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Lecture Plan
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Lecture 2: Neural Network Foundations

1. Course logistics (3 mins) + Word2vec evaluation (7 mins) 

2. Introducing neural networks (10 mins)

3. Matrix calculus (25 mins)

4. Backpropagation (35 mins)

Key Goal: the mathematics and practical implementation of how neural networks are 
trained by backpropagation



1. Course Logistics
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Assignment 2 is all about making sure you really understand the math of neural networks 
… then we’ll let the software do it! It also teaches us about dependency parsing

This will be a tough week for some! → Make sure to get help if you need it: 

Visit office hours! Read tutorial materials on the syllabus! 

PyTorch tutorial: 1:30-2:20pm this Friday NVIDIA Auditorium

A great chance to get an intro to PyTorch, a key deep learning package!

Poster session: March 16, 12:15-3:15pm, AOERC. In-person presence required for in-
person students; other exceptions see Ed forum post (due week 3)



Recap from Lecture 2: How to evaluate word vectors?

• Related to general evaluation in NLP: Intrinsic vs. extrinsic

• Intrinsic:

• Evaluation on a specific/intermediate subtask

• Fast to compute

• Helps to understand that system

• Not clear if it’s helpful unless correlation to real task is established

• Extrinsic:

• Evaluation on a real task

• Can take a long time to compute accuracy

• Unclear if the subsystem is the problem or its interaction or other subsystems

• If replacing exactly one subsystem with another improves accuracy → Winning!
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Intrinsic word vector evaluation

• Word Vector Analogies

• Evaluate word vectors by how well their cosine 
distance after addition captures intuitive 
semantic and syntactic analogy questions

• Discarding the input words from the search (!)

• Problem: What if the information is there but 
not linear?

man:woman :: king:?

a:b :: c:?

king

man

woman
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GloVe Visualization
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Meaning similarity: Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments

• Example dataset: WordSim353 
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
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Word 1 Word 2 Human (mean)

tiger cat 7.35

tiger tiger 10

book paper 7.46

computer internet 7.58

plane car 5.77

professor doctor 6.62

stock phone 1.62

stock CD 1.31

stock jaguar 0.92

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/


Correlation evaluation

• Word vector distances and their correlation with human judgments
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Extrinsic word vector evaluation

• One example where good word vectors should help directly: named entity 
recognition: identifying references to a person, organization or location:  
Chris Manning lives in Palo Alto.
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2. Deep Learning Classification: Named Entity Recognition (NER)

• The task: find and classify names in text, by labeling word tokens, for example:

Last night , Paris Hilton wowed in a sequin gown .

                     PER   PER     

Samuel Quinn was arrested in the Hilton Hotel in Paris in April 1989 .

PER        PER                                         LOC     LOC        LOC      DATE DATE

• Possible uses:

• Tracking mentions of particular entities in documents

• For question answering, answers are usually named entities

• Relating sentiment analysis to the entity under discussion

• Often followed by Entity Linking/Canonicalization into a Knowledge Base such as Wikidata
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Simple NER: Window classification using binary logistic classifier

• Idea: classify each word in its context window of neighboring words

• Train logistic classifier on hand-labeled data to classify center word {yes/no} for each 
class based on a concatenation of word vectors in a window

• Really, we usually use multi-class softmax, but we’re trying to keep it simple ☺

• Example: Classify “Paris” as +/– location in context of sentence with window length 2: 

 the     museums      in         Paris         are      amazing    to      see      .

Xwindow  = [  xmuseums xin           xParis            xare         xamazing ]T

• Resulting vector xwindow = x ∈ R5d    

• To classify all words: run classifier for each class on the vector centered on each word 
in the sentence
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Classification review and notation

• Supervised learning: we have a training dataset consisting of samples 

    {xi,yi}
N

i=1

• xi are inputs, e.g., words (indices or vectors!), sentences, documents, etc. 

• Dimension d

• yi are labels (one of C classes) we try to predict, for example:

• classes: sentiment (+/–), named entities, buy/sell decision

• other words

• later: multi-word sequences
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Neural classification
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• Typical ML/stats softmax classifier:

• Learned parameters θ are just elements
of W (not input representation x, which has sparse symbolic features)

• Classifier gives linear decision boundary, which can be limiting

• A neural network classifier differs in that:

• We learn both W and (distributed!) representations for words

• The word vectors x re-represent one-hot vectors, moving them 
around in an intermediate layer vector space, for easy classification 
with a (linear) softmax classifier

• Conceptually, we have an embedding layer: x = Le

• We use deep networks—more layers—that let us re-represent and 
compose our data multiple times, giving a non-linear classifier

But typically, it is linear 
relative to the pre-final 
layer representation



NER: Binary classification for center word being location

• We do supervised training and want high score if it’s a location

 𝐽𝑡 𝜃 = 𝜎 𝑠 =
1

1 + 𝑒−𝑠
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x  = [  xmuseums xin         xParis            xare        xamazing ]

predicted model 
probability of class

f = Some element-
wise non-linear 
function, e.g., 
logistic, tanh, ReLU

∈ R5d 

Embedding of
1-hot words



tanh is just a rescaled and shifted sigmoid (2×as steep, [−1,1]): 

 

Logistic and tanh are still used (e.g., logistic to get a probability); however, often, for deep networks, the first 
thing to try is ReLU: it trains quickly and performs well due to good gradient backflow.

ReLU has a negative “dead zone” that recent proposals mitigate

Non-linearities, old and new

logistic (“sigmoid”)                  tanh                       ReLU (Rectified Linear Unit)

tanh(z)= 2logistic(2z)-1

1

0

1

−1

ReLU 𝑧 = max(𝑧, 0)

Leaky ReLU / Parametric ReLU

0



Non-linearities, old and new

GELU  (Gaussian error linear unit); 
frequently used with Transformers 

SiLU
Sigmoid linear unit 

Swish

GLU (gated linear unit) uses a gate/switch 

GLU(x) = (𝑥𝑉 + 𝑣) ⊗ 𝜎(𝑥𝑊 + 𝑏) 

SwiGLU (Swish-gated linear unit)

GELU(x) = 𝑥 ∙ 𝑃 𝑋 ≤ 𝑥 , 𝑋~𝑁(0,1)
 ≈ 𝑥 ∙ logistic(1.702𝑥)

SiLU(x) = 𝑥 ∙ 𝜎(𝑥) Swish (x) = 𝑥 ∙ 𝜎(𝛽𝑥)

SwiGLU(x) = 𝑥𝑉 + 𝑐 ⊗ 𝑆𝑤𝑖𝑠ℎ𝛽 𝑥𝑊 + 𝑏

Frequently used, e.g., in LLama3, Qwen3

Check out GLU Variants Improve Transformer 

https://arxiv.org/pdf/2002.05202



Non-linearities (i.e., “f ” on previous slide): Why they’re needed

17

• Neural networks do function approximation, 
e.g., regression or classification

• Without non-linearities, deep neural networks 
can’t do anything more than a linear transform

• Extra layers could just be compiled down into a 
single linear transform: W1 W2 x = Wx

• But, with more layers that include non-linearities, 
they can approximate any complex function!



Training with “cross entropy loss” – you use this in PyTorch!

• Until now, our objective was stated as to maximize the probability of the correct class y 
or equivalently we can minimize the negative log probability of that class

• Now restated in terms of cross entropy, a concept from information theory

• Let the true probability distribution be p; let our computed model probability be q

• The cross entropy is: 

• Assuming a ground truth (or true or gold or target) probability distribution that is 1 at 
the right class and 0 everywhere else, p = [0, …, 0, 1, 0, …, 0], then:

• Because of one-hot p, the only term left is the negative log probability of the true 
class yi: − log 𝑝(𝑦𝑖|𝑥𝑖)
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Remember: Stochastic Gradient Descent

Update equation:

i.e., for each parameter: 𝜃𝑗
𝑛𝑒𝑤 = 𝜃𝑗

𝑜𝑙𝑑 − 𝛼
𝜕𝐽 𝜃

𝜕𝜃𝑗
𝑜𝑙𝑑

In deep learning, 𝜃 includes the data representation (e.g., word vectors) too! 

How can we compute ∇𝜃𝐽(𝜃)?

1. By hand

2. Algorithmically: the backpropagation algorithm

𝛼 = step size or learning rate

19



3. Computing Gradients by Hand
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• Matrix calculus: Fully vectorized gradients

• “Multivariable calculus is just like single-variable calculus if you use matrices” 

• Much faster and more useful than non-vectorized gradients

• But doing a non-vectorized gradient can be good for intuition; recall the second 
lecture for an example

• Lecture notes and matrix calculus notes cover this material in more detail

• You might also review Math 51, which has an online textbook: 
http://web.stanford.edu/class/math51/textbook.html 

http://web.stanford.edu/class/math51/textbook.html


Gradients
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• Given a function with 1 output and 1 input

 𝑓 𝑥 = 𝑥3

• It’s gradient (slope) is its derivative 

𝑑𝑓

𝑑𝑥
= 3𝑥2

“How much will the output change if we change the input a bit?”
At x = 1 it changes about 3 times as much: 1.013 = 1.03

At x = 4 it changes about 48 times as much: 4.013 = 64.48



Gradients

• Given a function with 1 output and n inputs

• Its gradient is a vector of partial derivatives with 
respect to each input 

22



Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs

• It’s Jacobian is an m x n matrix of partial derivatives 
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Chain Rule

• For composition of one-variable functions: multiply derivatives

• For multiple variables functions: multiply Jacobians

24



Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function

Function has n outputs and n inputs → n by n Jacobian
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Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Fine print: This is the correct Jacobian. 

Later we discuss the “shape convention”; 
using it the answer would be h.



Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Back to our Neural Net!

x  = [  xmuseums xin         xParis            xare        xamazing ]

34



Back to our Neural Net!

• Let’s find

• Really, we care about the gradient of the loss J but we 
will compute the gradient of the score for simplicity
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x  = [  xmuseums xin         xParis            xare        xamazing ]



a. Break up equations into simple pieces
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Carefully define your variables and keep track of their dimensionality!



b. Apply the chain rule
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b. Apply the chain rule
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b. Apply the chain rule
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b. Apply the chain rule
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c. Write out the Jacobians

Useful Jacobians from previous slide

41



c. Write out the Jacobians
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𝒖𝑇

Useful Jacobians from previous slide



c. Write out the Jacobians
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𝒖𝑇

Useful Jacobians from previous slide



c. Write out the Jacobians
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𝒖𝑇

Useful Jacobians from previous slide



c. Write out the Jacobians
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𝒖𝑇

𝒖𝑇

Useful Jacobians from previous slide
.

⊙ = Hadamard product = 
element-wise multiplication
of 2 vectors to give vector 



Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:
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Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

 

The same! Let’s avoid duplicated computation …
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Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:
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𝛿 is the upstream gradient (“error signal”)

𝒖𝑇



Derivative with respect to Matrix: Output shape

• What does             look like?         

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to then do 
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Derivative with respect to Matrix: Output shape

• What does             look like?         

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to then do 

• Instead, we leave pure math and use the shape convention: 
the shape of the gradient is the shape of the parameters!

• So              is n by m: 

50



Derivative with respect to Matrix

• What is 

•     is going to be in our answer

• The other term should be       because

• Answer is:  

51

𝛿 is upstream gradient (“error signal”) at 𝑧
𝑥 is local input signal



Why the Transposes?
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• Hacky answer: this makes the dimensions work out!

• Useful trick for checking your work!

• Full explanation in the lecture notes

• Each input goes to each output – you want to get outer product



Deriving local input gradient in backprop

• For 
𝜕𝒛

𝜕𝑾
 in our equation:

• Let’s consider the derivative of a single weight Wij

• Wij only contributes to zi

• For example: W23 is only 
used to compute z2 not z1
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x1            x2                 x3            +1

f(z1)=   h1            h2 =f(z2) 

s  u2

W23

b2

𝜕𝑠

𝜕𝑾
= 𝜹

𝜕𝒛

𝜕𝑾
= 𝜹

𝜕

𝜕𝑾
(𝑾𝒙 + 𝒃)

𝜕𝑧𝑖

𝜕𝑊𝑖𝑗
=

𝜕

𝜕𝑊𝑖𝑗
𝑾𝑖∙𝒙 + 𝑏𝑖

                 =
𝜕

𝜕𝑊𝑖𝑗
 σ𝑘=1

𝑑 𝑊𝑖𝑘𝑥𝑘 = 𝑥𝑗



What shape should derivatives be?

• Similarly,                            is a row vector 

• But shape convention says our gradient should be a column vector because b is 
a column vector …

• Disagreement between Jacobian form (which makes the chain rule 
easy) and the shape convention (which makes implementing SGD easy)

• We expect answers in the assignment to follow the shape convention 

• But Jacobian form is useful for computing the answers
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What shape should derivatives be?

Two options for working through specific problems:

1. Use Jacobian form as much as possible, reshape to 
follow the shape convention at the end:

• What we just did. But at the end transpose       to make the 
derivative a column vector, resulting in

2. Always follow the shape convention

• Look at dimensions to figure out when to transpose and/or 
reorder terms

• The error message 𝜹 that arrives at a hidden layer has the 
same dimensionality as that hidden layer

55

Use Jacobian 
to compute;
Use shape 
convention to 
format. 



4. Backpropagation

We’ve almost shown you backpropagation

It’s taking derivatives and using the (generalized, multivariate, or matrix) 
chain rule

Other trick: 

We re-use derivatives computed for higher layers in computing 
derivatives for lower layers to minimize computation
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Computation Graphs and Backpropagation

 + 

• Software represents our neural 
net equations as a graph 

• Source nodes: inputs

• Interior nodes: operations
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Computation Graphs and Backpropagation

 + 

• Software represents our neural 
net equations as a graph 

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the 
operation
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Computation Graphs and Backpropagation

 + 

• Software represents our neural 
net equations as a graph 

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the 
operation

“Forward Propagation”
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Backpropagation

 + 

• Then go backwards along edges

• Pass along gradients
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Backpropagation: Single Node

• Node receives an “upstream gradient”

• Goal is to pass on the correct 
“downstream gradient”

Upstream 
gradient 61

Downstream 
gradient



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient

• The gradient of its output with 
respect to its input

Local 
gradient62



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient

• The gradient of its output with 
respect to its input

Local 
gradient63

Chain 
rule!



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient

• The gradient of its output with 
respect to its input

Local 
gradient

[downstream gradient] = [upstream gradient] x [local gradient]
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Backpropagation: Single Node

*

• What about nodes with multiple inputs?
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Backpropagation: Single Node

Downstream 
gradients

Upstream 
gradient 

Local 
gradients

*

• Multiple inputs → multiple local gradients
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Gradients sum at outward branches
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+



Gradients sum at outward branches
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Node Intuitions

+

*

max
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• + “distributes” the upstream gradient to each summand



Node Intuitions

+

*

max
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6

3

2

1

2

2

0

1

3
3

0

• + “distributes” the upstream gradient to each summand

• max “routes” the upstream gradient



Node Intuitions

+

*

max
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6

3

2

1

2

2

0

1

3

2

• + “distributes” the upstream gradient

• max “routes” the upstream gradient

• * “switches” the upstream gradient



Efficiency: compute all gradients at once 

* + 

• Incorrect way of doing backprop:

• First compute 
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Efficiency: compute all gradients at once 

* + 

• Incorrect way of doing backprop:

• First compute 

• Then independently compute

• Duplicated computation!
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Efficiency: compute all gradients at once 

* + 

• Correct way:

• Compute all the gradients at once

• Analogous to using 𝜹 when we 
computed gradients by hand
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1. Fprop: visit nodes in topological sort order 
- Compute value of node given predecessors

2. Bprop:
 - initialize output gradient = 1 
 - visit nodes in reverse order:

 Compute gradient wrt each node using 
      gradient wrt successors

Done correctly, big O() complexity of fprop and 
bprop is the same

In general, our nets have regular layer-structure 
and so we can use matrices and Jacobians…

Back-Prop in General Computation Graph

…

…

Inputs

                             = successors of 

Single scalar output
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Automatic Differentiation

• The gradient computation can be 
automatically inferred from the symbolic 
expression of the fprop

• Each node type needs to know how to 
compute its output and how to compute 
the gradient wrt its inputs given the 
gradient wrt its output

• Modern DL frameworks (Tensorflow, 
PyTorch, etc.) do backpropagation for 
you but mainly leave layer/node writer 
to hand-calculate the local derivative
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Backprop Implementations
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Manual Gradient checking: Numeric Gradient

• For small h (≈ 1e-4),

• Easy to implement correctly

• But approximate and very slow:

• You have to recompute f for every parameter of our model 

• Useful for checking your implementation

• In the old days, we hand-wrote everything, doing this everywhere was the key test

• Now much less needed; you can use it to check layers are correctly implemented
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Summary
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We’ve mastered the core technology of neural nets!    

• Backpropagation: recursively (and hence efficiently) apply the chain rule 
along computation graph

• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations and save intermediate 
values

• Backward pass: apply chain rule to compute gradients



Why learn all these details about gradients?

93

• Modern deep learning frameworks compute gradients for you!

• Come to the PyTorch introduction this Friday!

• But why take a class on compilers or systems when they are implemented for you?

• Understanding what is going on under the hood is useful!

• Backpropagation doesn’t always work perfectly out of the box

• Understanding why is crucial for debugging and improving models

• See Karpathy article (in syllabus):

• https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

• Example in future lecture: exploding and vanishing gradients
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