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Lecture Plan

Lecture 4: Language modeling + RNNs
1. A new NLP task: Language Modeling (20 mins)

1 motivates

This is the most important concept in the
class! Leads to most of modern NLP

2. Language models with neural nets: Recurrent Neural Networks (RNNs) (25 mins)

3. Problems with RNNs: exploding and vanishing gradients (20 mins)

4. Machine translation (10 mins)

Reminder: Assignment 2 — Due Jan 22, Thursday




1. Language Modeling

e Language Modeling is the task of predicting what word comes next
books

the students opened their //v laptops
\\ exams

minds
* More formally: given a sequence of words M, @ a®)

compute the probability distribution of the next word (L) .
t+1 t 1
P(xtD| £®  2W)

(t+1)

where @ can be any word in the vocabulary V = {wx, ..., ’w|v|}

e A system that does this is called a Language Model




Language Modeling

* You can also think of a Language Model as a system that
assigns a probability to a piece of text

* For example, if we have some text (V) ... (T, then the
probability of this text (according to the Language Model) is:

PxW,. . 1)) = P(xW) x P(x®| M) x ... x P(xD| £T-D . D)

T
— [[P@®] =D, 2®)
t=1

\ J
Y

This is what our LM provides




You use Language Models every day!

© limeetyou at the © » GO gle

airport

-L-

what is the |

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

Google Search I'm Feeling Lucky




You use Language Models every day!

ChatGPT

CHAT  COMPOSER

Implement the cleanup function for the tranport stack. Do not make the upgrade mod.rs
listeners optional

Could you make it easier to switch certificates in the transport listeners?
R Accept

10 & AN

Examples Capabilities Limitations

pub(crate) st t TransportStack { I'll help modify the code to make certificate switching more flexible. The main
14: ListenerEndpoint, changes will be to enhance the trait and modify how certificates
tls: Option<Arc<Acceptor>>, are handled in the Here are the key changes:

#[cfglunix mod.rs
upgrade_listeners:

upgrade_listeners:

*Explain quantum computing in Remembers what user said May occasionally generate

simple terms" earlier in the conversation incarrect information #lasync_trait]

pub fn ns\;f& -> &str pub trait TlsAccept {
async fn certificate_callback(&
*'Got any creative ideas fora 10 Allows user to provide follow- May occasionally produce . “ Uisten (&mut e
yeéar old's birthday?" up corrections harmful instructions or biased lister
content Hdw:ffn: listeners. take(),
Some( .upgrade_listeners.take()), RY BN async fn on_cert_error(& , -error: &str
*How do | make an HTTP Trained to decline inappropriate
request in Javascript?® requasts Limited knowledge of world and e e et
events after 2021 Itlii«li(vre‘a'?zwxm:n;VL?‘:‘::L:‘ #[derive(Default)]
14: stream, mod.rs

tls: .tls.clone




Why should we care about Language Modeling?

* Language Modeling is a benchmark task that helps us measure our progress on
predicting language use

e Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:

* Predictive typing

* Speech recognition

e Handwriting recognition

* Spelling/grammar correction
* Authorship identification

* Machine translation

* Summarization

* Dialogue

* etc.

* Everything else in NLP has been rebuilt upon Language Modeling: ChatGPT is an LIM!




What can you do with next-word prediction?

A sufficiently strong (!) language model can do many, many things

Stanford University is located in , California. [Trivia]

| put __ fork down on the table. [syntax]

The woman walked across the street, checking for traffic over ___ shoulder. [coreference]
| went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]

Overall, the value | got from the two hours watching it was the sum total of the popcorn and the
drink. The movie was . [sentiment]

Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny.
Zuko left the _. [some reasoning — this is harder]

| was thinking about the sequence that goes 1, 1, 2, 3, 5, 8§, 13, 21, [some basic arithmetic]




n-gram Language Models

the students opened their

 Question: How to learn a Language Model?
* Answer (pre- Deep Learning): learn an n-gram Language Model!

e Definition: An n-gram is a chunk of n consecutive words.
e unigrams: “the”, “students”, “opened”, “"their”
* bigrams: “the students”, “students opened”, “opened their”
* trigrams: “the students opened”, “students opened their”
e four-grams: “the students opened their”

* ldea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

11




n-gram Language Models

e First we make a Markov assumption: xt*1) depends only on the preceding n-1 words

n-1 words
e A N\
P(z®|2® . 2®) = p(zt)|g®) . gt-nt2)) (assumption)

prob of a n-gram \,P(w(t"‘l)7 w(t)7 . 7m(t—n+2))

— - (definition of
J Pl (t—n+2) el
(z), ... ) conditional prob)

prob of a (n-1)-gram

* Question: How do we get these n-gram and (n-1)-gram probabilities?
* Answer: By counting them in some large corpus of text!

_count(xH) M) gltmnt2)) (statistical
~ t t—n+2 : :
count(z®), ... )) approximation)

12




n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

-as-!he-p#oetor-sfa#ed-#reeﬁeek—!hestudents opened the/r

discard

condltlon on this

count(students opened their w)
count(students opened their)

P(wlstudents opened their) =

For example, suppose that in the corpus:

e “students opened their” occurred 1000 times

* “students opened their books” occurred 400 times
* =2 P(books | students opened their) = 0.4 Should we have discarded

« “students opened their exams” occurred 100 times " the “proctor” context?

¢ = P(exams | students opened their) =0.1 )

13




Sparsity Problems with n-gram Language Models

14

Sparsity Problem 1

Problem: What if “students
opened their w” never

(Partial) Solution: Add small §

occurred in data? Then w has

probability O!

\ 4

to the count for everyw € V.

This is called smoothing.

P(wlstudents opened their) =

count(students opened their w)
count(students opened their)

Sparsity Problem 2

Problem: What if “students
opened their” never occurred in

data? Then we can’t calculate
probability for any w!

\ 4

(Partial) Solution: Just condition
on “opened their” instead.
This is called backoff.

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.




Storage Problems with n-gram Language Models

15

Storage: Need to store
count for all n-grams you
saw in the corpus.

T~

count(students opened their w)

P(wlstudents opened their) =

count(students opened their)

Increasing n or increasing
corpus increases model size!




n-gram Language Models in practice

16

You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the

Business and financial news

get probability

distribution
company [0.153 | Sparsity problem:
bank 0.153 not much granularity
price ©.077 in the probabilit
italian 0.039 o p‘b ARIILY
emirate 0.039 Istribution
Otherwise, seems reasonable! * Try for yourself: https://nlpforhackers.io/language-models/



https://nlpforhackers.io/language-models/
https://nlpforhackers.io/language-models/
https://nlpforhackers.io/language-models/
https://nlpforhackers.io/language-models/
https://nlpforhackers.io/language-models/

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the
\\ )
Y
COndltIOn get probability
on this distribution

company ©0.153
hank A.153
Iprice 0.077 |
italian ©0.039
emirate 0.039

hampm

17




Generating text with a n-gram Language Model

You can also use a Language Model to generate text

18

today ghe price,
Y

condition
on this

get probability
distribution

|of 0.308 Isample

for
it
to
is

0.050
0.046
0.046
0.031




Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of
U v )
CondItIOn get probability

on th|5 distribution
the 0.072
18 0.043
0il 0.043
its 0.036
|gold 0.018 | sample

19




Generating text with a n-gram Language Model

You can also use a Language Model to generate text

20

today the price of gold per ton , while production of shoe
lasts and shoe industry, the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...




How to build a neural language model?

* Recall the Language Modeling task:
* Input: sequence of words =M (.. . 2®
« Output: prob. dist. of the next word P(x!"*9| &® . . 2W)

e How about a window-based neural model?
* We saw this applied to Named Entity Recognition:

LOCATION
AN

U

(000000000000 |

AN

147

(0000 0000 0000 0000 0000]

I f f f f

museums in Paris are amazing

21




A fixed-window neural Language Model

] Y
discard fixed window

ST tor—Sturtet—tire—tiork {he students opened th eijr
I 22



A fixed-window neural Language Model

books
laptops
output distribution
4 = softmax(Uh + by) € RV
a N 200
U
hidden layer
000000000000
h=f(We-+b;) [ - ]
%%
concatenated word embeddings
e = [eV: c®): ), o) (0000 0000 0000 0000|
- I ’ ) N N N N
words / one-hot vectors the  students opened  their

2D 23 23 2@ e +(2) 2(3) o)

23




A fixed-window neural Language Model
Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

books

Improvements over n-gram LM: laptops
* No sparsity problem
* Don’t need to store all observed n-grams

a A 200

Remaining problems: U

* Fixed window is too small

* Enlarging window enlarges W [““”A'”“‘]

 Window can never be large enough! W

e x and x3 are multiplied by
completely different weights in W. (0000 0000 0000 0000]
No symmetry in how the inputs are ] ] ] ]
processed.

We need a neural architecture .
_ the  students opened their
that can process any length input 21 22 2(3) 24

24




2. Recurrent Neural Networks (RNN) Core idea: Apply the same
A family of neural architectures weights W repeatedly

outputs
(optional) {

hidden states <

input sequence
(any length) {

25




g = P(x®)|the students opened their)

A Simple RNN Language Model books

laptops
output distribution
g® = softmax (Uh(t) + bg) c RIVI . =
a A 200
U
G, h(D h(2) h(3) h4)
hidden states @ @ @ @ @
(t) _ (t—1) (t) oW, || W, |@| W, |1 @ Wi | @
h J(Whh +Wee +b1) ° > @ o > o > @
h(9) is the initial hidden state @ @ (] () (]
— 7 = = =
We We We We
_ O @ @) @
word embeddings e @ 2| @ 3| @ e ©
et — g o @) O O
o @ @) @
T T& T& e
words / one-hot vectors the  students opened  their
a‘;(t) E R|V| ,’B(l) w(z) w(?’) a;(4)

Note: this input sequence could be much /

26 longer now!
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RNN Language Models

RNN Advantages:

e Can process any length input

 Computation for step t can (in
theory) use information from
many steps back

* Model size doesn’t increase for
longer input context

* Same weights applied on every
timestep, so there is symmetry
in how inputs are processed.

RNN Disadvantages: ~
* Recurrent computation is slow
* In practice, difficult to access

7@ = P(2®)|the students opened their)

books
laptops

!
p A 200
U
G, h(D h(%)—, h(3) h4)
@ @ o @ @
o W, (0| Wi ([@| Wi |@| Wh |@®
@ @ @ 1@ 1@
0 o 0 0 0
— 7 o - -
W, W, W, W.
(1) (2) 3) © (4)
el “le|l “le|l e
o @) @) @)
> More on % E E E
these later  the  students opened  their

info from many steps back J

(D 2(2) (3 ey




Training an RNN Language Model

28

Get a big corpus of text which is a sequence of words =V, ... «(*)
Feed into RNN-LM; compute output distribution @(t) for every step t.
* i.e., predict probability dist of every word, given words so far

Loss function on step tis cross-entropy between predicted probability
distribution ¥, and the true next word ¥ (one-hot for z*+1):

JO0) = CE@y®, 50) = — 3 4 log §® = — log g

Lt41
weV

Average this to get overall loss for entire training set:

1 — 1 &
== JO0) = 5> —loggl),,
t=1 t=1




Training an RNN Language Model

= negative log prob
of “students”

Loss — | JW)(h) J2)(6) J3) () JH) ()

/I\ N N /I\
Predicted 5 5@ 5®) 5
prob dists A A
U U U U
h©)__ h1) h(2) h(3) h(4)
@ @ @ @ @
@ Wy |0 W, (@ Wi 0| Wr |@| W,
@ ® O @ @ g
@ @ O O O
— Y 5 = "
W, W, W, W,
(1) (2) (3) © (4)
ele| el “le| “ e
@) @) @) @)
Te & Tz s

Corpus — the  students opened their exams

N (D) 2(2) 23 2@




Training an RNN Language Model

= negative log prob
of “opened”

Loss — JW(h) J2)(6) J3) () JH) ()

N N /I\
Predicted 5 5@ 5®) 5
prob dists A A
U U U U
h©)__ h1) h(2) h(3) h(4)
@ @ @ @ @
@ Wy |0 W, (@ Wi 0| Wr |@| W,
@ ® O @ @ g
@ @ @ @ @
— Y 5 = "
W, W, W, W,
(1) (2) (3) © (4)
ele| el “le| “ e
@) @) @) @)
Te & Tz s

Corpus — the  students opened their exams
o 2(1) 2(2) 2(3) 24




Training an RNN Language Model

= negative log prob
of “their”

Loss — JW(h) J2)(6) J3) () JH) ()

N N /I\
Predicted 5 5@ 5®) 5
prob dists A A
U U U U
h©)__ h1) h(2) h(3) h(4)
@ @ @ @ @
@ Wy |0 W, (@ Wi 0| Wr |@| W,
@ ® O @ @ g
@ @ @ @ @
— Y 5 = "
W, W, W, W,
(1) (2) (3) © (4)
ele| el “le| “ e
@) @) @) @)
Te & Tz s

Corpus — the  students opened their exams
N 2(1) 2(2) 2(3) 24




Training an RNN Language Model

= negative log prob
of “exams”

Loss — JW(h) J2)(6) J3) () JH) ()

N N /I\
Predicted 5 5@ 5®) 5
prob dists A A
U U U U
h©)__ h1) h(2) h(3) h(4)
@ @ @ @ @
@ Wy |0 W, (@ Wi 0| Wr |@| W,
@ ® O @ @ g
@ @ @ @ @
— Y 5 = "
W, W, W, W,
(1) (2) (3) © (4)
ele| el “le| “ e
@) @) @) @)
Te & Tz s

Corpus — the  students opened their exams
. 2(1) 2(2) 2(3) 24




Training an RNN Language Model

‘ “Teacher forcing”

T
Loss —— JW(g) + JD@6) + JOG) + JOO) +. = JO)= 5> I00)
/I\ N\ N /I\ =1
Predicted () e e "o
prob dists A A
U U U U
h©)__ h1) h(2) h(3) h(4)
@ @ O O O
@ W, |0 W, (@0 Wi |@0| Wr @ W,
‘ . . - ‘ 2 ‘ >
® @ O O O
— X " " "
W, W, W, W,
(1) (2) (3) © (4)
e @) e o e o e o
O o) @) O
Te & Tz Iz

Corpus — the  students opened their exams

N (D) 2(2) 23 2@




Training a RNN Language Model

However: Computing loss and gradients across entire corpus =V,...,z") at once is
too expensive (memory-wise)!

T
1
N ()
J(0) = = pRARI()
t=1
 In practice, consider V), ... (™ as a sentence (or a document)

e Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small
chunk of data, and update.

« Compute loss J(8)for a sentence (actually, a batch of sentences), compute gradients
and update weights. Repeat on a new batch of sentences.

34




Backpropagation for RNNs

J(t)(g)
KO wn e wen wol
) o (] ("] o
@ ﬂ) W, |[@| W, |@| Wh ol W @ Wy .
@ L 1 @ O 1@ g
o o o & 8

Question: What’s the derivative of J(*)() w.rt. the repeated weight matrix W, ?

“The gradient w.r.t. a repeated weight
is the sum of the gradient
(4) w.r.t. each time it appears”

o.J®) t H5J®
OWh = OWy,

1

Answer:

Why?

35




Multivariable Chain Rule

« Given a multivariable function f(z, %), and two single variable functions

:L'(t) and y(t), here's what the multivariable chain rule says:

d _ 8f dz  Of dy

>

v
Derivative of composition function

Gradients sum at outward branches
One final output  f(x(t), y(t))

N +

e 2 (t) y(t) \Q:
One input t S

b = max(y, 2) 3f_8f@a+8f8b
f=ab Oy Oady 0Obdy

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

36
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Training the parameters of RNNs: Backpropagation for RNNs

In practice, often

s> “truncated” after ~20
timesteps for training
efficiency reasons

0J 1)
OWp, |4

Apply the multivariable chain rule:

—

. ) =1
Question: How do we calculate this?

t
Answer: Backpropagate over timesteps 9. _ 9" aWh’(i)
i=t,..,0, summing gradients as you go. oWy = OWh |, OW,
This algor.ithm is called “backpropagation t oyt
through time” [Werbos, P.G., 1988, Neural _ Z
Wil

37 Networks 1, and others] i=1




Generating with an RNN Language Model (“Generating roll outs”)

Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

my favorite season i spring </s>
N N
sample sample sample sample Tsample sample
Q(l) Q(2) g(3) Q(4) g(4) Q(4)
AN N
U U U U U U
h©___ h(L) h(2) h(3) h4) h4) h4)
@ @ @ O @ @ @
oW, | W, (@ W, [@| Wr 0| Wr @ W, |@
@ @ @ 1@ 1@ 1@ 1@
@ @ @ @ @ @ (]
— x —— —r N
We We We We We We
: r‘1 r—‘—x r‘1 : r—‘—x
(1) 2) © 3) © (4) © (4) 4) ©
e‘lo| ¢ le| ¢ le| ¢le| “lo| ¢ le
o o o o @) o
T & T5 [ 5 [o

38 <s> my  favorite  season is spring




Generating text with an RNN Language Model

Let’s have some fun!
* You can train an RNN-LM on any kind of text, then generate text in that style.
« RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“T’ll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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Generating text with an RNN Language Model

Let’s have some fun!
* You can train an RNN-LM on any kind of text, then generate text in that style.
e RNN-LM trained on recipes:

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies
Yield: 6 Servings

2 tb Parmesan cheese -- chopped
1 ¢ Coconut milk
3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and simmer
until firm. Serve hot in bodied fresh, mustard, orange and cheese.

Combine the cheese and salt together the dough in a large skillet; add the ingredients
and stir in the chocolate and pepper.

Source: https://gist.github.com/nylki/lefbaa36635956d35bcc
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Evaluating Language Models

 The standard evaluation metric for Language Models is perplexity.

T 1/T
, 1 ~—_
perplexity = H (PLM(GZ(t+1)| o0 m(l))) Normalized by
t=1 o number of words

. J
Y

Inverse probability of corpus, according to Language Model

 This is equal to the exponential of the cross-entropy loss J(8):

T 1/T | T
H ( NO ) — exp (T Z—logﬁ&l) = exp(J(0))

t=1 \Yzii1 t=1

Lower perplexity is better!
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3. Problems with RNNs: Vanishing and Exploding Gradients
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Vanishing gradient intuition
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Vanishing gradient intuition
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Vanishing gradient intuition
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Vanishing gradient intuition
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Vanishing gradient intuition

J(4)(9)
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Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

What happens if these are small?
backpropagates further

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanul3-supp.pdf



http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Why is vanishing gradient a problem?

J2)(9) J4 ()

A A

R h(2) h(3) h(4)

Y

o

[o}:o]
oaxx
o

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.
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Effect of vanishing gradient on RNN-LM

LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her

 To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7% step and the target word “tickets” at the end.

e Butif the gradient is small, the model can’t learn this dependency
* So, the model is unable to predict similar long-distance dependencies at test time
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Why is exploding gradient a problem?

* If the gradient becomes too big, then the SGD update step becomes too big:

learning rate

pnew — Qold . EVQJ(Q)

J

Y

gradient

e This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)

* You think you’ve found a hill to climb, but suddenly you’re in lowa

* Inthe worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)
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Gradient clipping: solution for exploding gradient

e Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping

g+ 3

if ||g|| > threshold then
A threshold 4
& el 8

end if

e |Intuition: take a step in the same direction, but a smaller step

* In practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

53 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
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How to fix the vanishing gradient problem?

 The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

* In avanilla RNN, the hidden state is constantly being rewritten

h®) = ¢ (Whh(t_l) +W,z® 4 b)

e First: How about an RNN with separate memory which is added to?
* Long Short-Term Memory (LSTM) [link]

 And then: Creating more direct and linear pass-through connections in model
* Attention, residual connections, etc.
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

5. Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the
source language) to a sentence y in another language (the target language).

X: | like deep learning
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NMT: the first big success story of NLP Deep Learning

Neural Machine Translation went from a fringe research attempt in 2014 to the leading
standard method in 2016

e 2014: First seq2seq paper published [Sutskever et al. 2014]

e 2016: Google Translate switches from SMT to NMT — and by 2018 everyone has

B® Microsoft &svstran  Google
BaiNEE ®Bwme  Tencentiil  (S)mie=

e Thisis amazing!
* SMT systems, built by hundreds of engineers over many years, outperformed by
NMT systems trained by small groups of engineers in a few months
I 56



Neural Machine Translation (NMT)
The sequence-to-sequence model

Target sentence (output)
Encoding of the source sentence. A

T s \
Provides initial hidden state ) ) .
for Decoder RNN. he hit me with a pie <END>
s o s o " s =
\ = = £ £ £ € =
Z 50 0 o0 o0 50 50 5 o
= @© @© @© © @© @© @© )
o 0 0 0 e o O o o o) O o) 3
s e |o |o| | |@® lol: ol ol :|o] el :[e]:]o S
- 0 o) o) 0 O o) O O o[ 7le[ =]o @
o () <] <] ) (@) (0] (@) (@) o (@) (0] -
O yy
c e
it m’”a entarté <START> he  hit me with a pie
N J
Y
Source sentence (input) Decoder RNN is a Language Model that generates

target sentence, conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.
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Sequence-to-sequence is versatile!

 The general notion here is an encoder-decoder model
* One neural network takes input and produces a neural representation
* Another network produces output based on that neural representation

* If the input and output are sequences, we call it a seq2seq model

* Sequence-to-sequence is useful for more than just MT
 Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text - short text)
* Dialogue (previous utterances - next utterance)
* Parsing (input text - output parse as sequence)

* Code generation (natural language - Python code)
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Neural Machine Translation (NMT)

 The sequence-to-sequence model is an example of a Conditional Language Model

* Language Model because the decoder is predicting the next word of the target sentence y
* Conditional because its predictions are also conditioned on the source sentence x

« NMT directly calculates P(y|z):

P(ylz) = P(y1|z) P(y2|y1, %) P(ys|y1, 92, @) - .. P(yrly1,- - -, y7-1,7)
\ > J
Probability of next target word, given

target words so far and source sentence x

 Question: How to train an NMT system?
* (Easy) Answer: Get a big parallel corpus...
* But there is now exciting work on “unsupervised NMT”, data augmentation, etc.
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Training a Neural Machine Translation system

60

= negative log = negative log = negative log
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Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.




Multi-layer deep encoder-decoder machine translation net

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i
are the inputs to RNN layer i+1

Translation
generated
r
Encoder:
S T2 < } Decoder
sentence
meaning
-
Source Die  Proteste waren am Wochenende eskaliert <EOS> protests < Feeding in
sentence last word
Conditioning =
Bottleneck
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The final piece: the bottleneck problem in RNNs

Encoding of the
source sentence.

Target sentence (output)

A

4 A\

he hit me  with a pie <END>
P )
o ] o o () o o o o (@) @) o 3
o el _|O 5| o o Jol _Jo| Jo| . JoL _Joj| .o >O o
o e 10 o @ 101 ‘e 10| “|of “leo| |0 o @
9 () e () () @) o @) o (o) @) o -
c A =z

il a m’  entarté <START> he hit me  with a pie
N\ J
Y

Source sentence (input)

Problems with this architecture?
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Lecture Plan

Lecture 4: Language modeling + RNNs
1. A new NLP task: Language Modeling (20 mins)

1 motivates

This is the most important concept in the
class! Leads to most of modern NLP

2. Language models with neural nets: Recurrent Neural Networks (RNNs) (25 mins)

3. Problems with RNNs: exploding and vanishing gradients (20 mins)

4. Machine translation (10 mins)
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