
Natural Language Processing
with Deep Learning

CS224N/Ling284

Diyi Yang

Lecture 4: Language Models and Recurrent Neural Networks

Lecture Plan

Lecture 4: Language modeling + RNNs

1. A new NLP task: Language Modeling (20 mins)

2. Language models with neural nets: Recurrent Neural Networks (RNNs) (25 mins)

3. Problems with RNNs: exploding and vanishing gradients (20 mins)

4. Machine translation (10 mins)

Reminder: Assignment 2 – Due Jan 22, Thursday

motivates

This is the most important concept in the
class! Leads to most of modern NLP

• Language Modeling is the task of predicting what word comes next

 the students opened their ______

• More formally: given a sequence of words ,
compute the probability distribution of the next word :

where can be any word in the vocabulary

• A system that does this is called a Language Model

1. Language Modeling

exams

minds

laptops
books

3

Language Modeling

• You can also think of a Language Model as a system that
assigns a probability to a piece of text

• For example, if we have some text , then the
probability of this text (according to the Language Model) is:

4

This is what our LM provides

You use Language Models every day!

5

You use Language Models every day!

6

Why should we care about Language Modeling?

7

• Language Modeling is a benchmark task that helps us measure our progress on
predicting language use

• Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:

• Everything else in NLP has been rebuilt upon Language Modeling: ChatGPT is an LM!

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.

What can you do with next-word prediction?

•A sufficiently strong (!) language model can do many, many things

Stanford University is located in __________, California. [Trivia]

I put ___ fork down on the table. [syntax]

The woman walked across the street, checking for traffic over ___ shoulder. [coreference]

I went to the ocean to see the fish, turtles, seals, and _____. [lexical semantics/topic]

Overall, the value I got from the two hours watching it was the sum total of the popcorn and the
drink. The movie was ___. [sentiment]

Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny.
Zuko left the ______. [some reasoning – this is harder]

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____ [some basic arithmetic]

n-gram Language Models

 the students opened their ______

• Question: How to learn a Language Model?

• Answer (pre- Deep Learning): learn an n-gram Language Model!

• Definition: An n-gram is a chunk of n consecutive words.

• unigrams: “the”, “students”, “opened”, ”their”

• bigrams: “the students”, “students opened”, “opened their”

• trigrams: “the students opened”, “students opened their”

• four-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

11

n-gram Language Models

12

• First we make a Markov assumption: 𝑥(𝑡+1) depends only on the preceding n-1 words

(statistical
approximation)

(definition of
conditional prob)

(assumption)

n-1 words

prob of a n-gram

prob of a (n-1)-gram

• Question: How do we get these n-gram and (n-1)-gram probabilities?

• Answer: By counting them in some large corpus of text!

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:

• “students opened their” occurred 1000 times

• “students opened their books” occurred 400 times

• → P(books | students opened their) = 0.4

• “students opened their exams” occurred 100 times

• → P(exams | students opened their) = 0.1

Should we have discarded
the “proctor” context?

13

Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any 𝑤!

Sparsity Problem 2

Problem: What if “students
opened their 𝑤” never
occurred in data? Then 𝑤 has
probability 0!

Sparsity Problem 1

(Partial) Solution: Add small 𝛿
to the count for every 𝑤 ∈ 𝑉.
This is called smoothing.

(Partial) Solution: Just condition
on “opened their” instead.
This is called backoff.

14

Storage Problems with n-gram Language Models

15

Storage: Need to store
count for all n-grams you
saw in the corpus.

Increasing n or increasing
corpus increases model size!

n-gram Language Models in practice

• You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the _______

* Try for yourself: https://nlpforhackers.io/language-models/Otherwise, seems reasonable!

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability
distribution

Sparsity problem:
not much granularity

in the probability
distribution

Business and financial news

16

https://nlpforhackers.io/language-models/
https://nlpforhackers.io/language-models/
https://nlpforhackers.io/language-models/
https://nlpforhackers.io/language-models/
https://nlpforhackers.io/language-models/

Generating text with a n-gram Language Model

17

You can also use a Language Model to generate text

 today the _______

condition
on this

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability
distribution

sample

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

 today the price _______

condition
on this

of 0.308
for 0.050
it 0.046
to 0.046
is 0.031

…

get probability
distribution

sample

18

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

 today the price of _______

condition
on this

the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018

…

get probability
distribution

sample

19

Generating text with a n-gram Language Model

20

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size…

How to build a neural language model?

• Recall the Language Modeling task:

• Input: sequence of words

• Output: prob. dist. of the next word

• How about a window-based neural model?

• We saw this applied to Named Entity Recognition:

21
in Paris are amazingmuseums

LOCATION

A fixed-window neural Language Model

the students opened theiras the proctor started the clock ______

discard
fixed window

22

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors

hidden layer

a zoo

output distribution

23

A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-grams

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊
• Window can never be large enough!

• 𝑥(1) and 𝑥(2) are multiplied by
completely different weights in 𝑊.
No symmetry in how the inputs are
processed.

We need a neural architecture
that can process any length input

24

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

A fixed-window neural Language Model

2. Recurrent Neural Networks (RNN)

25

hidden states

input sequence
(any length)

…

…

…

Core idea: Apply the same
weights 𝑊 repeatedlyA family of neural architectures

outputs
(optional)

A Simple RNN Language Model

the students opened theirwords / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much

longer now!

hidden states

is the initial hidden state

26

RNN Language Models

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Computation for step t can (in

theory) use information from
many steps back

• Model size doesn’t increase for
longer input context

• Same weights applied on every
timestep, so there is symmetry
in how inputs are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access

info from many steps back

More on
these later

27

Training an RNN Language Model

• Get a big corpus of text which is a sequence of words

• Feed into RNN-LM; compute output distribution for every step t.

• i.e., predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for):

• Average this to get overall loss for entire training set:

28

Training an RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…

29

Predicted
prob dists

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

30

Predicted
prob dists

= negative log prob

of “opened”

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

31

Predicted
prob dists

= negative log prob

of “their”

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

32

Predicted
prob dists

= negative log prob

of “exams”

Training an RNN Language Model

+ + + + … =

the students opened their …exams

…

33

Corpus

Loss

Predicted
prob dists

“Teacher forcing”

Training a RNN Language Model

• However: Computing loss and gradients across entire corpus at once is
too expensive (memory-wise)!

• In practice, consider as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small
chunk of data, and update.

• Compute loss for a sentence (actually, a batch of sentences), compute gradients
and update weights. Repeat on a new batch of sentences.

34

Backpropagation for RNNs

35

……

Question: What’s the derivative of w.r.t. the repeated weight matrix ?

Answer:
“The gradient w.r.t. a repeated weight

is the sum of the gradient
w.r.t. each time it appears”

Why?

Multivariable Chain Rule

36

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Training the parameters of RNNs: Backpropagation for RNNs

37

……

Question: How do we calculate this?

Answer: Backpropagate over timesteps
i = t, … ,0, summing gradients as you go.
This algorithm is called “backpropagation
through time” [Werbos, P.G., 1988, Neural
Networks 1, and others]

Apply the multivariable chain rule:
= 1

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

Generating with an RNN Language Model (“Generating roll outs”)
Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

<s> my favorite season

sample

my

sample

favorite

sample

season

sample

is

is38

sample

spring

spring

sample

</s>

Generating text with an RNN Language Model

Let’s have some fun!

• You can train an RNN-LM on any kind of text, then generate text in that style.

• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

39

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Generating text with an RNN Language Model

Let’s have some fun!

• You can train an RNN-LM on any kind of text, then generate text in that style.

• RNN-LM trained on recipes:

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc

40

https://gist.github.com/nylki/1efbaa36635956d35bcc
https://gist.github.com/nylki/1efbaa36635956d35bcc
https://gist.github.com/nylki/1efbaa36635956d35bcc
https://gist.github.com/nylki/1efbaa36635956d35bcc
https://gist.github.com/nylki/1efbaa36635956d35bcc

Evaluating Language Models

• The standard evaluation metric for Language Models is perplexity.

• This is equal to the exponential of the cross-entropy loss :

41

Inverse probability of corpus, according to Language Model

Normalized by
number of words

Lower perplexity is better!

3. Problems with RNNs: Vanishing and Exploding Gradients

42

Vanishing gradient intuition

43

?

Vanishing gradient intuition

chain rule!

44

Vanishing gradient intuition

chain rule!

45

Vanishing gradient intuition

chain rule!

46

Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

backpropagates further
Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Why is vanishing gradient a problem?

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

50

Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7th step and the target word “tickets” at the end.

• But if the gradient is small, the model can’t learn this dependency

• So, the model is unable to predict similar long-distance dependencies at test time

51

Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step becomes too big:

• This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)

• You think you’ve found a hill to climb, but suddenly you’re in Iowa

• In the worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

52

learning rate

gradient

Gradient clipping: solution for exploding gradient

53

• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

• In practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf

How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• First: How about an RNN with separate memory which is added to?

• Long Short-Term Memory (LSTM) [link]

• And then: Creating more direct and linear pass-through connections in model

• Attention, residual connections, etc.

54

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

5. Machine Translation

55

Machine Translation (MT) is the task of translating a sentence x from one language (the
source language) to a sentence y in another language (the target language).

x: I like deep learning

y: 我喜欢深度学习

NMT: the first big success story of NLP Deep Learning

56

Neural Machine Translation went from a fringe research attempt in 2014 to the leading
standard method in 2016

• 2014: First seq2seq paper published [Sutskever et al. 2014]

• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone has

• This is amazing!

• SMT systems, built by hundreds of engineers over many years, outperformed by
NMT systems trained by small groups of engineers in a few months

En
co

d
er

 R
N

N

Neural Machine Translation (NMT)

<START>

Source sentence (input)

il m’ a entarté

The sequence-to-sequence model
Target sentence (output)

D
eco

d
er R

N
N

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence.
Provides initial hidden state

for Decoder RNN.

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.

he

ar
gm

ax

he

ar
gm

ax

hit

hit

ar
gm

ax

me

Note: This diagram shows test time behavior: decoder
output is fed in as next step’s input

with a pie <END>

me with a pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

57

Sequence-to-sequence is versatile!

• The general notion here is an encoder-decoder model

• One neural network takes input and produces a neural representation

• Another network produces output based on that neural representation

• If the input and output are sequences, we call it a seq2seq model

• Sequence-to-sequence is useful for more than just MT

• Many NLP tasks can be phrased as sequence-to-sequence:

• Summarization (long text → short text)

• Dialogue (previous utterances → next utterance)

• Parsing (input text → output parse as sequence)

• Code generation (natural language → Python code)

58

Neural Machine Translation (NMT)

• The sequence-to-sequence model is an example of a Conditional Language Model
• Language Model because the decoder is predicting the next word of the target sentence y

• Conditional because its predictions are also conditioned on the source sentence x

• NMT directly calculates :

• Question: How to train an NMT system?

• (Easy) Answer: Get a big parallel corpus…

• But there is now exciting work on “unsupervised NMT”, data augmentation, etc.

Probability of next target word, given
target words so far and source sentence x

59

Training a Neural Machine Translation system

En
co

d
er

 R
N

N

Source sentence (from corpus)

<START> he hit me with a pieil m’ a entarté

Target sentence (from corpus)

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.

D
eco

d
er R

N
N

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4 ො𝑦5 ො𝑦6 ො𝑦7

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6 𝐽7

= negative log

prob of “he”

𝐽 =
1

𝑇
෍

𝑡=1

𝑇

𝐽𝑡 = + + + + + +

= negative log

prob of <END>

= negative log

prob of “with”

60

Multi-layer deep encoder-decoder machine translation net

Die Proteste waren am Wochenende eskaliert <EOS> The protests escalated over the weekend

0.2

0.6

-0.1

-0.7
0.1

0.4

-0.6

0.2

-0.3
0.4

0.2

-0.3

-0.1

-0.4
0.2

0.2

0.4

0.1

-0.5
-0.2

0.4

-0.2

-0.3

-0.4
-0.2

0.2

0.6

-0.1

-0.7
0.1

0.2

0.6

-0.1

-0.7
0.1

0.2

0.6

-0.1

-0.7
0.1

-0.1

0.3

-0.1

-0.7
0.1

-0.2

0.6

0.1

0.3
0.1

-0.4

0.5

-0.5

0.4
0.1

0.2

0.6

-0.1

-0.7
0.1

0.2

0.6

-0.1

-0.7
0.1

0.2

-0.2

-0.1

0.1
0.1

0.2

0.6

-0.1

-0.7
0.1

0.1

0.3

-0.1

-0.7
0.1

0.2

0.6

-0.1

-0.4
0.1

0.2

-0.8

-0.1

-0.5
0.1

0.2

0.6

-0.1

-0.7
0.1

-0.4

0.6

-0.1

-0.7
0.1

0.2

0.6

-0.1

0.3
0.1

-0.1

0.6

-0.1

0.3
0.1

0.2

0.4

-0.1

0.2
0.1

0.3

0.6

-0.1

-0.5
0.1

0.2

0.6

-0.1

-0.7
0.1

0.2

-0.1

-0.1

-0.7
0.1

0.1

0.3

0.1

-0.4
0.2

0.2

0.6

-0.1

-0.7
0.1

0.4

0.4

0.3

-0.2
-0.3

0.5

0.5

0.9

-0.3
-0.2

0.2

0.6

-0.1

-0.5
0.1

-0.1

0.6

-0.1

-0.7
0.1

0.2

0.6

-0.1

-0.7
0.1

0.3

0.6

-0.1

-0.7
0.1

0.4

0.4

-0.1

-0.7
0.1

-0.2

0.6

-0.1

-0.7
0.1

-0.4

0.6

-0.1

-0.7
0.1

-0.3

0.5

-0.1

-0.7
0.1

0.2

0.6

-0.1

-0.7
0.1

The protests escalated over the weekend <EOS>

Encoder:
Builds up
sentence
meaning

Source
sentence

Translation
generated

Feeding in
last word

Decoder

Conditioning =
Bottleneck

[Sutskever et al. 2014; Luong et al. 2015]
The hidden states from RNN layer i
are the inputs to RNN layer i+1

61

The final piece: the bottleneck problem in RNNs

En
co

d
e

r
R

N
N

Source sentence (input)

<START> he hit me with a pieil a m’ entarté

he hit me with a pie <END>

D
e

co
d

er R
N

N
Target sentence (output)

Problems with this architecture?

Encoding of the
source sentence.

62

Lecture Plan

Lecture 4: Language modeling + RNNs

1. A new NLP task: Language Modeling (20 mins)

2. Language models with neural nets: Recurrent Neural Networks (RNNs) (25 mins)

3. Problems with RNNs: exploding and vanishing gradients (20 mins)

4. Machine translation (10 mins)

motivates

This is the most important concept in the
class! Leads to most of modern NLP

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: 1. Language Modeling
	Slide 4: Language Modeling
	Slide 5: You use Language Models every day!
	Slide 6: You use Language Models every day!
	Slide 7: Why should we care about Language Modeling?
	Slide 8: What can you do with next-word prediction?
	Slide 11: n-gram Language Models
	Slide 12: n-gram Language Models
	Slide 13: n-gram Language Models: Example
	Slide 14: Sparsity Problems with n-gram Language Models
	Slide 15: Storage Problems with n-gram Language Models
	Slide 16: n-gram Language Models in practice
	Slide 17: Generating text with a n-gram Language Model
	Slide 18: Generating text with a n-gram Language Model
	Slide 19: Generating text with a n-gram Language Model
	Slide 20: Generating text with a n-gram Language Model
	Slide 21: How to build a neural language model?
	Slide 22: A fixed-window neural Language Model
	Slide 23: A fixed-window neural Language Model
	Slide 24: A fixed-window neural Language Model
	Slide 25: 2. Recurrent Neural Networks (RNN)
	Slide 26: A Simple RNN Language Model
	Slide 27: RNN Language Models
	Slide 28: Training an RNN Language Model
	Slide 29: Training an RNN Language Model
	Slide 30: Training an RNN Language Model
	Slide 31: Training an RNN Language Model
	Slide 32: Training an RNN Language Model
	Slide 33: Training an RNN Language Model
	Slide 34: Training a RNN Language Model
	Slide 35: Backpropagation for RNNs
	Slide 36: Multivariable Chain Rule
	Slide 37: Training the parameters of RNNs: Backpropagation for RNNs
	Slide 38: Generating with an RNN Language Model (“Generating roll outs”)
	Slide 39: Generating text with an RNN Language Model
	Slide 40: Generating text with an RNN Language Model
	Slide 41: Evaluating Language Models
	Slide 42: 3. Problems with RNNs: Vanishing and Exploding Gradients
	Slide 43: Vanishing gradient intuition
	Slide 44: Vanishing gradient intuition
	Slide 45: Vanishing gradient intuition
	Slide 46: Vanishing gradient intuition
	Slide 47: Vanishing gradient intuition
	Slide 50: Why is vanishing gradient a problem?
	Slide 51: Effect of vanishing gradient on RNN-LM
	Slide 52: Why is exploding gradient a problem?
	Slide 53: Gradient clipping: solution for exploding gradient
	Slide 54: How to fix the vanishing gradient problem?
	Slide 55: 5. Machine Translation
	Slide 56: NMT: the first big success story of NLP Deep Learning
	Slide 57: Neural Machine Translation (NMT)
	Slide 58: Sequence-to-sequence is versatile!
	Slide 59: Neural Machine Translation (NMT)
	Slide 60: Training a Neural Machine Translation system
	Slide 61: Multi-layer deep encoder-decoder machine translation net
	Slide 62: The final piece: the bottleneck problem in RNNs
	Slide 63: Lecture Plan

