𝑥 , 𝑋~𝑁(0,1)
 ≈ 𝑥 ∙ logistic(1.702𝑥)

SiLU(x) = 𝑥 ∙ 𝜎(𝑥) Swish (x) = 𝑥 ∙ 𝜎(𝛽𝑥)

SwiGLU(x) = 𝑥𝑉 + 𝑐 ⊗ 𝑆𝑤𝑖𝑠ℎ𝛽 𝑥𝑊 + 𝑏

Frequently used, e.g., in LLama3, Qwen3

Check out GLU Variants Improve Transformer

https://arxiv.org/pdf/2002.05202

Non-linearities (i.e., “f ” on previous slide): Why they’re needed

17

• Neural networks do function approximation,
e.g., regression or classification

• Without non-linearities, deep neural networks
can’t do anything more than a linear transform

• Extra layers could just be compiled down into a
single linear transform: W1 W2 x = Wx

• But, with more layers that include non-linearities,
they can approximate any complex function!

Training with “cross entropy loss” – you use this in PyTorch!

• Until now, our objective was stated as to maximize the probability of the correct class y
or equivalently we can minimize the negative log probability of that class

• Now restated in terms of cross entropy, a concept from information theory

• Let the true probability distribution be p; let our computed model probability be q

• The cross entropy is:

• Assuming a ground truth (or true or gold or target) probability distribution that is 1 at
the right class and 0 everywhere else, p = [0, …, 0, 1, 0, …, 0], then:

• Because of one-hot p, the only term left is the negative log probability of the true
class yi: − log 𝑝(𝑦𝑖|𝑥𝑖)

18

Remember: Stochastic Gradient Descent

Update equation:

i.e., for each parameter: 𝜃𝑗
𝑛𝑒𝑤 = 𝜃𝑗

𝑜𝑙𝑑 − 𝛼
𝜕𝐽 𝜃

𝜕𝜃𝑗
𝑜𝑙𝑑

In deep learning, 𝜃 includes the data representation (e.g., word vectors) too!

How can we compute ∇𝜃𝐽(𝜃)?

1. By hand

2. Algorithmically: the backpropagation algorithm

𝛼 = step size or learning rate

19

3. Computing Gradients by Hand

20

• Matrix calculus: Fully vectorized gradients

• “Multivariable calculus is just like single-variable calculus if you use matrices”

• Much faster and more useful than non-vectorized gradients

• But doing a non-vectorized gradient can be good for intuition; recall the second
lecture for an example

• Lecture notes and matrix calculus notes cover this material in more detail

• You might also review Math 51, which has an online textbook:
http://web.stanford.edu/class/math51/textbook.html

http://web.stanford.edu/class/math51/textbook.html

Gradients

21

• Given a function with 1 output and 1 input

 𝑓 𝑥 = 𝑥3

• It’s gradient (slope) is its derivative

𝑑𝑓

𝑑𝑥
= 3𝑥2

“How much will the output change if we change the input a bit?”
At x = 1 it changes about 3 times as much: 1.013 = 1.03

At x = 4 it changes about 48 times as much: 4.013 = 64.48

Gradients

• Given a function with 1 output and n inputs

• Its gradient is a vector of partial derivatives with
respect to each input

22

Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs

• It’s Jacobian is an m x n matrix of partial derivatives

23

Chain Rule

• For composition of one-variable functions: multiply derivatives

• For multiple variables functions: multiply Jacobians

24

Example Jacobian: Elementwise activation Function

25

Example Jacobian: Elementwise activation Function

Function has n outputs and n inputs → n by n Jacobian

26

Example Jacobian: Elementwise activation Function

27

Example Jacobian: Elementwise activation Function

28

Example Jacobian: Elementwise activation Function

29

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

30

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

31

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

32

Fine print: This is the correct Jacobian.

Later we discuss the “shape convention”;
using it the answer would be h.

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

33

Back to our Neural Net!

x = [xmuseums xin xParis xare xamazing]

34

Back to our Neural Net!

• Let’s find

• Really, we care about the gradient of the loss J but we
will compute the gradient of the score for simplicity

35

x = [xmuseums xin xParis xare xamazing]

a. Break up equations into simple pieces

36

Carefully define your variables and keep track of their dimensionality!

b. Apply the chain rule

37

b. Apply the chain rule

38

b. Apply the chain rule

39

b. Apply the chain rule

40

c. Write out the Jacobians

Useful Jacobians from previous slide

41

c. Write out the Jacobians

42

𝒖𝑇

Useful Jacobians from previous slide

c. Write out the Jacobians

43

𝒖𝑇

Useful Jacobians from previous slide

c. Write out the Jacobians

44

𝒖𝑇

Useful Jacobians from previous slide

c. Write out the Jacobians

45

𝒖𝑇

𝒖𝑇

Useful Jacobians from previous slide
.

⊙ = Hadamard product =
element-wise multiplication
of 2 vectors to give vector

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

46

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

The same! Let’s avoid duplicated computation …

47

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

48

𝛿 is the upstream gradient (“error signal”)

𝒖𝑇

Derivative with respect to Matrix: Output shape

• What does look like?

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to then do

49

Derivative with respect to Matrix: Output shape

• What does look like?

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to then do

• Instead, we leave pure math and use the shape convention:
the shape of the gradient is the shape of the parameters!

• So is n by m:

50

Derivative with respect to Matrix

• What is

• is going to be in our answer

• The other term should be because

• Answer is:

51

𝛿 is upstream gradient (“error signal”) at 𝑧
𝑥 is local input signal

Why the Transposes?

52

• Hacky answer: this makes the dimensions work out!

• Useful trick for checking your work!

• Full explanation in the lecture notes

• Each input goes to each output – you want to get outer product

Deriving local input gradient in backprop

• For
𝜕𝒛

𝜕𝑾
 in our equation:

• Let’s consider the derivative of a single weight Wij

• Wij only contributes to zi

• For example: W23 is only
used to compute z2 not z1

53

x1 x2 x3 +1

f(z1)= h1 h2 =f(z2)

s u2

W23

b2

𝜕𝑠

𝜕𝑾
= 𝜹

𝜕𝒛

𝜕𝑾
= 𝜹

𝜕

𝜕𝑾
(𝑾𝒙 + 𝒃)

𝜕𝑧𝑖

𝜕𝑊𝑖𝑗
=

𝜕

𝜕𝑊𝑖𝑗
𝑾𝑖∙𝒙 + 𝑏𝑖

 =
𝜕

𝜕𝑊𝑖𝑗
 σ𝑘=1

𝑑 𝑊𝑖𝑘𝑥𝑘 = 𝑥𝑗

What shape should derivatives be?

• Similarly, is a row vector

• But shape convention says our gradient should be a column vector because b is
a column vector …

• Disagreement between Jacobian form (which makes the chain rule
easy) and the shape convention (which makes implementing SGD easy)

• We expect answers in the assignment to follow the shape convention

• But Jacobian form is useful for computing the answers

54

What shape should derivatives be?

Two options for working through specific problems:

1. Use Jacobian form as much as possible, reshape to
follow the shape convention at the end:

• What we just did. But at the end transpose to make the
derivative a column vector, resulting in

2. Always follow the shape convention

• Look at dimensions to figure out when to transpose and/or
reorder terms

• The error message 𝜹 that arrives at a hidden layer has the
same dimensionality as that hidden layer

55

Use Jacobian
to compute;
Use shape
convention to
format.

4. Backpropagation

We’ve almost shown you backpropagation

It’s taking derivatives and using the (generalized, multivariate, or matrix)
chain rule

Other trick:

We re-use derivatives computed for higher layers in computing
derivatives for lower layers to minimize computation

56

Computation Graphs and Backpropagation

 + 

• Software represents our neural
net equations as a graph

• Source nodes: inputs

• Interior nodes: operations

57

Computation Graphs and Backpropagation

 + 

• Software represents our neural
net equations as a graph

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the
operation

58

Computation Graphs and Backpropagation

 + 

• Software represents our neural
net equations as a graph

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the
operation

“Forward Propagation”

59

Backpropagation

 + 

• Then go backwards along edges

• Pass along gradients

60

Backpropagation: Single Node

• Node receives an “upstream gradient”

• Goal is to pass on the correct
“downstream gradient”

Upstream
gradient 61

Downstream
gradient

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient62

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient63

Chain
rule!

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient

[downstream gradient] = [upstream gradient] x [local gradient]

64

Backpropagation: Single Node

*

• What about nodes with multiple inputs?

65

Backpropagation: Single Node

Downstream
gradients

Upstream
gradient

Local
gradients

*

• Multiple inputs → multiple local gradients

66

Gradients sum at outward branches

78

+

Gradients sum at outward branches

79

+

Node Intuitions

+

*

max

80

6

3

2

1

2

2

0

1

2
2

2

• + “distributes” the upstream gradient to each summand

Node Intuitions

+

*

max

81

6

3

2

1

2

2

0

1

3
3

0

• + “distributes” the upstream gradient to each summand

• max “routes” the upstream gradient

Node Intuitions

+

*

max

82

6

3

2

1

2

2

0

1

3

2

• + “distributes” the upstream gradient

• max “routes” the upstream gradient

• * “switches” the upstream gradient

Efficiency: compute all gradients at once

* + 

• Incorrect way of doing backprop:

• First compute

83

Efficiency: compute all gradients at once

* + 

• Incorrect way of doing backprop:

• First compute

• Then independently compute

• Duplicated computation!

84

Efficiency: compute all gradients at once

* + 

• Correct way:

• Compute all the gradients at once

• Analogous to using 𝜹 when we
computed gradients by hand

85

1. Fprop: visit nodes in topological sort order
- Compute value of node given predecessors

2. Bprop:
 - initialize output gradient = 1
 - visit nodes in reverse order:

 Compute gradient wrt each node using
 gradient wrt successors

Done correctly, big O() complexity of fprop and
bprop is the same

In general, our nets have regular layer-structure
and so we can use matrices and Jacobians…

Back-Prop in General Computation Graph

…

…

Inputs

 = successors of

Single scalar output

86

Automatic Differentiation

• The gradient computation can be
automatically inferred from the symbolic
expression of the fprop

• Each node type needs to know how to
compute its output and how to compute
the gradient wrt its inputs given the
gradient wrt its output

• Modern DL frameworks (Tensorflow,
PyTorch, etc.) do backpropagation for
you but mainly leave layer/node writer
to hand-calculate the local derivative

87

Backprop Implementations

88

Manual Gradient checking: Numeric Gradient

• For small h (≈ 1e-4),

• Easy to implement correctly

• But approximate and very slow:

• You have to recompute f for every parameter of our model

• Useful for checking your implementation

• In the old days, we hand-wrote everything, doing this everywhere was the key test

• Now much less needed; you can use it to check layers are correctly implemented

91

Summary

92

We’ve mastered the core technology of neural nets!

• Backpropagation: recursively (and hence efficiently) apply the chain rule
along computation graph

• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations and save intermediate
values

• Backward pass: apply chain rule to compute gradients

Why learn all these details about gradients?

93

• Modern deep learning frameworks compute gradients for you!

• Come to the PyTorch introduction this Friday!

• But why take a class on compilers or systems when they are implemented for you?

• Understanding what is going on under the hood is useful!

• Backpropagation doesn’t always work perfectly out of the box

• Understanding why is crucial for debugging and improving models

• See Karpathy article (in syllabus):

• https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

• Example in future lecture: exploding and vanishing gradients

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: 1. Course Logistics
	Slide 4: Recap from Lecture 2: How to evaluate word vectors?
	Slide 5: Intrinsic word vector evaluation
	Slide 6: GloVe Visualization
	Slide 7: Meaning similarity: Another intrinsic word vector evaluation
	Slide 8: Correlation evaluation
	Slide 9: Extrinsic word vector evaluation
	Slide 10: 2. Deep Learning Classification: Named Entity Recognition (NER)
	Slide 11: Simple NER: Window classification using binary logistic classifier
	Slide 12: Classification review and notation
	Slide 13: Neural classification
	Slide 14: NER: Binary classification for center word being location
	Slide 15: Non-linearities, old and new
	Slide 16: Non-linearities, old and new
	Slide 17: Non-linearities (i.e., “f ” on previous slide): Why they’re needed
	Slide 18: Training with “cross entropy loss” – you use this in PyTorch!
	Slide 19: Remember: Stochastic Gradient Descent
	Slide 20: 3. Computing Gradients by Hand
	Slide 21: Gradients
	Slide 22: Gradients
	Slide 23: Jacobian Matrix: Generalization of the Gradient
	Slide 24: Chain Rule
	Slide 25: Example Jacobian: Elementwise activation Function
	Slide 26: Example Jacobian: Elementwise activation Function
	Slide 27: Example Jacobian: Elementwise activation Function
	Slide 28: Example Jacobian: Elementwise activation Function
	Slide 29: Example Jacobian: Elementwise activation Function
	Slide 30: Other Jacobians
	Slide 31: Other Jacobians
	Slide 32: Other Jacobians
	Slide 33: Other Jacobians
	Slide 34: Back to our Neural Net!
	Slide 35: Back to our Neural Net!
	Slide 36: a. Break up equations into simple pieces
	Slide 37: b. Apply the chain rule
	Slide 38: b. Apply the chain rule
	Slide 39: b. Apply the chain rule
	Slide 40: b. Apply the chain rule
	Slide 41: c. Write out the Jacobians
	Slide 42: c. Write out the Jacobians
	Slide 43: c. Write out the Jacobians
	Slide 44: c. Write out the Jacobians
	Slide 45: c. Write out the Jacobians
	Slide 46: Re-using Computation
	Slide 47: Re-using Computation
	Slide 48: Re-using Computation
	Slide 49: Derivative with respect to Matrix: Output shape
	Slide 50: Derivative with respect to Matrix: Output shape
	Slide 51: Derivative with respect to Matrix
	Slide 52: Why the Transposes?
	Slide 53: Deriving local input gradient in backprop
	Slide 54: What shape should derivatives be?
	Slide 55: What shape should derivatives be?
	Slide 56: 4. Backpropagation
	Slide 57: Computation Graphs and Backpropagation
	Slide 58: Computation Graphs and Backpropagation
	Slide 59: Computation Graphs and Backpropagation
	Slide 60: Backpropagation
	Slide 61: Backpropagation: Single Node
	Slide 62: Backpropagation: Single Node
	Slide 63: Backpropagation: Single Node
	Slide 64: Backpropagation: Single Node
	Slide 65: Backpropagation: Single Node
	Slide 66: Backpropagation: Single Node
	Slide 78: Gradients sum at outward branches
	Slide 79: Gradients sum at outward branches
	Slide 80: Node Intuitions
	Slide 81: Node Intuitions
	Slide 82: Node Intuitions
	Slide 83: Efficiency: compute all gradients at once
	Slide 84: Efficiency: compute all gradients at once
	Slide 85: Efficiency: compute all gradients at once
	Slide 86: Back-Prop in General Computation Graph
	Slide 87: Automatic Differentiation
	Slide 88: Backprop Implementations
	Slide 91: Manual Gradient checking: Numeric Gradient
	Slide 92: Summary
	Slide 93: Why learn all these details about gradients?

