Natural Language Processing
with Deep Learning

CS224N/Ling284

P

Diyi Yang

Lecture 3: Neural Network Foundations

Lecture Plan

Lecture 2: Neural Network Foundations

Course logistics (3 mins) + Word2vec evaluation (7 mins)
Introducing neural networks (10 mins)
Matrix calculus (25 mins)

BN

Backpropagation (35 mins)

Key Goal: the mathematics and practical implementation of how neural networks are
trained by backpropagation

1. Course Logistics

Assignment 2 is all about making sure you really understand the math of neural networks
... then we’ll let the software do it! It also teaches us about dependency parsing

This will be a tough week for some! = Make sure to get help if you need it:
Visit office hours! Read tutorial materials on the syllabus!

PyTorch tutorial: 1:30-2:20pm this Friday NVIDIA Auditorium
A great chance to get an intro to PyTorch, a key deep learning package!

Poster session: March 16, 12:15-3:15pm, AOERC. In-person presence required for in-
person students; other exceptions see Ed forum post (due week 3)

Recap from Lecture 2: How to evaluate word vectors?

e Related to general evaluation in NLP: Intrinsic vs. extrinsic

e Intrinsic:
* Evaluation on a specific/intermediate subtask
* Fast to compute
* Helps to understand that system
* Not clear if it’s helpful unless correlation to real task is established

e Extrinsic:
e Evaluation on a real task
* Can take a long time to compute accuracy
* Unclear if the subsystem is the problem or its interaction or other subsystems
* |If replacing exactly one subsystem with another improves accuracy =2 Winning!

Intrinsic word vector evaluation

Word Vector Analogies

a:b::c:? —

d = arg max
7

(zp — T + 2)" T
be — T + $CH

man:woman :: king:?

Evaluate word vectors by how well their cosine
distance after addition captures intuitive
semantic and syntactic analogy questions

Discarding the input words from the search (!)

Problem: What if the information is there but
not linear?

0.75 /qu/'

0.5
woman
0.25 man
0
0 0.25 0.5 0.75

GloVe Visualization

I
0.5F r heiress N
|
0.4 ;F -
; niece i = countess
0.3F *aunt [I duchess-
I%ister: I S
/
N I .
0.2 : I ; / ff /- empress
| | ! /
0.1k I | " madam ;1 i
: U5 [1l
[heir /
l / 7
of | inepten .(L -
' ‘ s woman ! r
L I / / / /1 i
-0.1 r ! UnCIE | / ' queeearfrlf'
! brother l / ’ / I duke
-0.2F / [/ i
/ | ,//
/ emperor
~0.3F , e :
[
/ [
-0.41 / I .
{gir |
-0.5F !man Lking 4
| 1 | | 1 | | 1 | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Meaning similarity: Another intrinsic word vector evaluation

 Word vector distances and their correlation with human judgments

 Example dataset: WordSim353
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Word 1__Word 2__Human (mean)_

tiger cat 7.35
tiger tiger 10

book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62
stock CD 1.31

B

stock jaguar 0.92

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Correlation evaluation

 Word vector distances and their correlation with human judgments

Model Size [WS353 MC RG SCWS RW
SVD 6B | 35.3 35.1 425 383 25.6
SVD-S 6B | 56.5 715 71.0 53.6 34.7
SVD-L 6B | 657 727 175.1 565 37.0
CBOW'™ 6B | 57.2 656 682 57.0 325
SGT 6B | 628 652 69.7 58.1 372
GloVe 6B | 65.8 727 77.8 539 38.1
SVD-L 42B| 74.0 764 74.1 583 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 68.4 79.6 754 59.4 455

Extrinsic word vector evaluation

 One example where good word vectors should help directly: named entity
recognition: identifying references to a person, organization or location:
Chris Manning lives in Palo Alto.

Model | Dev Test ACE MUC7
Discrete | 91.0 854 774 73.4
SVD 90.8 857 77.3 73.7
SVD-S | 91.0 855 77.6 74.3
SVD-L | 90.5 84.8 73.6 71.5
HPCA | 92.6 88.7 81.7 80.7
HSMN | 90.5 85.7 78.7 74.7
CW 922 874 81.7 80.2
CBOW | 93.1 88.2 82.2 81.1
GloVe | 93.2 88.3 82.9 82.2

2. Deep Learning Classification: Named Entity Recognition (NER)

* The task: find and classify names in text, by labeling word tokens, for example:

Last night, Paris Hilton wowed in a sequin gown .

PER PER
Samuel Quinn was arrested in the Hilton Hotel in Paris in April 1989 .
PER PER LOC LOC LOC DATE DATE

* Possible uses:

* Tracking mentions of particular entities in documents
* For question answering, answers are usually named entities
e Relating sentiment analysis to the entity under discussion

« Often followed by Entity Linking/Canonicalization into a Knowledge Base such as Wikidata

10

Simple NER: Window classification using binary logistic classifier

11

Idea: classify each word in its context window of neighboring words

Train logistic classifier on hand-labeled data to classify center word {yes/no} for each
class based on a concatenation of word vectors in a window

 Really, we usually use multi-class softmax, but we’re trying to keep it simple ©
Example: Classify “Paris” as +/— location in context of sentence with window length 2:

the museums in Paris are amazing to see

- T
Xwindow - [Xmuseums Xin Xparis Xare Xamazing]

Resulting vector X,i,gow =X € R

To classify all words: run classifier for each class on the vector centered on each word
in the sentence

Classification review and notation

e Supervised learning: we have a training dataset consisting of samples
Xoyitia

e X;areinputs, e.g., words (indices or vectors!), sentences, documents, etc.
* Dimension d

« y;are labels (one of C classes) we try to predict, for example:
* classes: sentiment (+/-), named entities, buy/sell decision
e other words
* later: multi-word sequences

12

Neural classification

: . exp(W,.) ' c o,
* Typical ML/stats softmax classifier: p(y|r) = —& . L v
e Learned parameters 0 are just elements 2 =1 &XP(We.z) O IE J
of W (not input representation x, which has sparse symbolic features) . e A
» Classifier gives linear decision boundary, which can be limiting e of
* A neural network classifier differs in that: < ..
- We learn both W and (distributed!) representations for words o p)
* The word vectors x re-represent one-hot vectors, moving them) ..‘ - 3
around in an intermediate layer vector space, for easy classification v U
with a (linear) softmax classifier %, o
* Conceptually, we have an embedding layer: x = Le b :

* We use deep networks—more layers—that let us re-represent and But typically, it is linear

compose our data multiple times, giving a non-linear classifier relative to the pre-final
Iayer representation

13

NER: Binary classification for center word being location

 We do supervised training and want high score if it’s a location

(0) = o(s) = Vo *
]tf -0 T T e P4 /

i T
predmtggl model S — U h
probability of class

f=Some element-
wise non-linear

h — f("[’ £ _l_ b) 0000 0000 function, e.g.,

logistic, tanh, RelLU

xr (input) € RS (0000 0000 0000 0000 0000

Embedding of

X = [Xm seums X’n XParis Xare Xamazin]
Hee | &% | 1-hot words

14

Non-linearities, old and new

logistic (“sigmoid”) tanh ReLU (Rectified Linear Unit) Leaky ReLU / Parametric ReLU
1 g 1 T
_ OEE |

tanh is just a rescaled and shifted sigmoid (2 X as steep, [-1,1]):
tanh(z) = 2logistic(2z)—1
Logistic and tanh are still used (e.g., logistic to get a probability); however, often, for deep networks, the first
thing to try is ReLU: it trains quickly and performs well due to good gradient backflow.
RelLU has a negative “dead zone” that recent proposals mitigate

Non-linearities, old and new

GELU (Gaussian error linear unit); SiLU Swish
frequently used with Transformers Sigmoid linear unit

GELU(x) = x - P(X < x),X~N(0,1) SiLU(x) = x - 0(x) Swish (x) = x - a(fx)
~ x - logistic(1.702x)

f(x)
GLU (gated linear unit) uses a gate/switch

GLU(x) = (xV +v) Q a(xW + b)

2

SwiGLU (Swish-gated linear unit) | G

SWiGLU(x) = (xV + ¢) ® Swishg(xW + b) SwiGLU

SiLU
Frequently used, e.g., in LLama3, Qwen3 %

Check out GLU Variants Improve Transformer
https://arxiv.org/pdf/2002.05202

!

Sigmoid

Non-linearities (i.e., “f” on previous slide): Why they’re needed

 Neural networks do function approximation, N |
e.g., regression or classification O'N—x'
* Without non-linearities, deep neural networks L x
can’t do anything more than a linear transform - 1
* Extra layers could just be compiled down into a N
single linear transform: W, W, x = Wx | \ x
* But, with more layers that include non-linearities, N ~=
they can approximate any complex function! - 1
N |
I /Xw
e cot| taa 1 '
o $ %, %o & . :

17

Training with “cross entropy loss” — you use this in PyTorch!

e Until now, our objective was stated as to maximize the probability of the correct class y
or equivalently we can minimize the negative log probability of that class

 Now restated in terms of cross entropy, a concept from information theory
* Let the true probability distribution be p; let our computed model probability be g

Zp) log g(c

* Assuming a ground truth (or true or gold or target) probability distribution that is 1 at
the right class and O everywhere else, p =[O0, ..., 0, 1, 0, ..., 0], then:

e The cross entropy is:

* Because of one-hot p, the only term left is the negative log probability of the true
class y;: —log p(yi|x;)

18

Remember: Stochastic Gradient Descent

Update equation:

grew — Hold . &V@J(@)

a = step size or learning rate

_ pold 0](6)
_gj _ 880

i.e., for each parameter: 6,"" S gold
J

In deep learning, 8 includes the data representation (e.g., word vectors) too!

How can we compute VgJ(0)?
1. By hand
I 2. Algorithmically: the backpropagation algorithm
19

3. Computing Gradients by Hand

20

Matrix calculus: Fully vectorized gradients

“Multivariable calculus is just like single-variable calculus if you use matrices”
Much faster and more useful than non-vectorized gradients

But doing a non-vectorized gradient can be good for intuition; recall the second
lecture for an example

Lecture notes and matrix calculus notes cover this material in more detail

You might also review Math 51, which has an online textbook:
http://web.stanford.edu/class/math51/textbook.html

http://web.stanford.edu/class/math51/textbook.html

Gradients

* Given a function with 1 output and 1 input

f(x) = x®
* |t's gradient (slope) is its derivative
d
4 — 342
dx
“How much will the output change if we change the input a bit?”
At x = 1 it changes about 3 times as much: 1.013=1.03
At x = 4 it changes about 48 times as much: 4.013 = 64.48

21

Gradients

e Given a function with 1 output and n inputs

f(CL') — f((L‘l,LL‘Q, ceny Zl’}n)

* |ts gradient is a vector of partial derivatives with
respect to each input

of [of of of°
Oz |01 Oxs " Oxp.

I 22

Jacobian Matrix: Generalization of the Gradient

* Given a function with m outputs and n inputs

flx) =fi(z1,22,...;Tn)y sy frn(T1, T2, ooy T

* It's Jacobian is an m x n matrix of partial derivatives

- 0 /1 Of1 -
0xq "o 0x
of _ | . . (21 o
. : . ox).. Oz,
833 8fm 8fm 1) J
- Oxq T 0x ., -

Chain Rule

* For composition of one-variable functions: multiply derivatives
z = 3y
y =z’
dz dzdy

* For multiple variables functions: multiply Jacobians

h = f(z)

z=Wax+b

oh 0Ohodz
I ox 0z ox

Example Jacobian: Elementwise activation Function

h = f(z),what is Oh., h,z ¢ R"

hi = f(%) o=

Example Jacobian: Elementwise activation Function

h = f(z),what is Oh., h,z ¢ R"

hi = f(%) o=

Function has n outputs and n inputs - n by n Jacobian

Example Jacobian: Elementwise activation Function

Oh
h = f(z),what 188—? h,z ¢ R"
<
hi = f(z)
(g—z>) — ggj % f(z) definition of Jacobian

Example Jacobian: Elementwise activation Function

h = f(z),what is g—Z?
hi = f(z:)

oh Oh; 0
(a_’z>zg - 0z; - 8_ZJf(ZZ)

)0 if otherwise

h,z e R"

definition of Jacobian

regular 1-variable derivative

Example Jacobian: Elementwise activation Function

h = f(z),what is Oh.,

o
i:f(zi) z

)0 if otherwise

f'(z1)

. 0

h,z e R"

definition of Jacobian

regular 1-variable derivative

Other Jacobians

0

Other Jacobians

0
6_:13(Ww +b) =W
%(Wa: + b) = I (Identity matrix)

Other Jacobians

0

2 Wax + b) = 1 (Identity matrix
0b

6 T T Fine print: This is the correct Jacobian.
— (u h) — h Later we discuss the “shape convention”;

au using it the answer would be h.

Other Jacobians

i(VV:L'er) =W

ox
%(Wa: + b) = I (Identity matrix)
O\ Tpy_ T

 Compute these at home for practice!

* Check your answers with the lecture notes
I 33

Back to our Neural Net!

h = f(WfB + b) 0000 0000

X :[X Xin XParis X X

museums are amazing]

I T (lﬂpU.t) 0000 0000 0000 0000 0000

Back to our Neural Net!

e Let’s find @
Ob

* Really, we care about the gradient of the loss J but we
will compute the gradient of the score for simplicity

s=u'h 0

h = f(WSC + b) 0000 0000

X :[X Xin XParis X X

museums are amazing]

I T (mput) 0000 0000 0000 0000 0000

a. Break up equations into simple pieces

s=u'h s=u'h

h=f(Wz+D) h = f(2)
z=Wx+0b

x (input) x (input)

I Carefully define your variables and keep track of their dimensionality!
36

b. Apply the chain rule

s—ulh @:Gsﬁhé’z
h = f(z) ob Oh 0z 0b
z=Wx+0b

x (input)

b. Apply the chain rule

s=ulh

h = f(z)
z=Wx+b
x (input)

0s
Ob

0s

Oh 0z

oh

Oz 0b

b. Apply the chain rule

s=ulh

h = f(z)

z=Wx+b
x (input)

0s
Ob

0s

Oh 0z

oh

0b

b. Apply the chain rule

s=ulh

h = f(z)

z=Wax+0b

x (input)

0s 0s Oh

0z

ob ~ Oh Oz

0b

c. Write out the Jacobians

s=u'h ds ds Oh 0z
h = f(z) ob Oh 0z Ob
z=Wx+b
x (input)

Useful Jacobians from previous slide

0 T 3. T
5’_u(u h)=~h
2 (1(2)) = ding(/'(2)

G,
~ (Wz+b)=1
I Vet
41

c. Write out the Jacobians

s=u'h ds ds Oh 0z
h = f(z) ob Oh 0z Ob
z=Wax+b l

x (input) uTl

Useful Jacobians from previous slide

0 T 3. T
5’_u(u h)=~h
2 (1(2)) = ding(/'(2)

G,
~ (Wz+b)=1
I Vet
42

c. Write out the Jacobians

s=ulh

h = f(z)
z=Wx+b
x (input)

0s os Oh 0z

56~ oh 9z b
L

u’ diag(f'(2))

Useful Jacobians from previous slide

0 T 3. T

5’_u(u h)=~h

2 (1(2)) = ding(/'(2)
0

%(Wm +b)=1

c. Write out the Jacobians

s=ulh

h = f(z)
z=Wx+b
x (input)

0s os Oh 0z

ob c’jh C’T 81)

= u'diag(f"(2))1

Useful Jacobians from previous slide

0 T 3. T

5’_u(u h)=~h

2 (1(2)) = ding(/'(2)
0

%(Wm +b)=1

c. Write out the Jacobians

s=ulh

h = f(z)
z=Wx+b
x (input)

0s os Oh 0z

T T

= u' diag(f'(2))I

= uT o f'(2)

Useful Jacobians from previous slide

0 T 3. T

5’_u(u h)=~h

2 (1(2)) = ding(/'(2)
0

%(Wm +b)=1

(® =Hadamard product =
element-wise multiplication
of 2 vectors to give vector

Re-using Computation

0s
 Suppose we now want to compute ——

1% 4

* Using the chain rule again:

0s s Oh 0z
OW — Oh 0z OW

Re-using Computation

0s
 Suppose we now want to compute ——

1% 4

* Using the chain rule again:

0s 0s Oh 0z

OW — Oh 0z OW
0s 0s Oh 0z

ob Oh 0z Ob

The same! Let’s avoid duplicated computation ...

Re-using Computation

* Suppose we now want to compute ;—‘;‘S/
. Using the chain rule again:
s _ 0z
oW oW
05 _ 50 s
0b 0b
2o

I 0 is the upstream gradient (“error signal”)
48

Derivative with respect to Matrix: Output shape

» What does ;—‘; look like? W e R*™m

* 1 output, nm inputs: 1 by nm Jacobian?
* Inconvenient to then do A€W = OOld — &V@J(@)

Derivative with respect to Matrix: Output shape

» What does ;—‘; look like? W e R*™m

* 1 output, nm inputs: 1 by nm Jacobian?
» Inconvenient to then do "¢ = QOld — OZVQ J(H)

* Instead, we leave pure math and use the shape convention:
the shape of the gradient is the shape of the parameters!

- 0s 0s -
0s 3W11 " 6W1m

W is n by m:

0s 0s
_LoW 1 "o OW 1y -
50

* So

Derivative with respect to Matrix

What i ﬁ—éa—z
TR ow T Tow

« ¢ isgoing to be in our answer

The other term should be & because 2 = W x -+ b

0s

95 _oT. T
PYi T

e Answer is:

0 is upstream gradient (“error signal”) at z
x is local input signal

Why the Transposes?

0s
_ 6T ZCT
91 %%
nxm| [nxI1][1xm)]
51 _51581 c. 51£Cm_
— [xl,...,xm] —
O | 0n 21 OnTm |

 Hacky answer: this makes the dimensions work out!
e Useful trick for checking your work!
* Full explanation in the lecture notes
I Each input goes to each output — you want to get outer product
52

Deriving local input gradient in backprop

0z .
* For— in our equation:
ow
0 52 - ° Wx+b
ow~ %aw =~ SawWrth

* Let’s consider the derivative of a single weight W
* W, only contributes to z

* For example: W, is only
used to compute z, not z,

aZi d

ow;; oW

0
53

Wl'.x + bi

What shape should derivatives be?

* Similarly, %: h' o f'(z) is a row vector

* But shape convention says our gradient should be a column vector because b is
a column vector ...

* Disagreement between Jacobian form (which makes the chain rule
easy) and the shape convention (which makes implementing SGD easy)

* We expect answers in the assighment to follow the shape convention

* ButJacobian form is useful for computing the answers

I 54

What shape should derivatives be?

Use Jacobian
to compute;
Use shape
convention to
format.

55

Two options for working through specific problems:

1. Use Jacobian form as much as possible, reshape to
follow the shape convention at the end:

Js
What we just did. But at the end transpose ap o make the
derivative a column vector, resultingin §

2. Always follow the shape convention

* Look at dimensions to figure out when to transpose and/or
reorder terms

 The error message & that arrives at a hidden layer has the
same dimensionality as that hidden layer

4. Backpropagation

We've almost shown you backpropagation

It’s taking derivatives and using the (generalized, multivariate, or matrix)
chain rule

Other trick:

We re-use derivatives computed for higher layers in computing
derivatives for lower layers to minimize computation

56

Computation Graphs and Backpropagation

T
* Software represents our neural s=u"h
net equations as a graph h = f(z)
e Source nodes: inputs z2=Wx+0b
* Interior nodes: operations X (input)

\ 4

o L +) f
YTy
|57 W b

Computation Graphs and Backpropagation

I 58

* Software represents our neural
net equations as a graph

* Source nodes: inputs
* Interior nodes: operations

 Edges pass along result of the
operation

s=u'h

h = f(z)
z=Wx+0b
x (input)

S

- N\Waz N\ 2 f h
RO
%% b

N
L

u

Computation Graphs and Backpropagation

T
* Software represents our neural s=u" h
net equations as a graph — f(2)

operation

:B_?W:c)@z@h)(?i
14 b U

I 59

Backpropagation

* Then go backwards along edges s=u"h
Pass along gradients h = f(z)
z=Wx+0b
x (input)
zZ h S
£ ° Wz >l + j f) > o Y
Js 05 0s
0z oh 0s

Backpropagation: Single Node

* Node receives an “upstream gradient”

* Goalis to pass on the correct h=f(z)
“downstream gradient”

Z h

v

N
N

88 88
0z oh
Downstream Upstream

gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with h = f(z)
respect to its input

Z h

v

N
N

88 88
0z Oh
Downstream Local Upstream

gradient gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with h = f(z)
respect to its input

h

v

pd
~

N

Chain | 0s Os Oh) 0s

rulel 192 Oh 0z Oh
Downstream Local Upstream
63 gradient gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with h = f(z)
respect to its input

[downstream gradient] = [upstream gradient] x [local gradient]

Z h

v

N

ds _ 0s Oh 9s
I 0z Oh 0z oh

Downstream Local Upstream
gradient gradient gradient

Backpropagation: Single Node

What about nodes with multiple inputs?

|44

z=Wax

v

Backpropagation: Single Node

* Multiple inputs - multiple local gradients z=Wax

W

S i .
/ 0z
95 _ 050
or 0Oz Ox

Downstream Local Upstream
o gradients gradients gradient

Gradients sum at outward branches

v

\

N

‘

Gradients sum at outward branches

)

—

+\©

b=max(y,z) 0f 0f0a 0f 0b
f=uab Oy dady b Iy

I 79

Node Intuitions f(z,y,2) = (v +y) max(y, 2)
r=1y=2,2=0

* + “distributes” the upstream gradient to each summand

N NN N

Node Intuitions f(z,y,2) = (v +y) max(y, 2)
r=1y=2,2=0

* + “distributes” the upstream gradient to each summand

* max “routes” the upstream gradient

|
[00]
=
N
OO0 W/N

Node Intuitions f(z,y,2) = (v +y) max(y, 2)
r=1y=2,2=0

* + “distributes” the upstream gradient
* max “routes” the upstream gradient

 * “switches” the upstream gradient

v

Efficiency: compute all gradients at once

* Incorrect way of doing backprop: s=u'h
* First compute % h = f(z)
z=Wx+b
x (input)
£ * T+ R < > o =
\f/

Efficiency: compute all gradients at once

Incorrect way of doing backprop:
0s

* Firstcompute —

0b s

* Then independently compute

Duplicated computation!

s=u'h

h = f(z)
z=Wx+0b
x (input)

* [+ K f <
W os b 0s
oW ob

Efficiency: compute all gradients at once

R &
« Correct way: s=u"h
* Compute all the gradients at once h = f(z)
z=Wx+0b

 Analogous to using 6 when we
computed gradients by hand X (input)

W s b Os u
I N 9% 0b

Back-Prop in General Computation Graph

1. Fprop: visit nodes in topological sort order
- Compute value of node given predecessors

2. Bprop:

- initialize output gradient = 1

- visit nodes in reverse order:

Compute gradient wrt each node using

gradient wrt successors
{y1, Y2, - .. Yn} =successors of I

Single scalar output

1=

Done correctly, big O() complexity of fprop and
bprop is the same

In general, our nets have regular layer-structure

and so we can use matrices and Jacobians...
86

Automatic Differentiation

* The gradient computation can be
automatically inferred from the symbolic
expression of the fprop

* Each node type needs to know how to
compute its output and how to compute
the gradient wrt its inputs given the
gradient wrt its output

* Modern DL frameworks (Tensorflow,
PyTorch, etc.) do backpropagation for
you but mainly leave layer/node writer
to hand-calculate the local derivative

Backprop Implementations

class ComputationalGraph(object):
¥
def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

88

Manual Gradient checking: Numeric Gradient

flz+h)— f(z—h)
2h

* Forsmall h (= 1e-4), f(z) ~
 Easyto implement correctly

* But approximate and very slow:

* You have to recompute f for every parameter of our model

e Useful for checking your implementation
* In the old days, we hand-wrote everything, doing this everywhere was the key test

* Now much less needed; you can use it to check layers are correctly implemented

91

Summary

We’ve mastered the core technology of neural nets! S S S

* Backpropagation: recursively (and hence efficiently) apply the chain rule
along computation graph

 [downstream gradient] = [upstream gradient] x [local gradient]

* Forward pass: compute results of operations and save intermediate
values

* Backward pass: apply chain rule to compute gradients

92

Why learn all these details about gradients?

 Modern deep learning frameworks compute gradients for you!
e Come to the PyTorch introduction this Friday!

e But why take a class on compilers or systems when they are implemented for you?
e Understanding what is going on under the hood is useful!

* Backpropagation doesn’t always work perfectly out of the box
* Understanding why is crucial for debugging and improving models

* See Karpathy article (in syllabus):
* https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

 Example in future lecture: exploding and vanishing gradients

93

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: 1. Course Logistics
	Slide 4: Recap from Lecture 2: How to evaluate word vectors?
	Slide 5: Intrinsic word vector evaluation
	Slide 6: GloVe Visualization
	Slide 7: Meaning similarity: Another intrinsic word vector evaluation
	Slide 8: Correlation evaluation
	Slide 9: Extrinsic word vector evaluation
	Slide 10: 2. Deep Learning Classification: Named Entity Recognition (NER)
	Slide 11: Simple NER: Window classification using binary logistic classifier
	Slide 12: Classification review and notation
	Slide 13: Neural classification
	Slide 14: NER: Binary classification for center word being location
	Slide 15: Non-linearities, old and new
	Slide 16: Non-linearities, old and new
	Slide 17: Non-linearities (i.e., “f ” on previous slide): Why they’re needed
	Slide 18: Training with “cross entropy loss” – you use this in PyTorch!
	Slide 19: Remember: Stochastic Gradient Descent
	Slide 20: 3. Computing Gradients by Hand
	Slide 21: Gradients
	Slide 22: Gradients
	Slide 23: Jacobian Matrix: Generalization of the Gradient
	Slide 24: Chain Rule
	Slide 25: Example Jacobian: Elementwise activation Function
	Slide 26: Example Jacobian: Elementwise activation Function
	Slide 27: Example Jacobian: Elementwise activation Function
	Slide 28: Example Jacobian: Elementwise activation Function
	Slide 29: Example Jacobian: Elementwise activation Function
	Slide 30: Other Jacobians
	Slide 31: Other Jacobians
	Slide 32: Other Jacobians
	Slide 33: Other Jacobians
	Slide 34: Back to our Neural Net!
	Slide 35: Back to our Neural Net!
	Slide 36: a. Break up equations into simple pieces
	Slide 37: b. Apply the chain rule
	Slide 38: b. Apply the chain rule
	Slide 39: b. Apply the chain rule
	Slide 40: b. Apply the chain rule
	Slide 41: c. Write out the Jacobians
	Slide 42: c. Write out the Jacobians
	Slide 43: c. Write out the Jacobians
	Slide 44: c. Write out the Jacobians
	Slide 45: c. Write out the Jacobians
	Slide 46: Re-using Computation
	Slide 47: Re-using Computation
	Slide 48: Re-using Computation
	Slide 49: Derivative with respect to Matrix: Output shape
	Slide 50: Derivative with respect to Matrix: Output shape
	Slide 51: Derivative with respect to Matrix
	Slide 52: Why the Transposes?
	Slide 53: Deriving local input gradient in backprop
	Slide 54: What shape should derivatives be?
	Slide 55: What shape should derivatives be?
	Slide 56: 4. Backpropagation
	Slide 57: Computation Graphs and Backpropagation
	Slide 58: Computation Graphs and Backpropagation
	Slide 59: Computation Graphs and Backpropagation
	Slide 60: Backpropagation
	Slide 61: Backpropagation: Single Node
	Slide 62: Backpropagation: Single Node
	Slide 63: Backpropagation: Single Node
	Slide 64: Backpropagation: Single Node
	Slide 65: Backpropagation: Single Node
	Slide 66: Backpropagation: Single Node
	Slide 78: Gradients sum at outward branches
	Slide 79: Gradients sum at outward branches
	Slide 80: Node Intuitions
	Slide 81: Node Intuitions
	Slide 82: Node Intuitions
	Slide 83: Efficiency: compute all gradients at once
	Slide 84: Efficiency: compute all gradients at once
	Slide 85: Efficiency: compute all gradients at once
	Slide 86: Back-Prop in General Computation Graph
	Slide 87: Automatic Differentiation
	Slide 88: Backprop Implementations
	Slide 91: Manual Gradient checking: Numeric Gradient
	Slide 92: Summary
	Slide 93: Why learn all these details about gradients?

