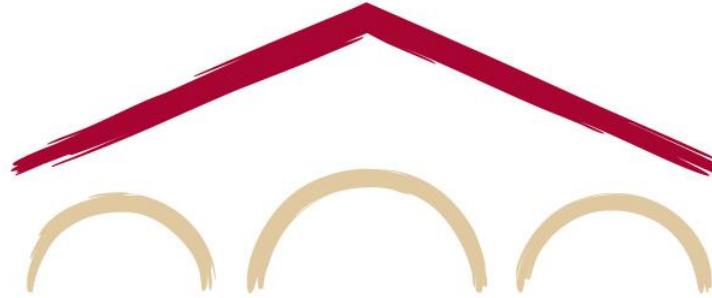


Natural Language Processing with Deep Learning

CS224N/Ling284



Diyi Yang

Lecture 5: Attention and Transformers

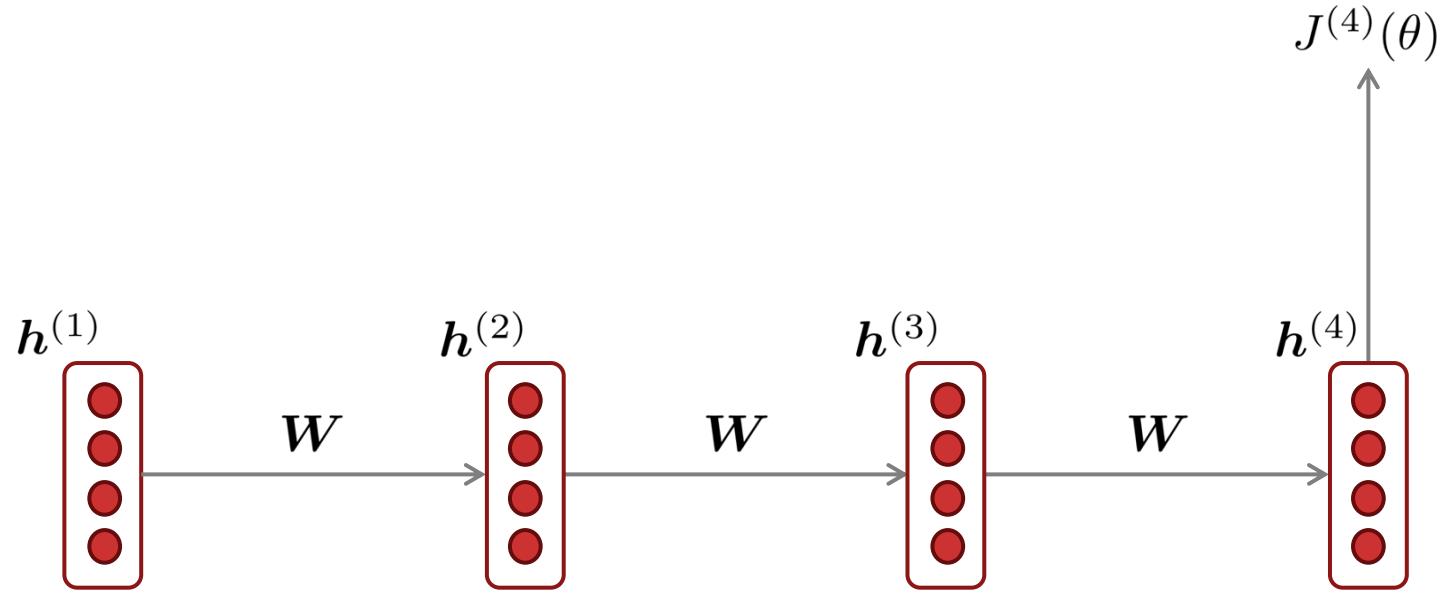
Lecture Plan

Lecture 5: Attention and Transformers

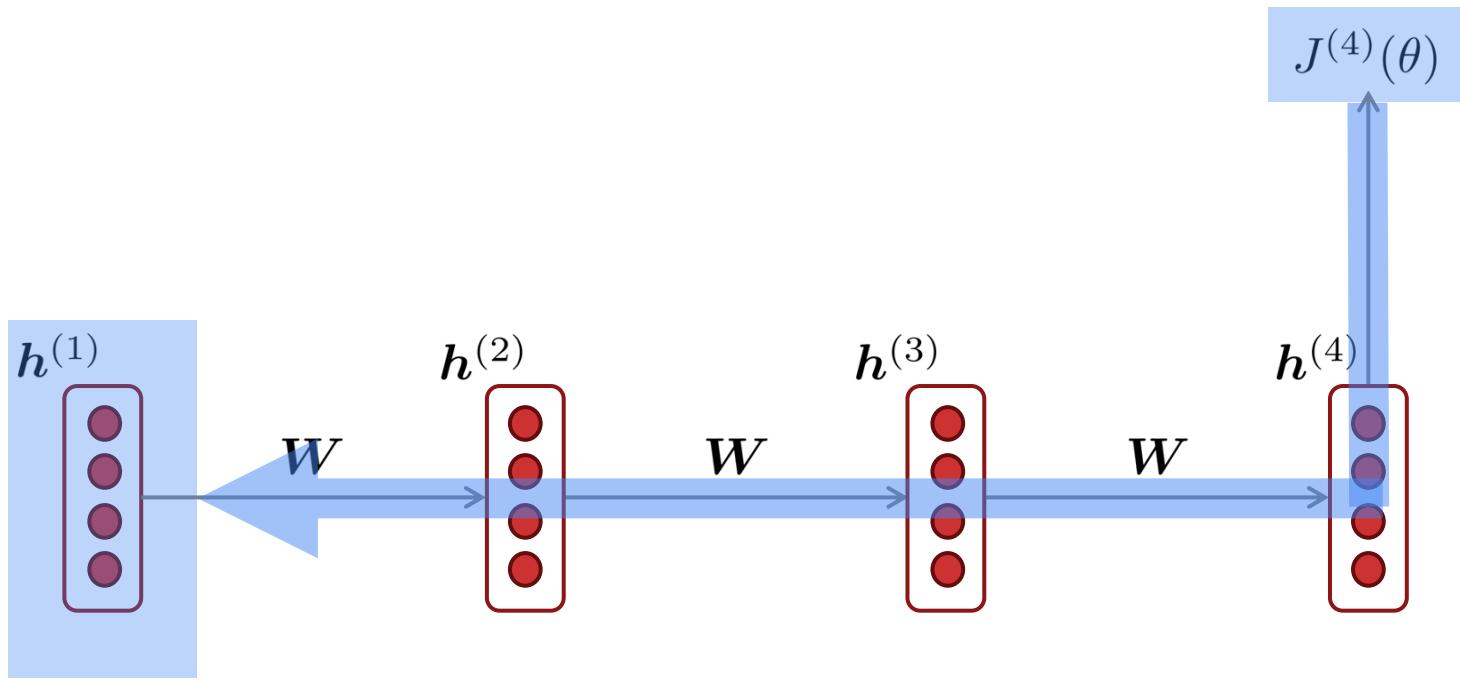
1. Vanishing gradients (10 mins)
2. Machine translation (10 mins)
3. From recurrence (RNN) to attention-based models (15 mins)
4. Self-attention (15 mins)
5. The Transformer model (15 mins)
6. Great results with Transformers and their drawbacks and variants (5 mins)

Waitlist update; assignment 2 due on Jan 22; course project session next Thur

1. Problems with RNNs: Vanishing and Exploding Gradients

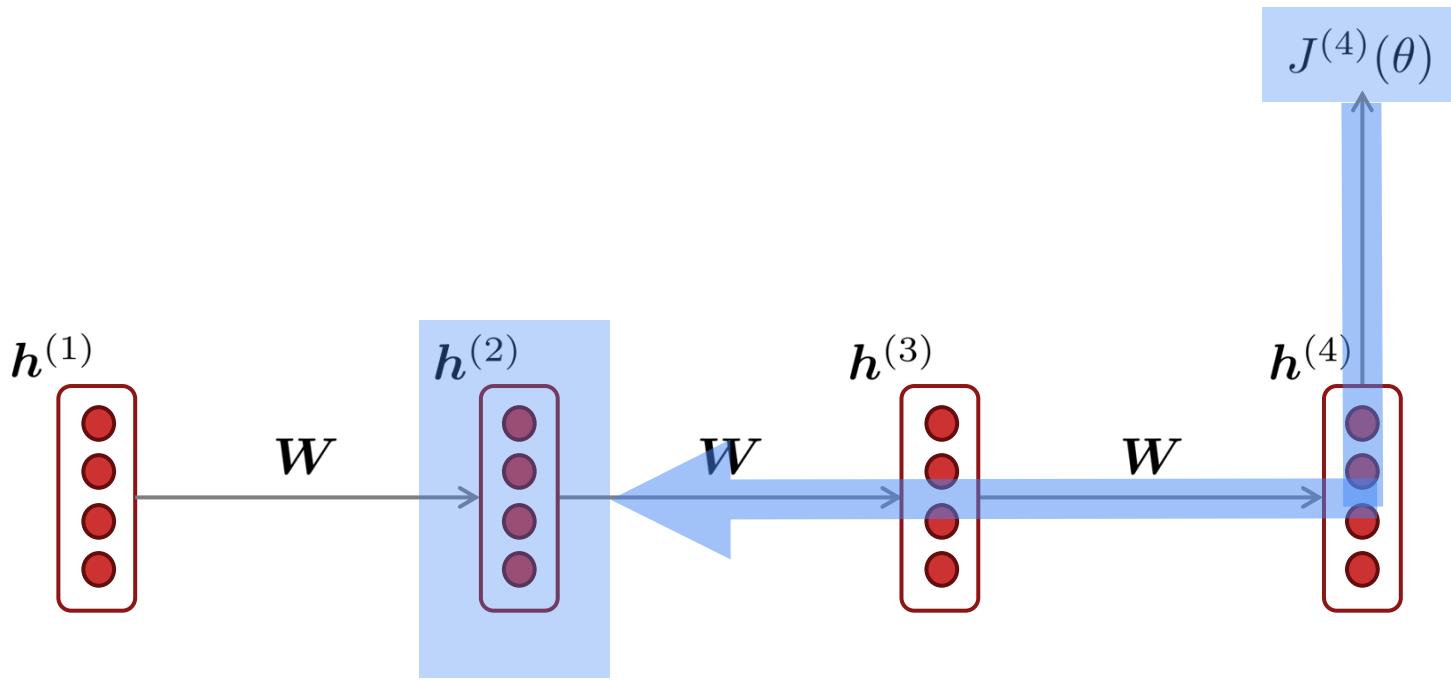


Vanishing gradient intuition



$$\frac{\partial J^{(4)}}{\partial h^{(1)}} = ?$$

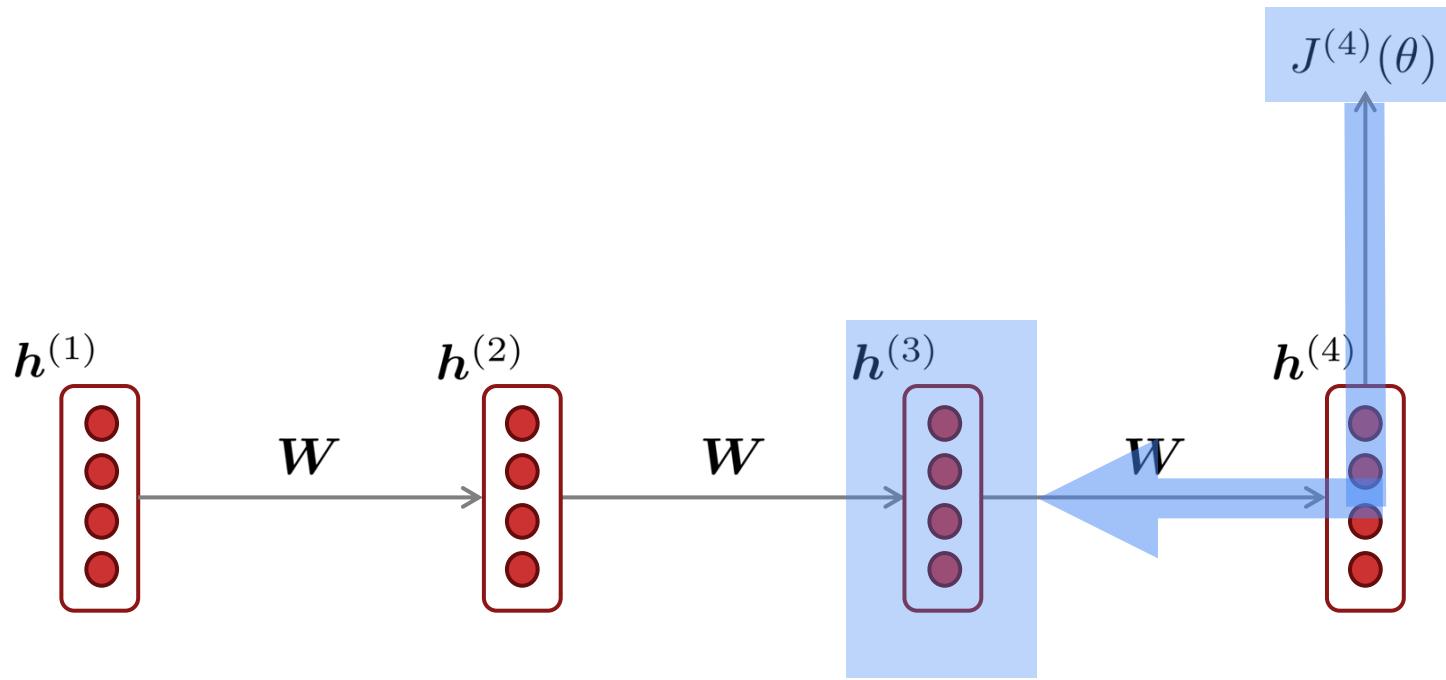
Vanishing gradient intuition



$$\frac{\partial J^{(4)}}{\partial h^{(1)}} = \frac{\partial h^{(2)}}{\partial h^{(1)}} \times \frac{\partial J^{(4)}}{\partial h^{(2)}}$$

chain rule!

Vanishing gradient intuition

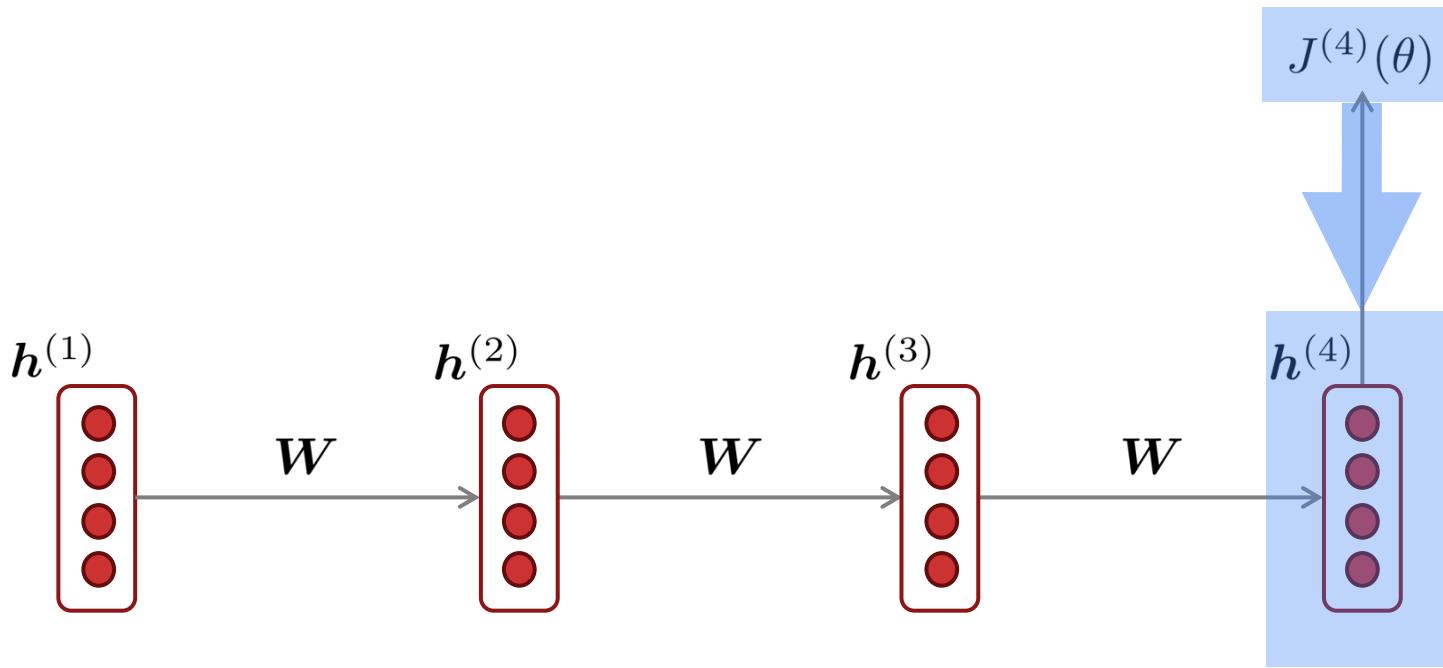


$$\frac{\partial J^{(4)}}{\partial h^{(1)}} = \frac{\partial h^{(2)}}{\partial h^{(1)}} \times$$

$$\frac{\partial h^{(3)}}{\partial h^{(2)}} \times \frac{\partial J^{(4)}}{\partial h^{(3)}}$$

chain rule!

Vanishing gradient intuition



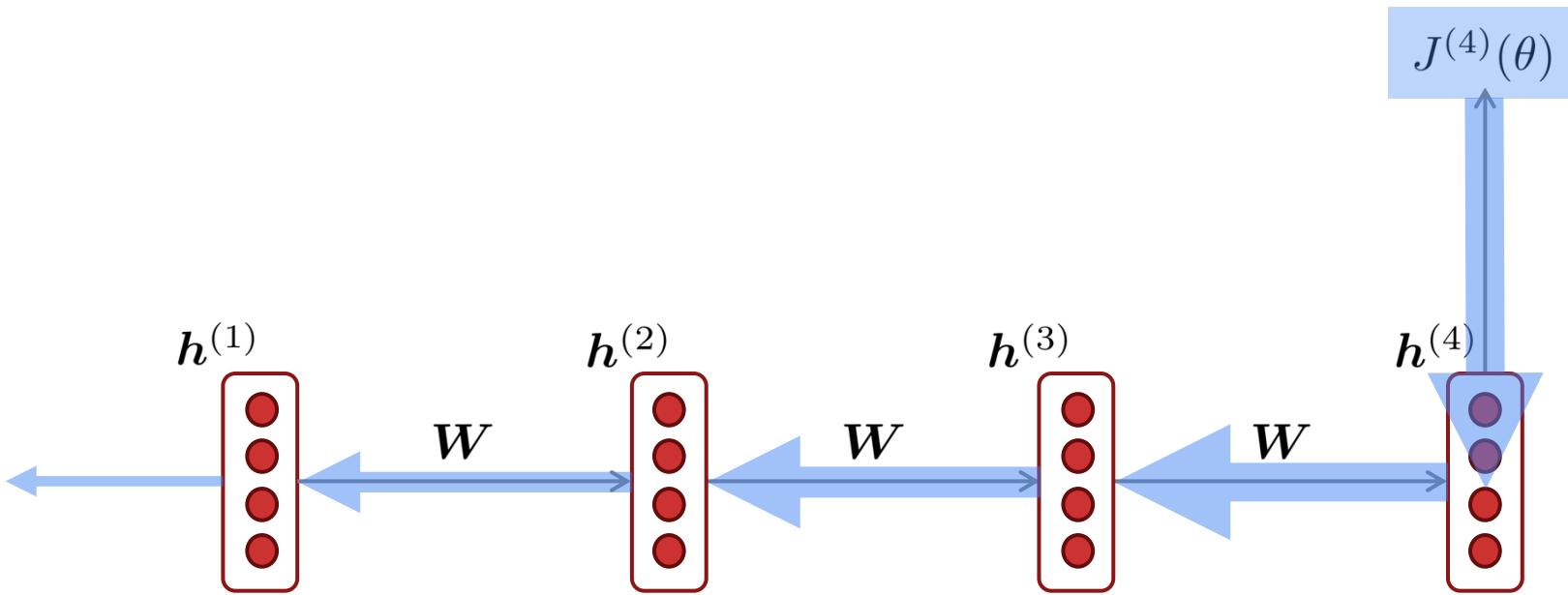
$$\frac{\partial J^{(4)}}{\partial \mathbf{h}^{(1)}} = \frac{\partial \mathbf{h}^{(2)}}{\partial \mathbf{h}^{(1)}} \times$$

$$\frac{\partial \mathbf{h}^{(3)}}{\partial \mathbf{h}^{(2)}} \times$$

$$\frac{\partial \mathbf{h}^{(4)}}{\partial \mathbf{h}^{(3)}} \times \frac{\partial J^{(4)}}{\partial \mathbf{h}^{(4)}}$$

chain rule!

Vanishing gradient intuition

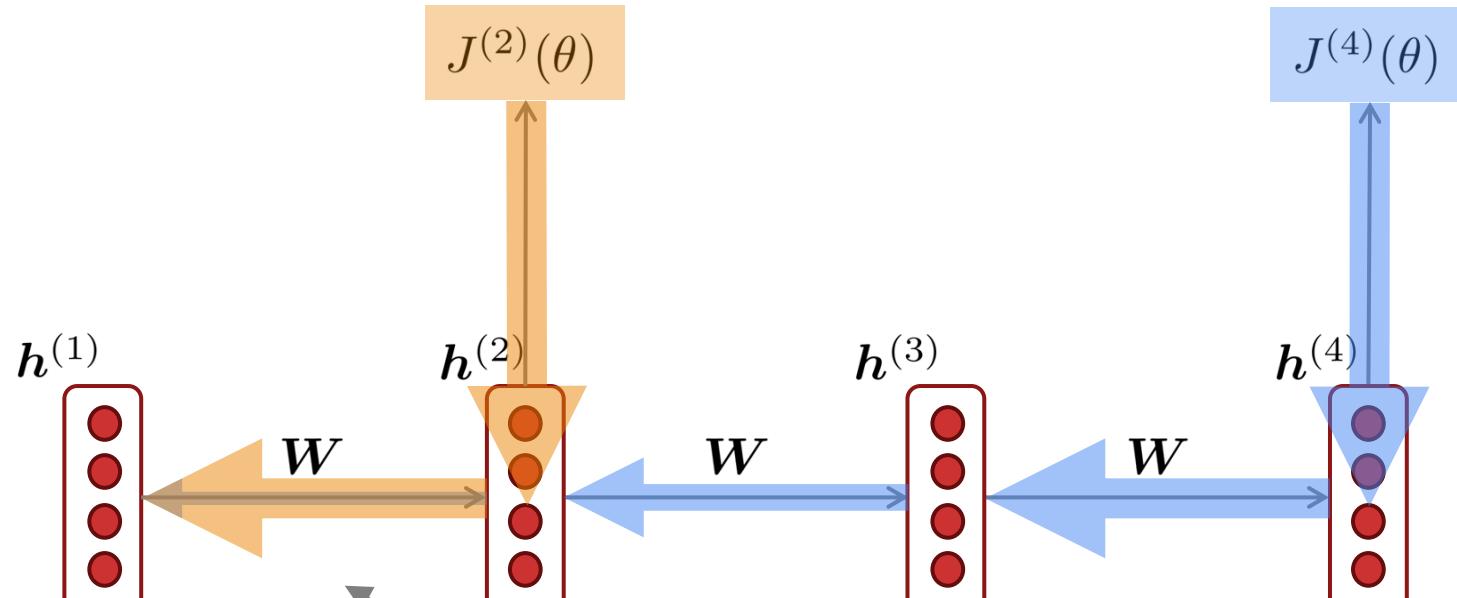


$$\frac{\partial J^{(4)}}{\partial h^{(1)}} = \frac{\partial h^{(2)}}{\partial h^{(1)}} \times \frac{\partial h^{(3)}}{\partial h^{(2)}} \times \frac{\partial h^{(4)}}{\partial h^{(3)}} \times \frac{\partial J^{(4)}}{\partial h^{(4)}}$$

What happens if these are small?

Vanishing gradient problem:
When these are small, the gradient signal gets smaller and smaller as it backpropagates further

Why is vanishing gradient a problem?



Gradient signal from far away is lost because it's much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

Effect of vanishing gradient on RNN-LM

- **LM task:** *When she tried to print her tickets, she found that the printer was out of toner. She went to the stationery store to buy more toner. It was very overpriced. After installing the toner into the printer, she finally printed her _____*
- To learn from this training example, the RNN-LM needs to **model the dependency** between “*tickets*” on the 7th step and the target word “*tickets*” at the end.
- But if the gradient is small, the model **can't learn this dependency**
 - So, the model is **unable to predict similar long-distance dependencies** at test time

Why is exploding gradient a problem?

- If the gradient becomes too big, then the SGD update step becomes too big:

$$\theta^{new} = \theta^{old} - \overbrace{\alpha \nabla_{\theta} J(\theta)}^{\text{gradient}}$$

learning rate

- This can cause **bad updates**: we take too large a step and reach a weird and bad parameter configuration (with large loss)
 - You think you've found a hill to climb, but suddenly you're in Iowa
- In the worst case, this will result in **Inf** or **NaN** in your network (then you have to restart training from an earlier checkpoint)

Gradient clipping: solution for exploding gradient

- **Gradient clipping**: if the norm of the gradient is greater than some threshold, scale it down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping

```
 $\hat{g} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$ 
if  $\|\hat{g}\| \geq threshold$  then
     $\hat{g} \leftarrow \frac{threshold}{\|\hat{g}\|} \hat{g}$ 
end if
```

- **Intuition**: take a step in the same direction, but a smaller step
- In practice, **remembering to clip gradients is important**, but exploding gradients are an easy problem to solve

How to fix the vanishing gradient problem?

- The main problem is that *it's too difficult for the RNN to learn to preserve information over many timesteps.*

- In a vanilla RNN, the hidden state is constantly being **rewritten**

$$\mathbf{h}^{(t)} = \sigma \left(\mathbf{W}_h \mathbf{h}^{(t-1)} + \mathbf{W}_x \mathbf{x}^{(t)} + \mathbf{b} \right)$$

- First: How about an RNN with separate and explicit **memory** which is added to?
 - Long Short-Term Memory (LSTM) [[link](#)]
- And then: Creating more direct and linear pass-through connections in model
 - Attention, residual connections, etc.

2. Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the **source language**) to a sentence y in another language (the **target language**).

x : *I like deep learning*

y : 我喜欢深度学习

NMT: the first big success story of NLP Deep Learning

Neural Machine Translation went from a **fringe research attempt** in **2014** to the **leading standard method** in **2016**

- **2014:** First seq2seq paper published [Sutskever et al. 2014]
- **2016:** Google Translate switches from SMT to NMT – and by 2018 everyone has

Microsoft

SYSTRAN
beyond language

網易
NETEASE
www.163.com

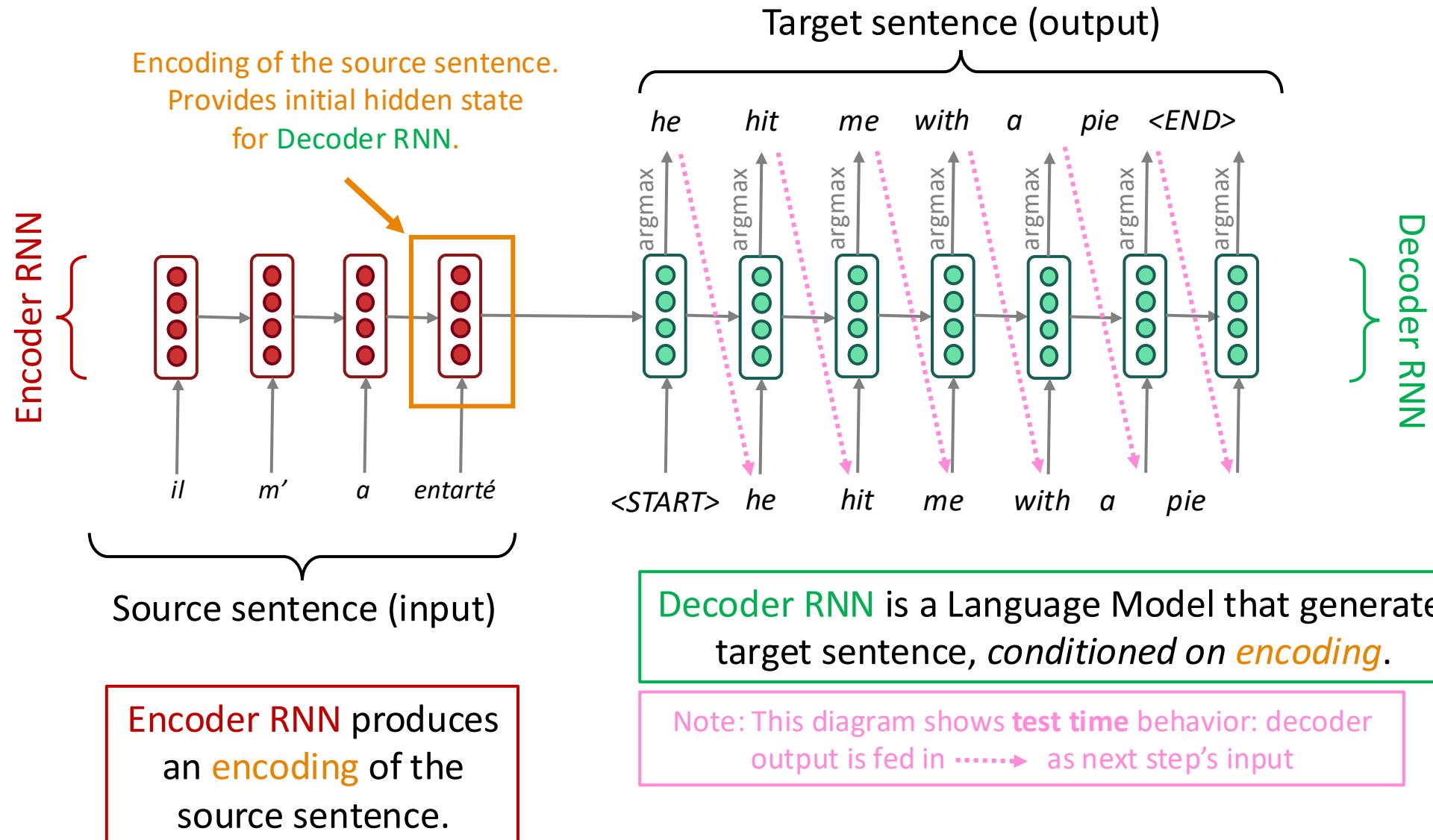
Tencent 腾讯

搜狗搜索

- This is amazing!
 - **SMT** systems, built by **hundreds** of engineers over many **years**, outperformed by NMT systems trained by **small groups** of engineers in a few **months**

Neural Machine Translation (NMT)

The sequence-to-sequence model



Sequence-to-sequence is versatile!

- The general notion here is an **encoder-decoder** model
 - One neural network takes input and produces a neural representation
 - Another network produces output based on that neural representation
 - If the input and output are sequences, we call it a seq2seq model
- Sequence-to-sequence is useful for *more than just MT*
- Many NLP tasks can be phrased as sequence-to-sequence:
 - **Summarization** (long text → short text)
 - **Dialogue** (previous utterances → next utterance)
 - **Parsing** (input text → output parse as sequence)
 - **Code generation** (natural language → Python code)

Neural Machine Translation (NMT)

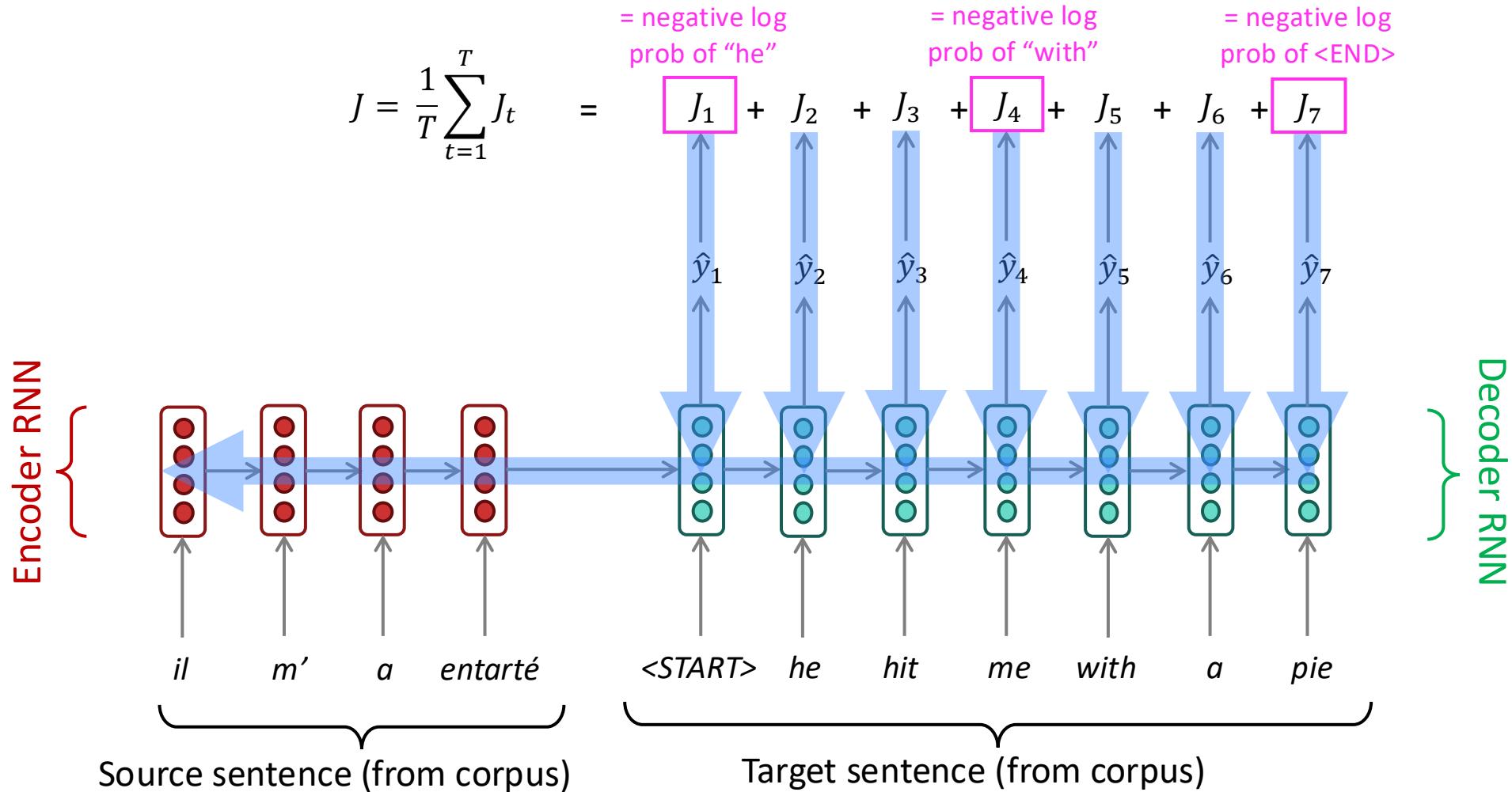
- The **sequence-to-sequence** model is an example of a **Conditional Language Model**
 - **Language Model** because the decoder is predicting the next word of the target sentence y
 - **Conditional** because its predictions are *also* conditioned on the source sentence x
- NMT directly calculates $P(y|x)$:

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots P(y_T|y_1, \dots, y_{T-1}, x)$$

Probability of next target word, given
target words so far and source sentence x

- **Question:** How to train an NMT system?
- **(Easy) Answer:** Get a big parallel corpus...
 - But there is now exciting work on “unsupervised NMT”, data augmentation, etc.

Training a Neural Machine Translation system

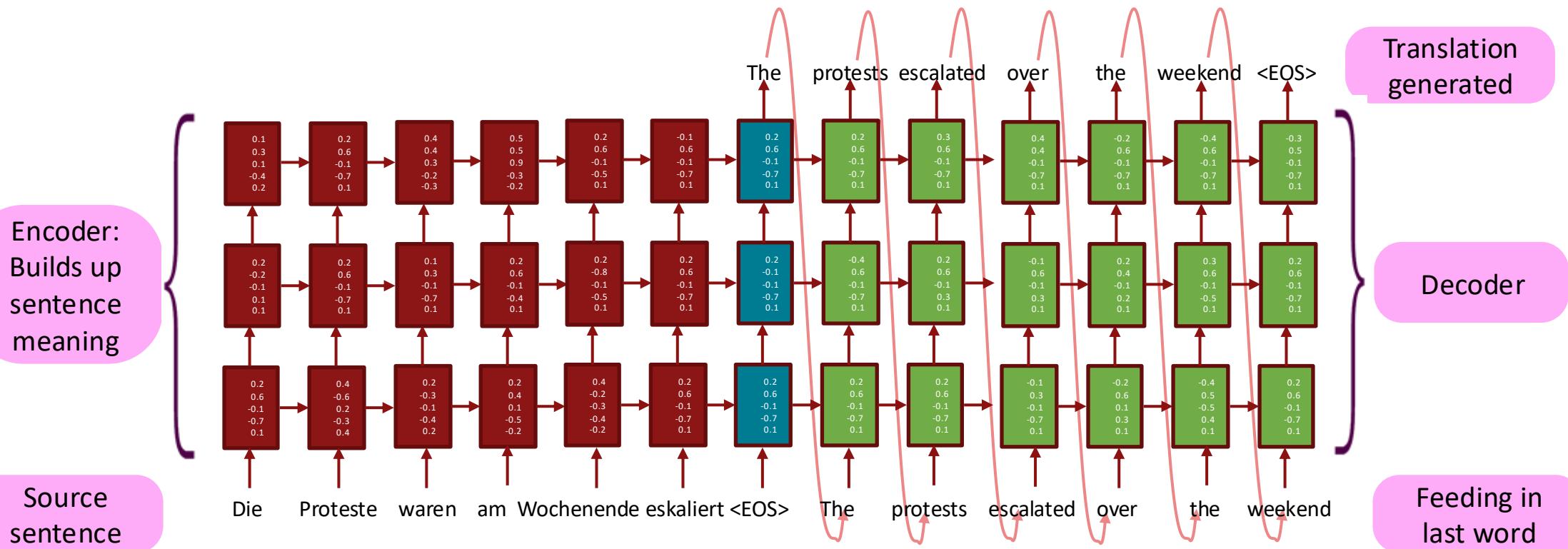


Seq2seq is optimized as a **single system**. Backpropagation operates “end-to-end”.

Multi-layer deep encoder-decoder machine translation net

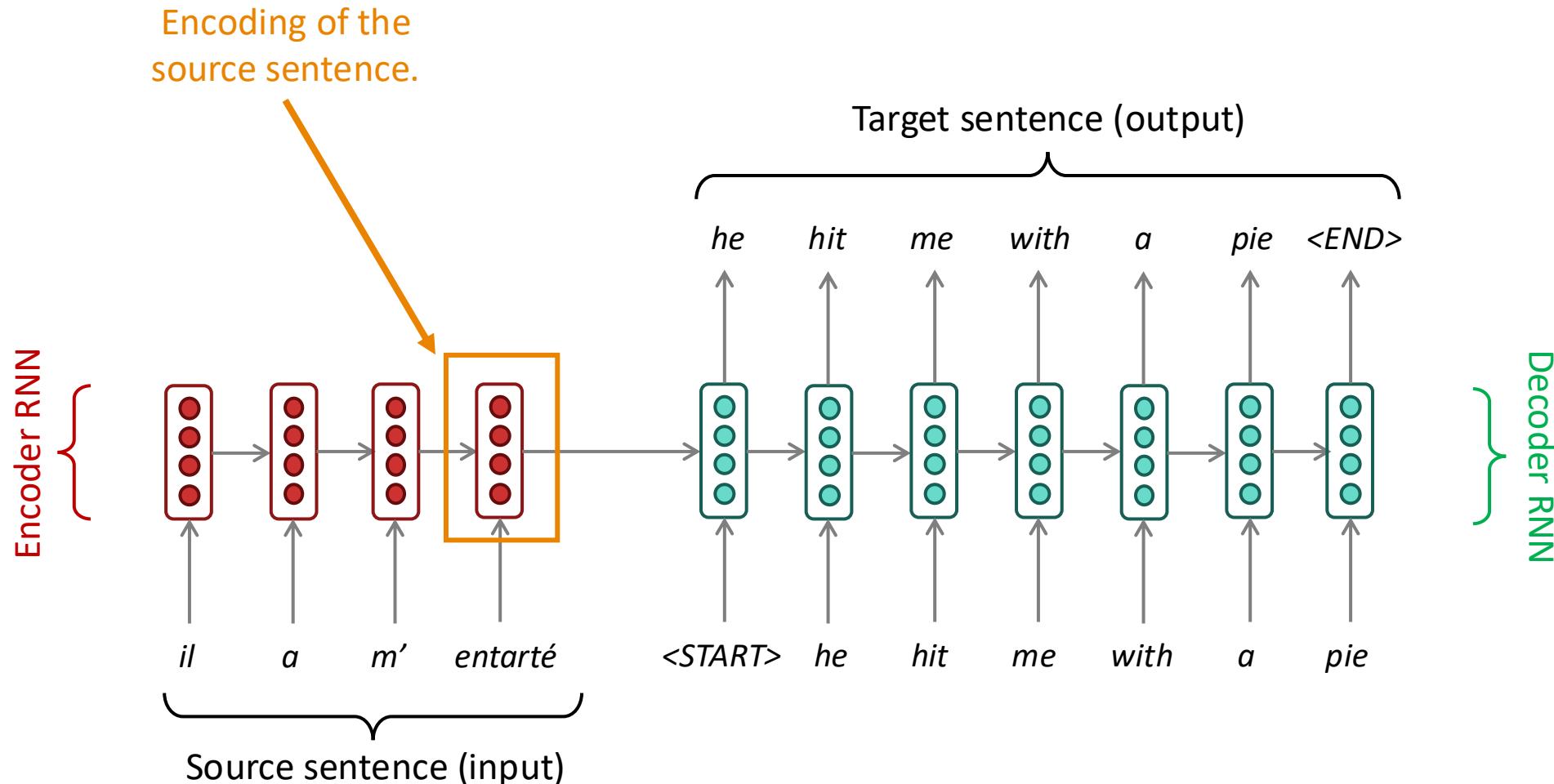
[Sutskever et al. 2014; Luong et al. 2015]

The hidden states from RNN layer i
are the inputs to RNN layer $i+1$



Conditioning =
Bottleneck

The final piece: the bottleneck problem in RNNs



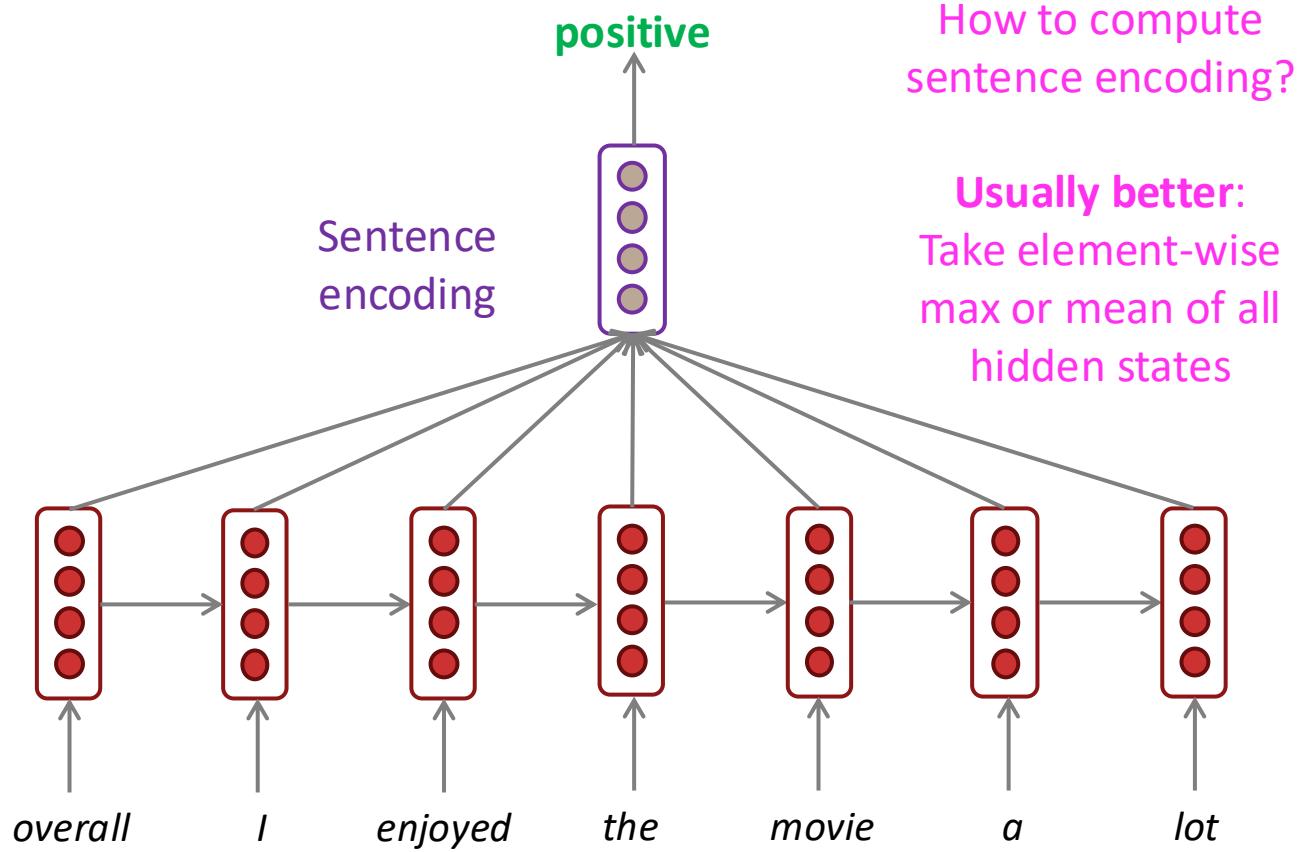
Problems with this architecture?

3. Attention

- Attention provides a solution to the bottleneck problem.
- **Core idea:** on each step of the decoder, *use direct connection to the encoder to focus on a particular part* of the source sequence

- First, we will show via diagram (no equations), then we will show with equations

The starting point: mean-pooling for RNNs

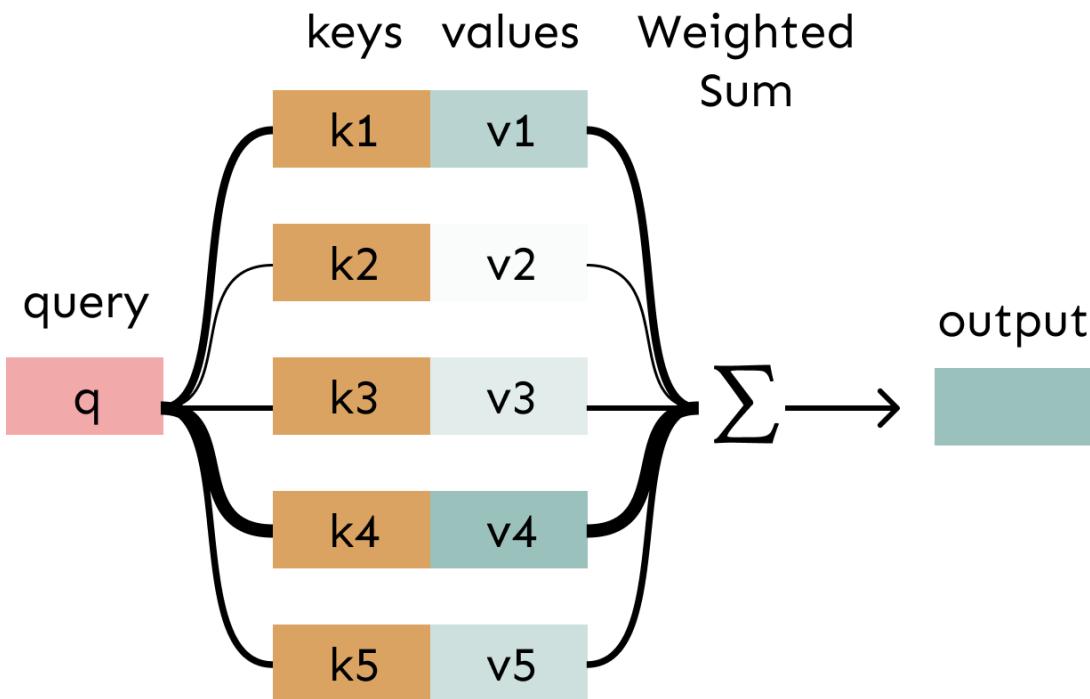


- Starting point: a *very basic way* of ‘passing information from the encoder’ is to *average*

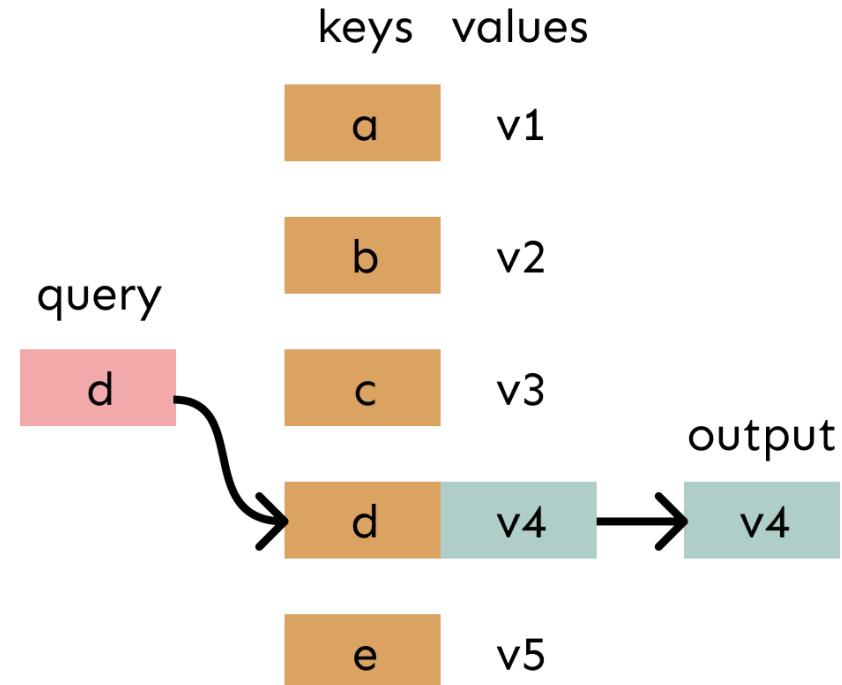
Attention is **weighted** averaging, which lets you do lookups!

Attention is just a **weighted** average – this is very powerful if the weights are learned!

In **attention**, the **query** matches all **keys** *softly*, to a weight between 0 and 1. The keys' **values** are multiplied by the weights and summed.

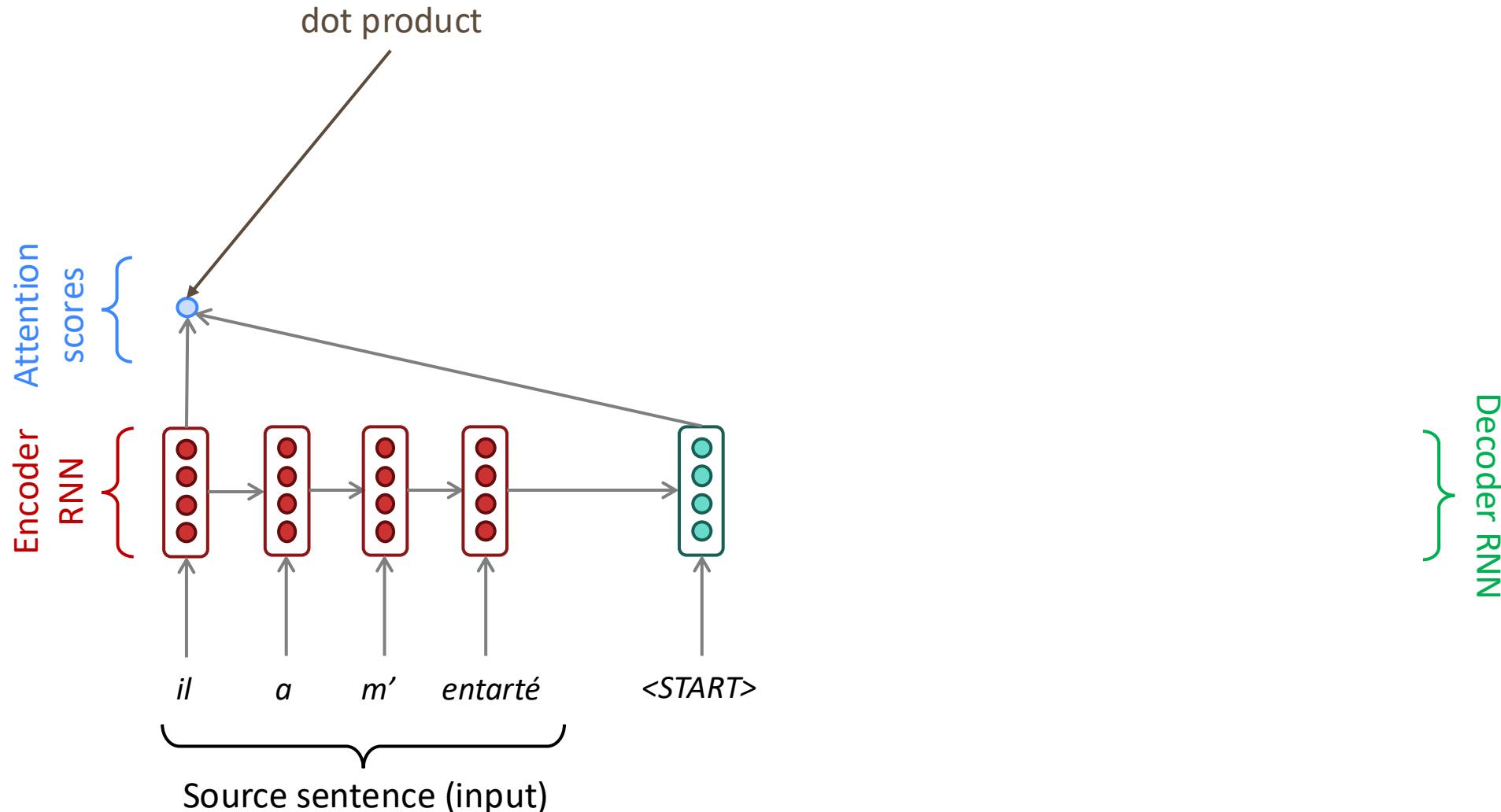


In a **lookup table**, we have a table of **keys** that map to **values**. The **query** matches one of the keys, returning its value.

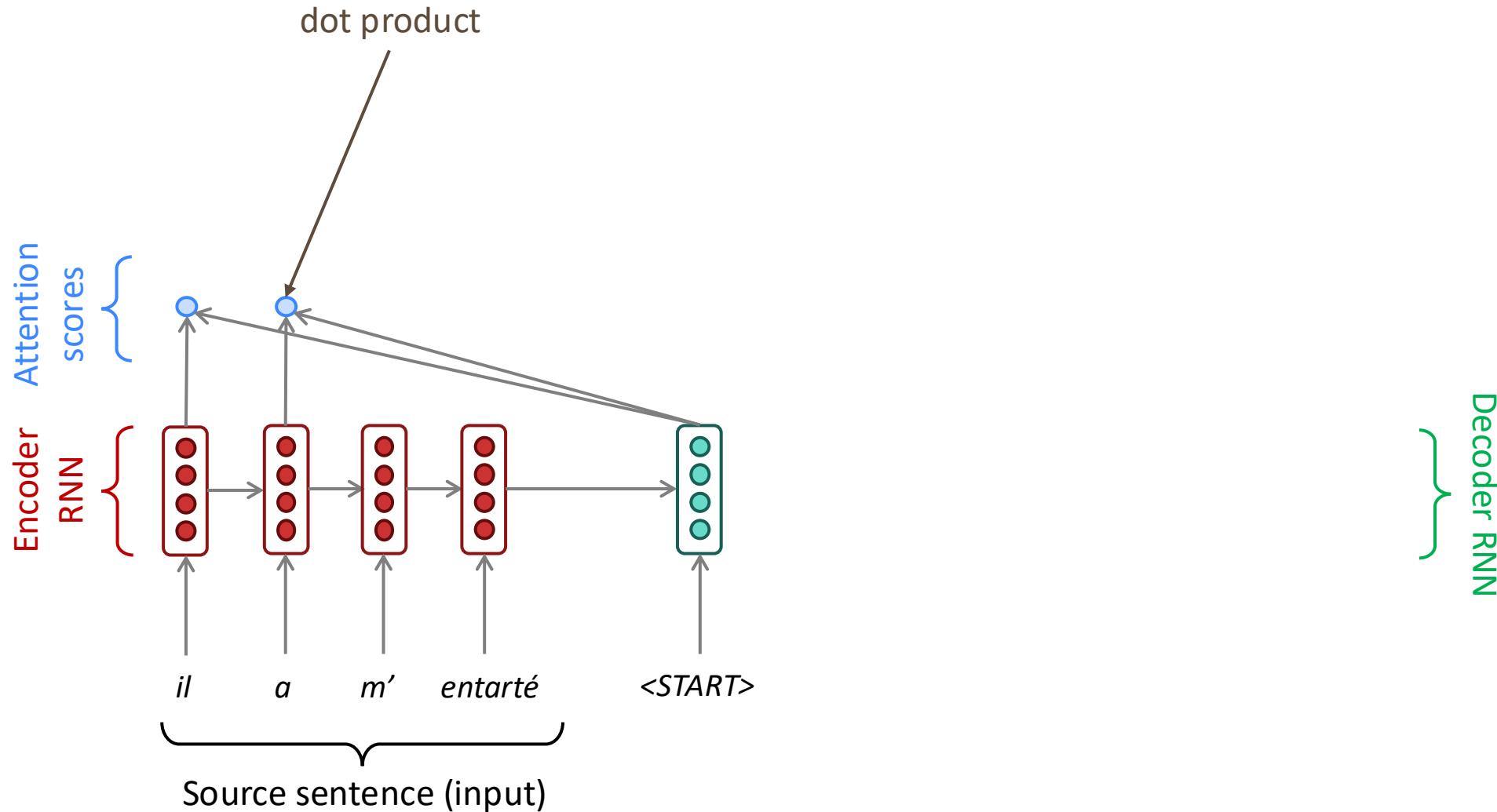


Sequence-to-sequence with attention

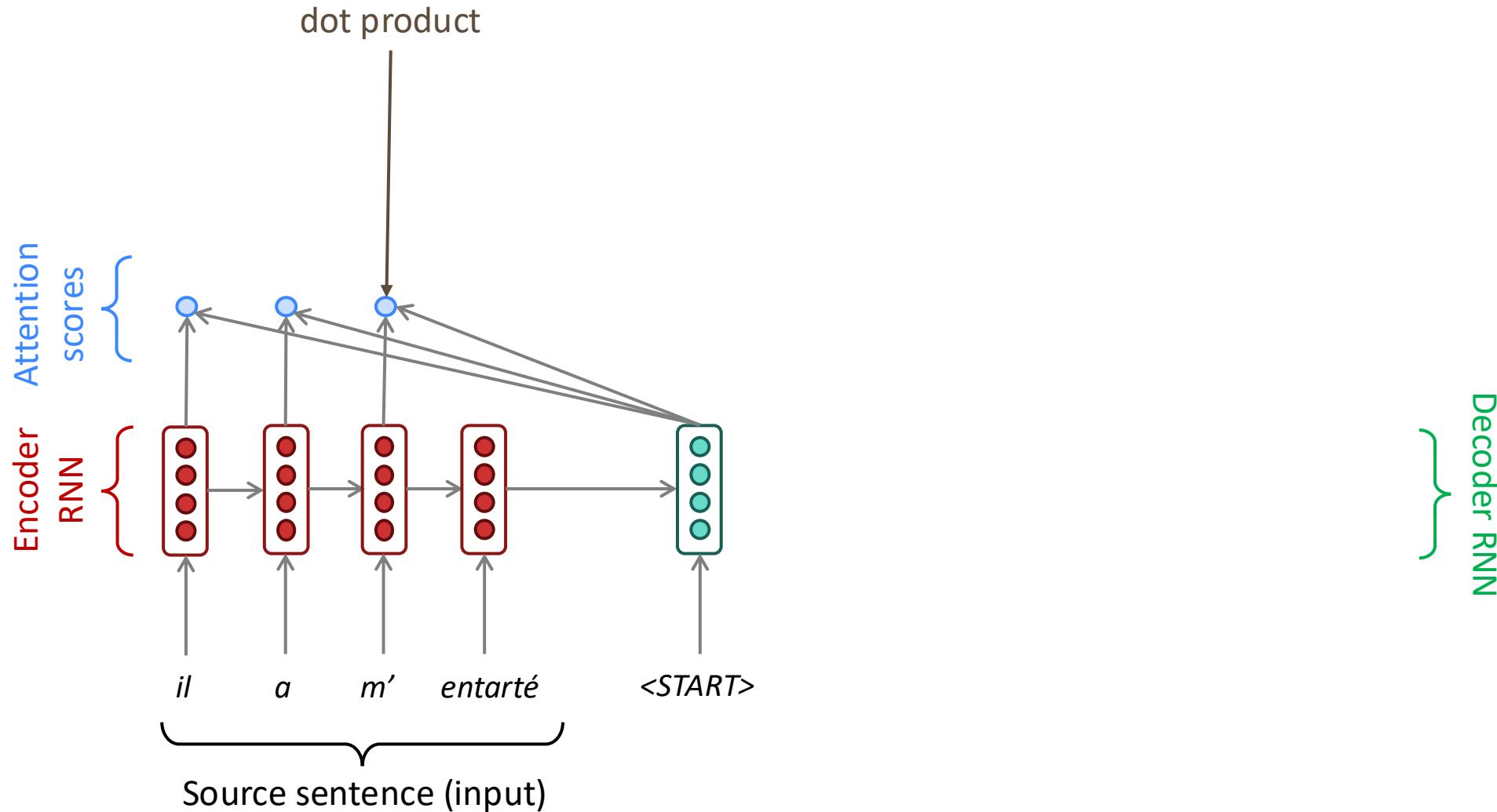
Core idea: on each step of the decoder, *use direct connection to the encoder to focus on a particular part* of the source sequence



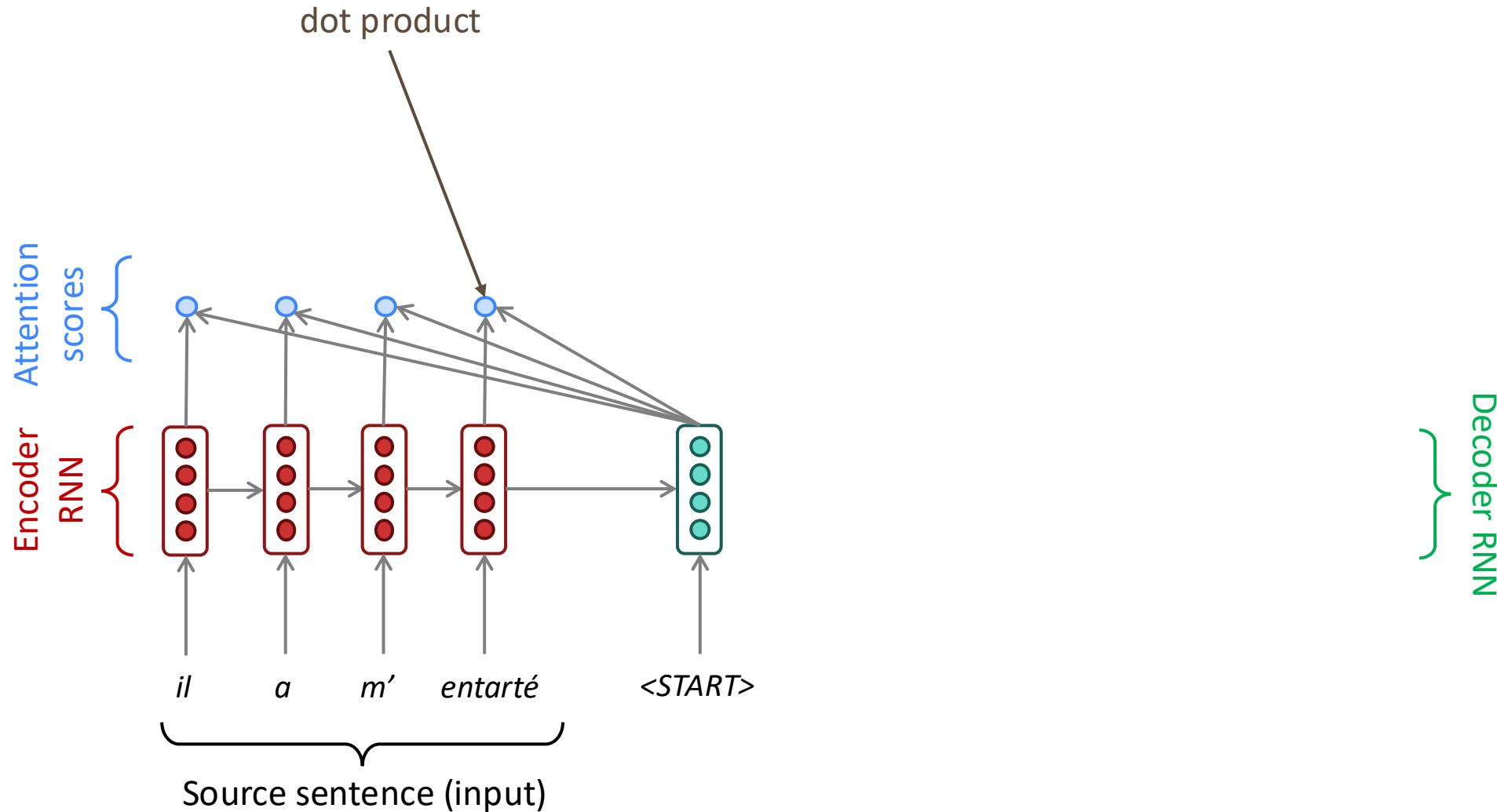
Sequence-to-sequence with attention



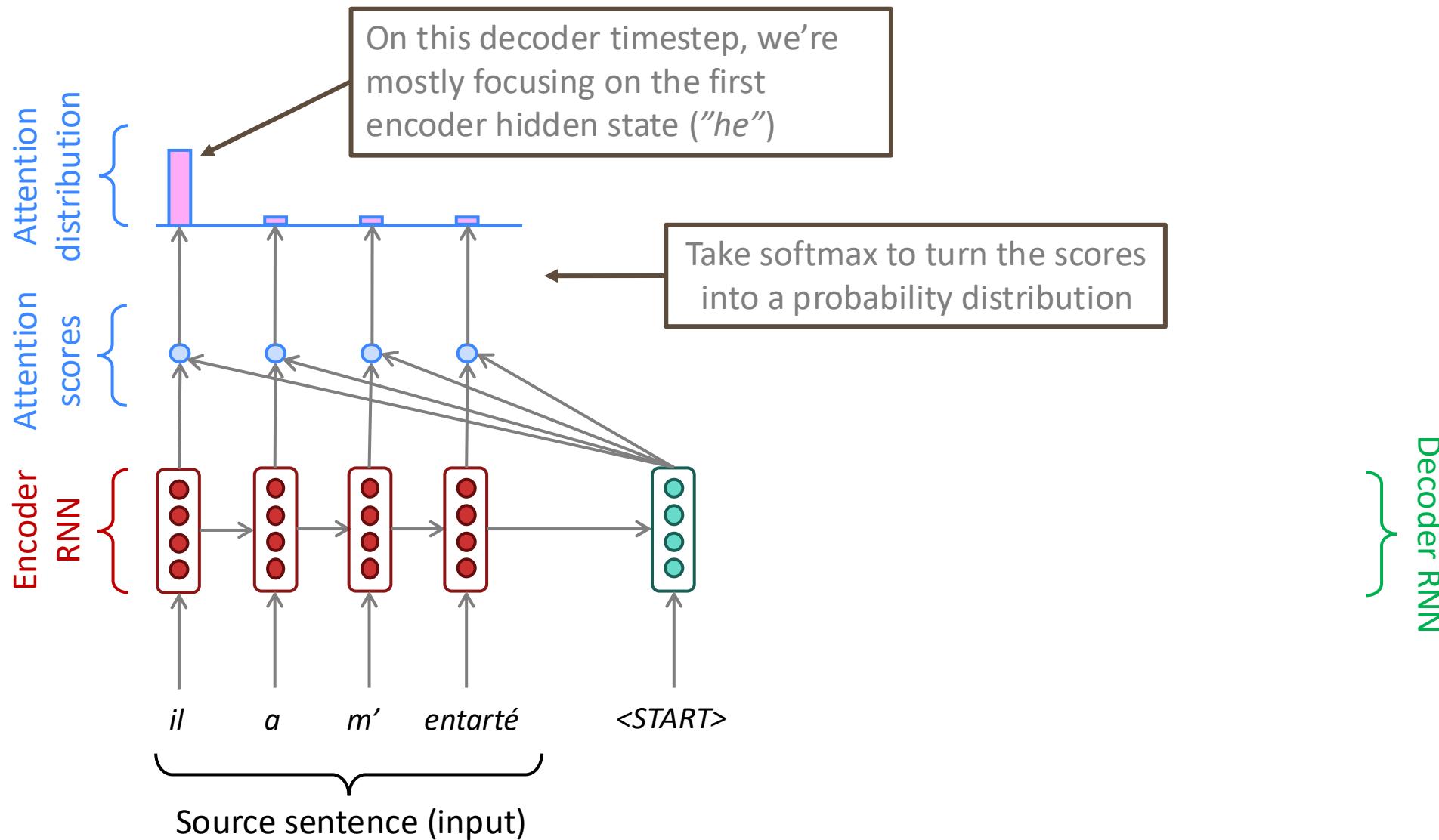
Sequence-to-sequence with attention



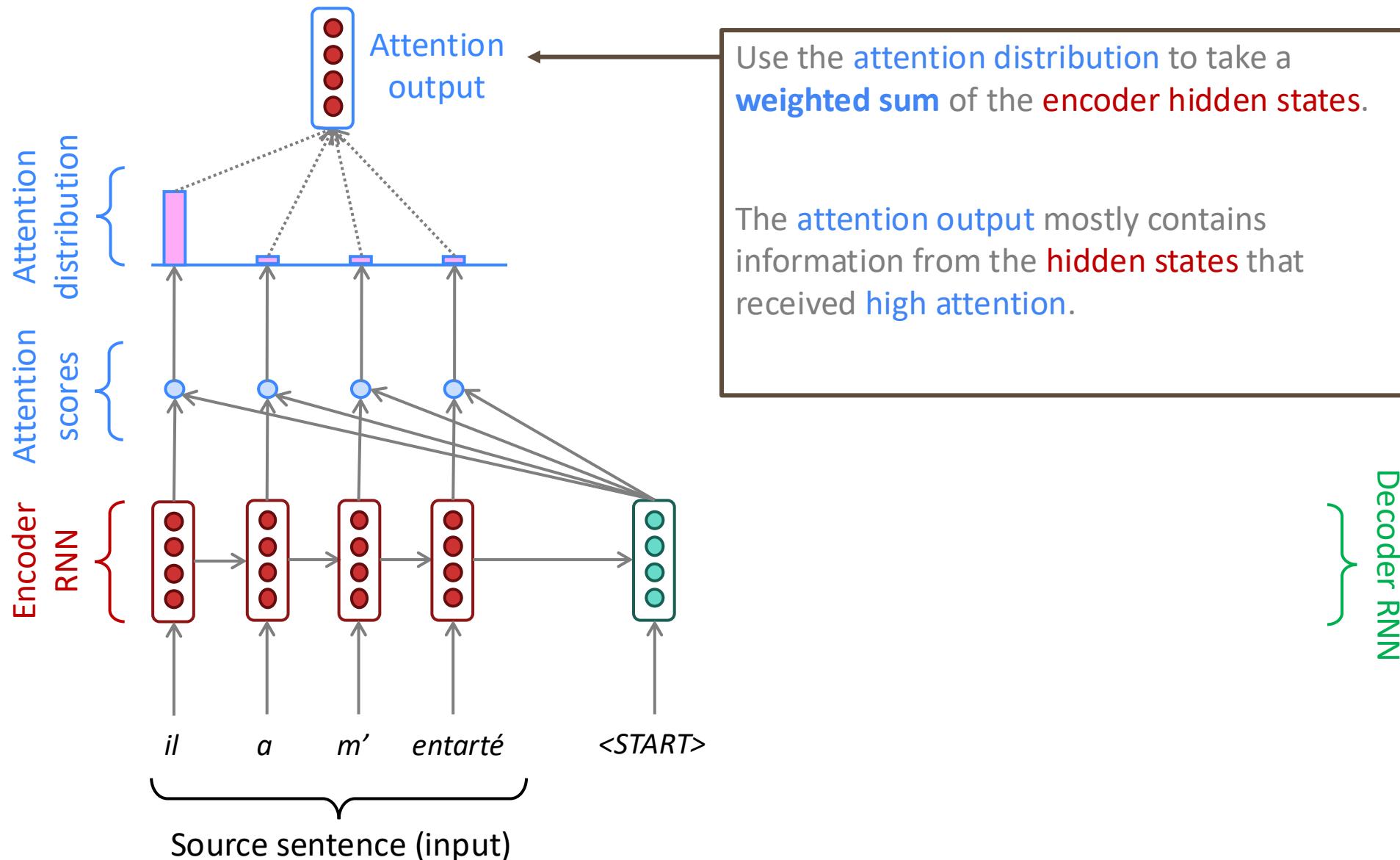
Sequence-to-sequence with attention



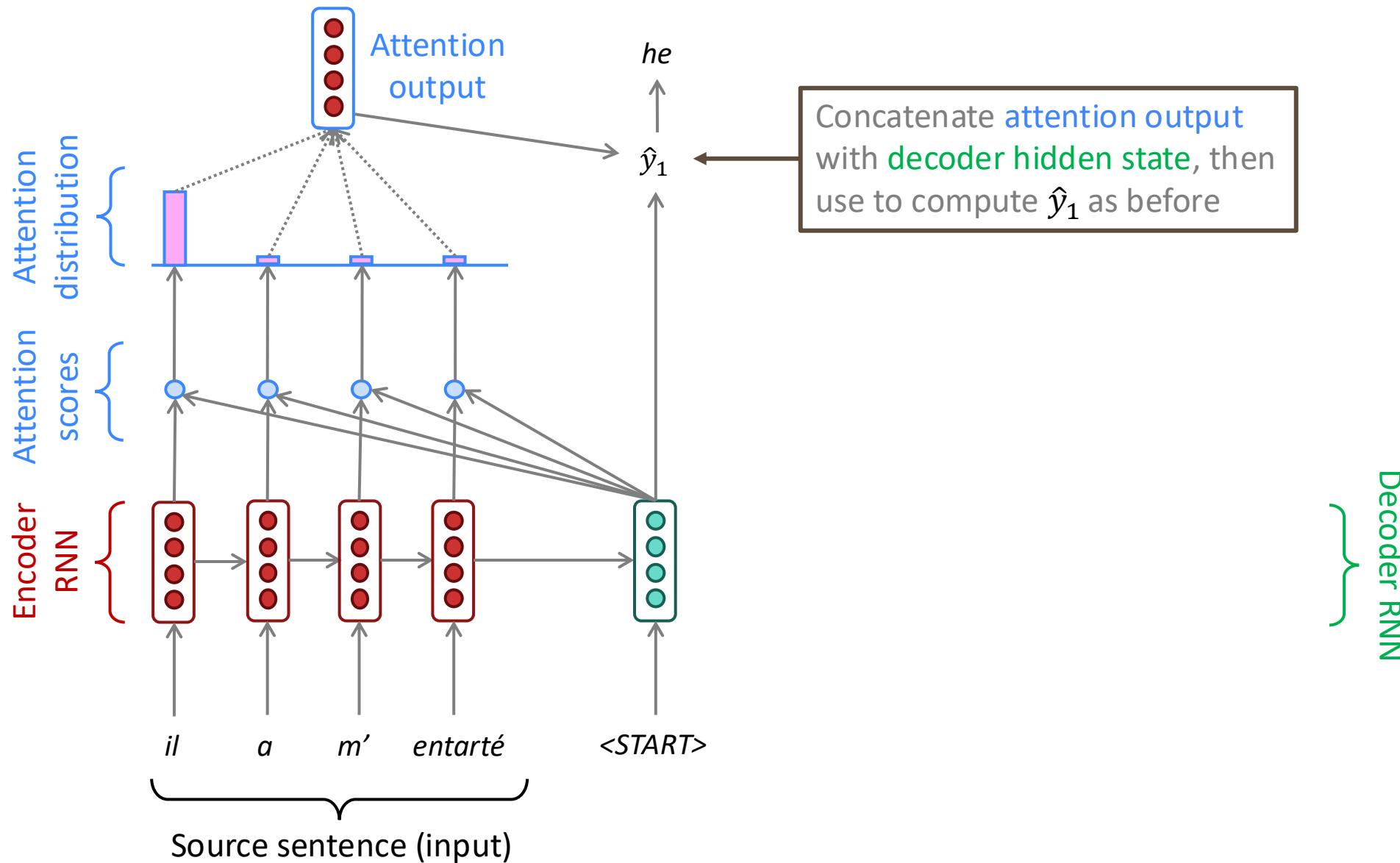
Sequence-to-sequence with attention



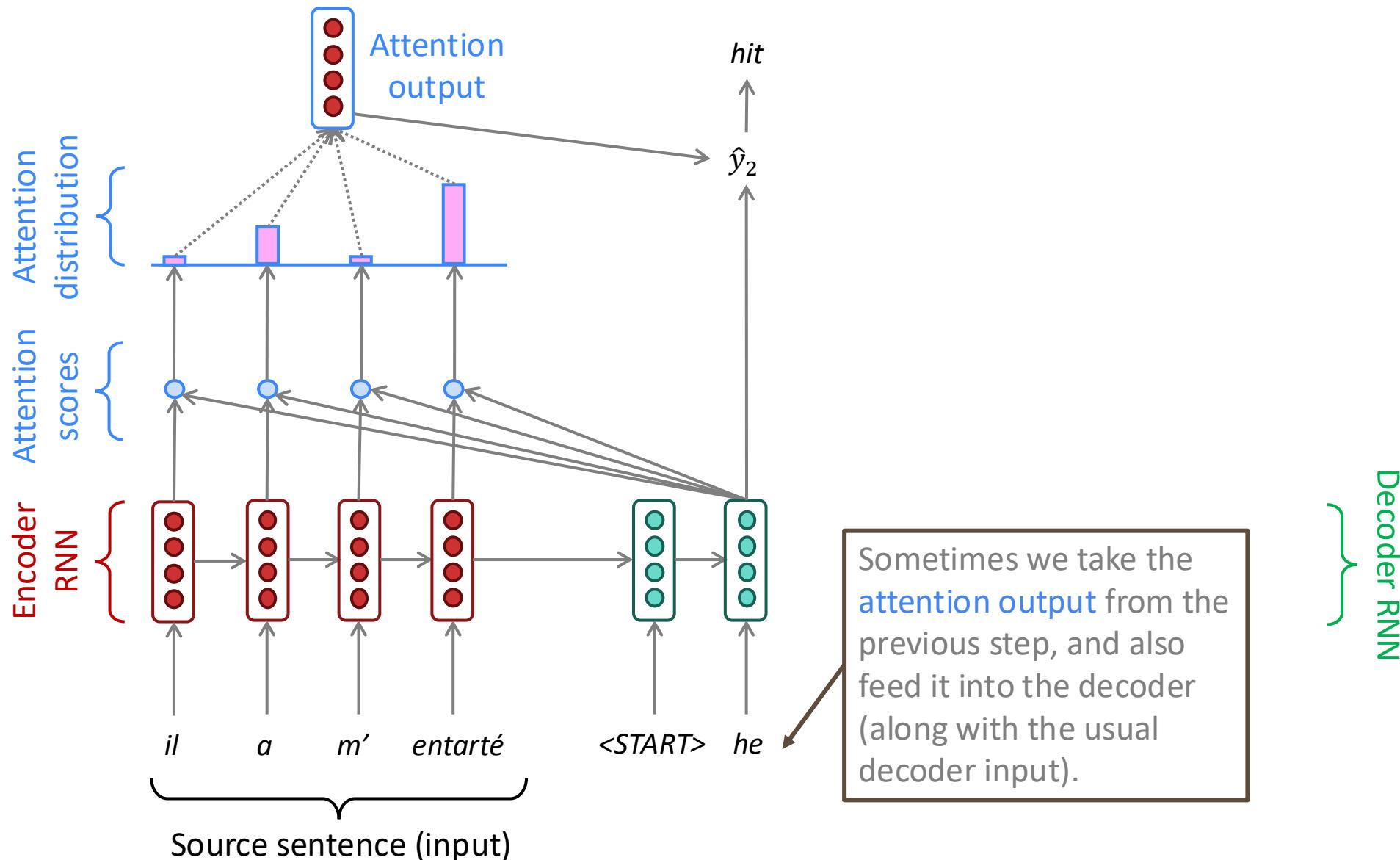
Sequence-to-sequence with attention



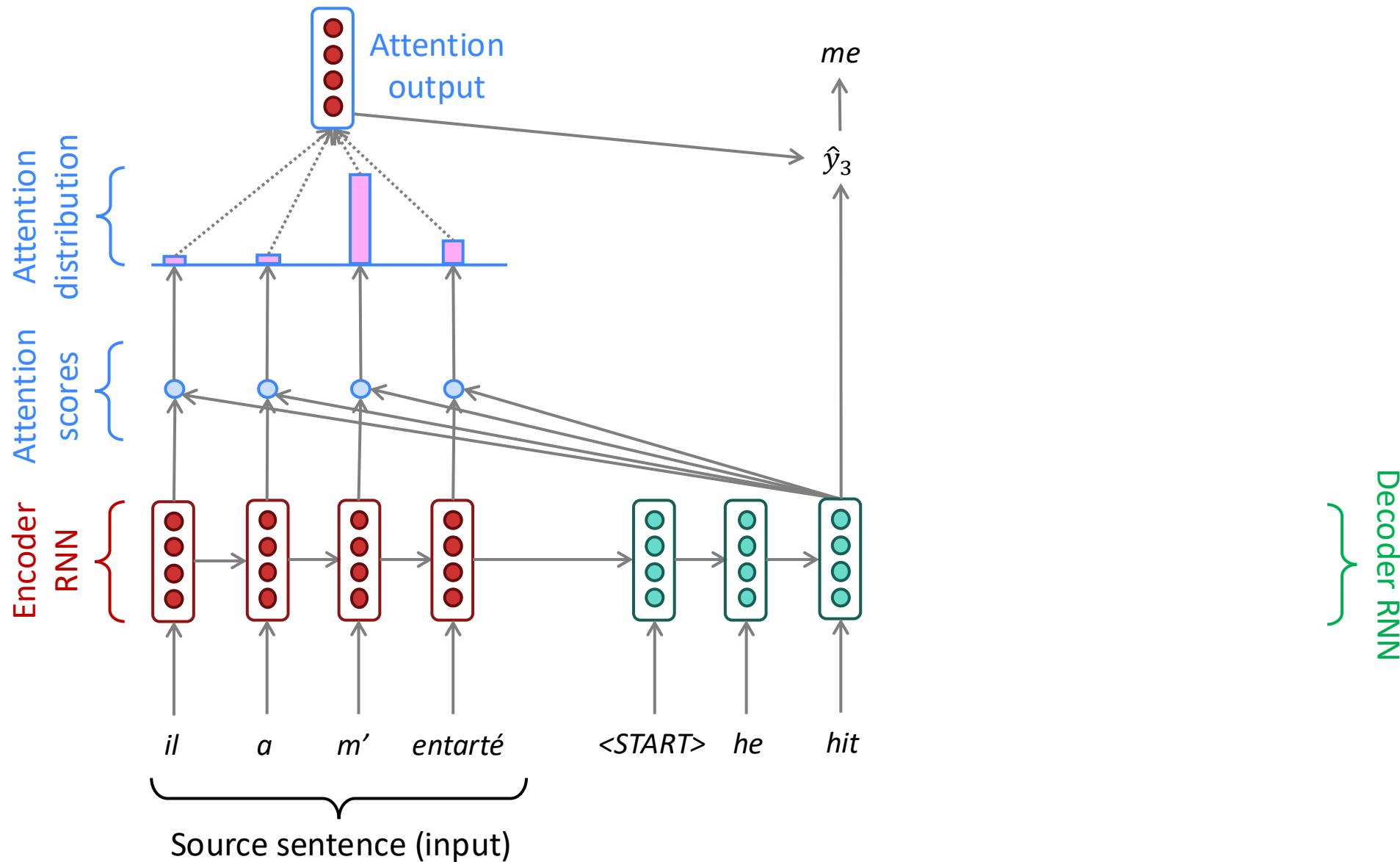
Sequence-to-sequence with attention



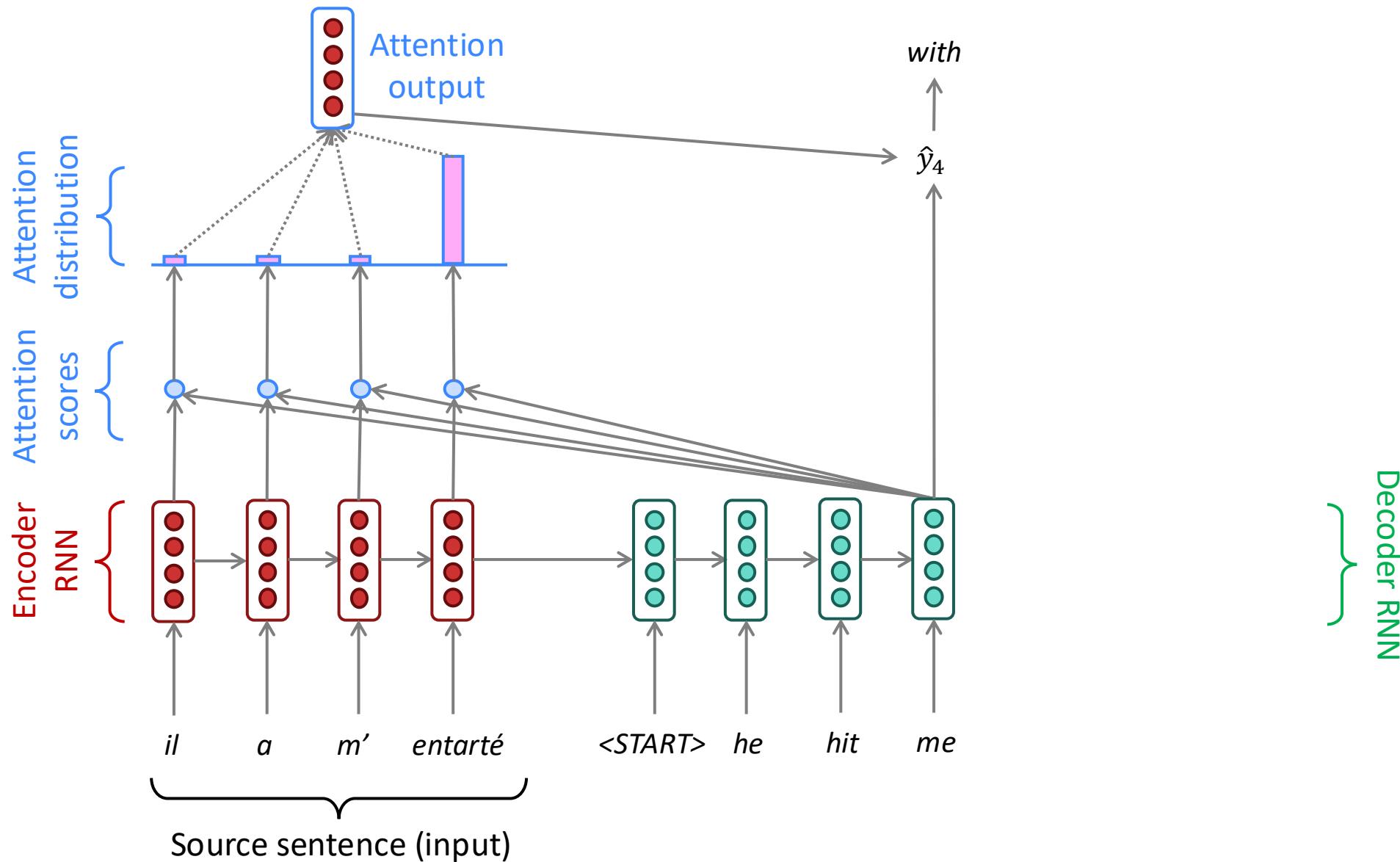
Sequence-to-sequence with attention



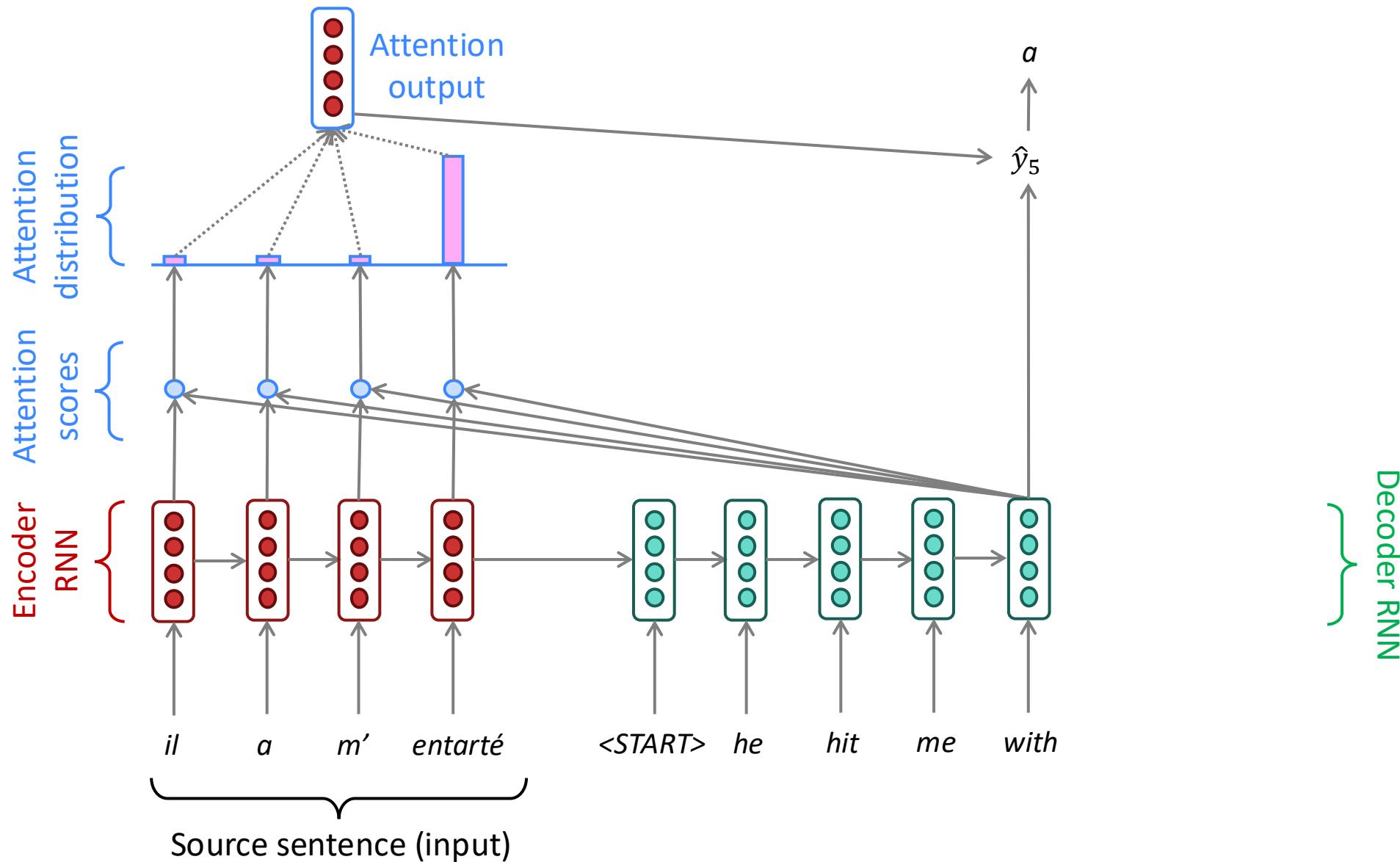
Sequence-to-sequence with attention



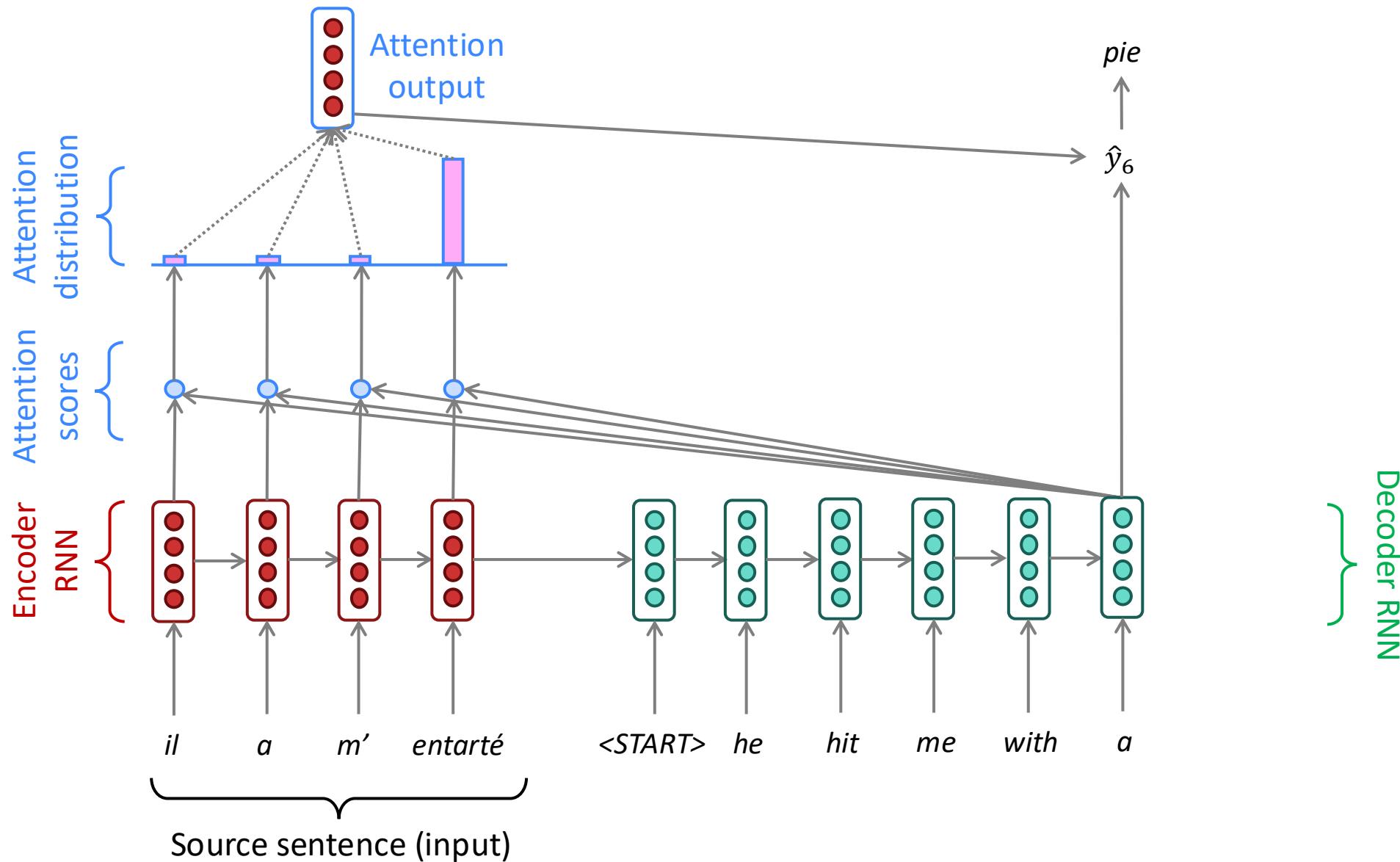
Sequence-to-sequence with attention



Sequence-to-sequence with attention

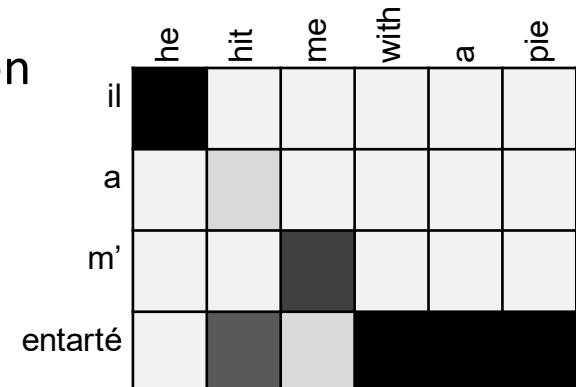


Sequence-to-sequence with attention



Attention is great!

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention provides a more “human-like” model of the MT process
 - You can look back at the source sentence while translating, rather than needing to remember it all
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with the vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we see what the decoder was focusing on
 - We get (soft) alignment for free!
 - The network just learned alignment by itself
- (One issue – attention has quadratic cost with respect to sequence length)



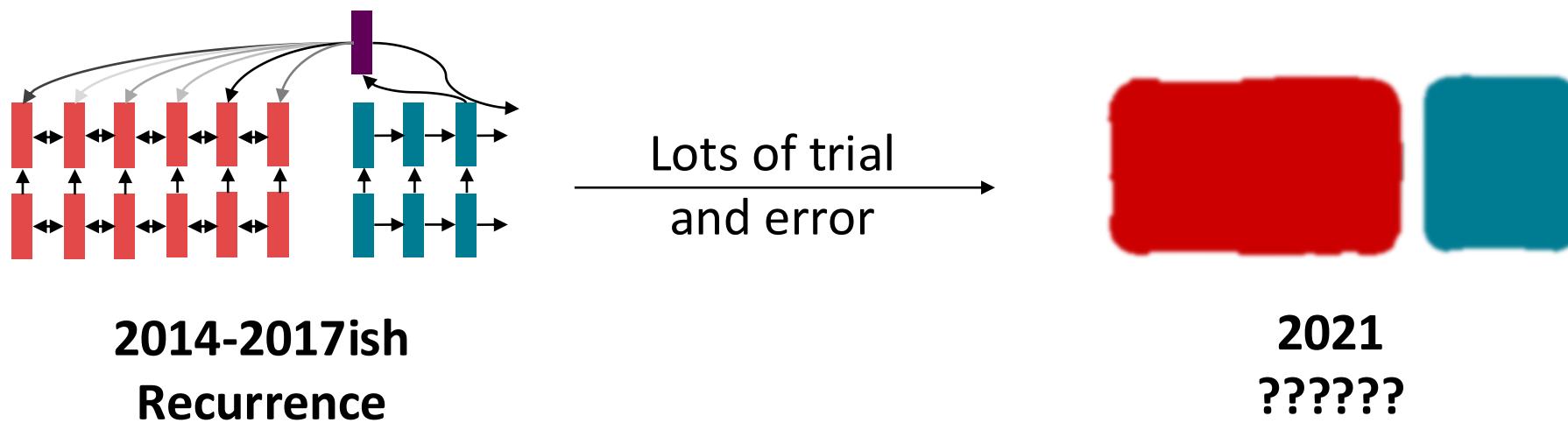
Attention is a *general* Deep Learning technique

- We've seen that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- However: You can use attention in **many architectures** (not just seq2seq) and **many tasks** (not just MT)

- More general definition of attention:
 - Given a set of vector *values*, and a vector *query*, attention is a technique to compute a weighted sum of the values, dependent on the query.
- We sometimes say that the *query attends to the values*.
- For example, in the seq2seq + attention model, each decoder hidden state (query) *attends to* all the encoder hidden states (values).

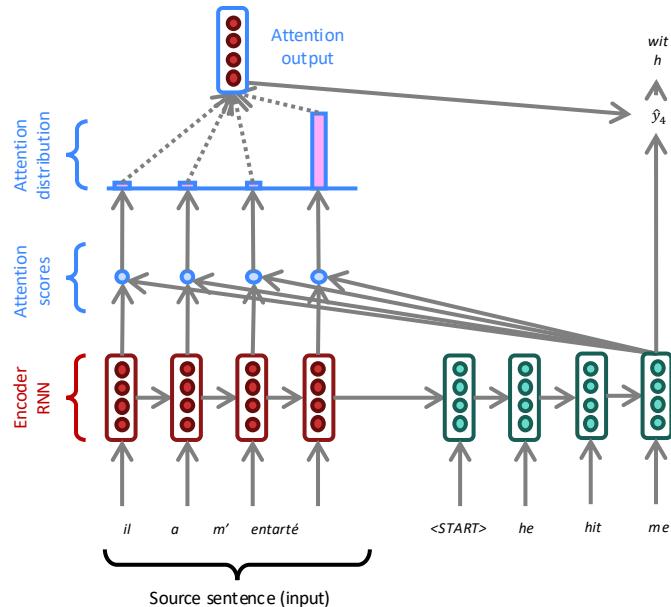
4. Do we even need recurrence at all?

- Abstractly: Attention is a way to pass information from a sequence (x) to a neural network input. (h_t)
 - This is also *exactly* what RNNs are used for – to pass information!
 - **Can we just get rid of the RNN entirely?** Maybe attention is just a better way to pass information!



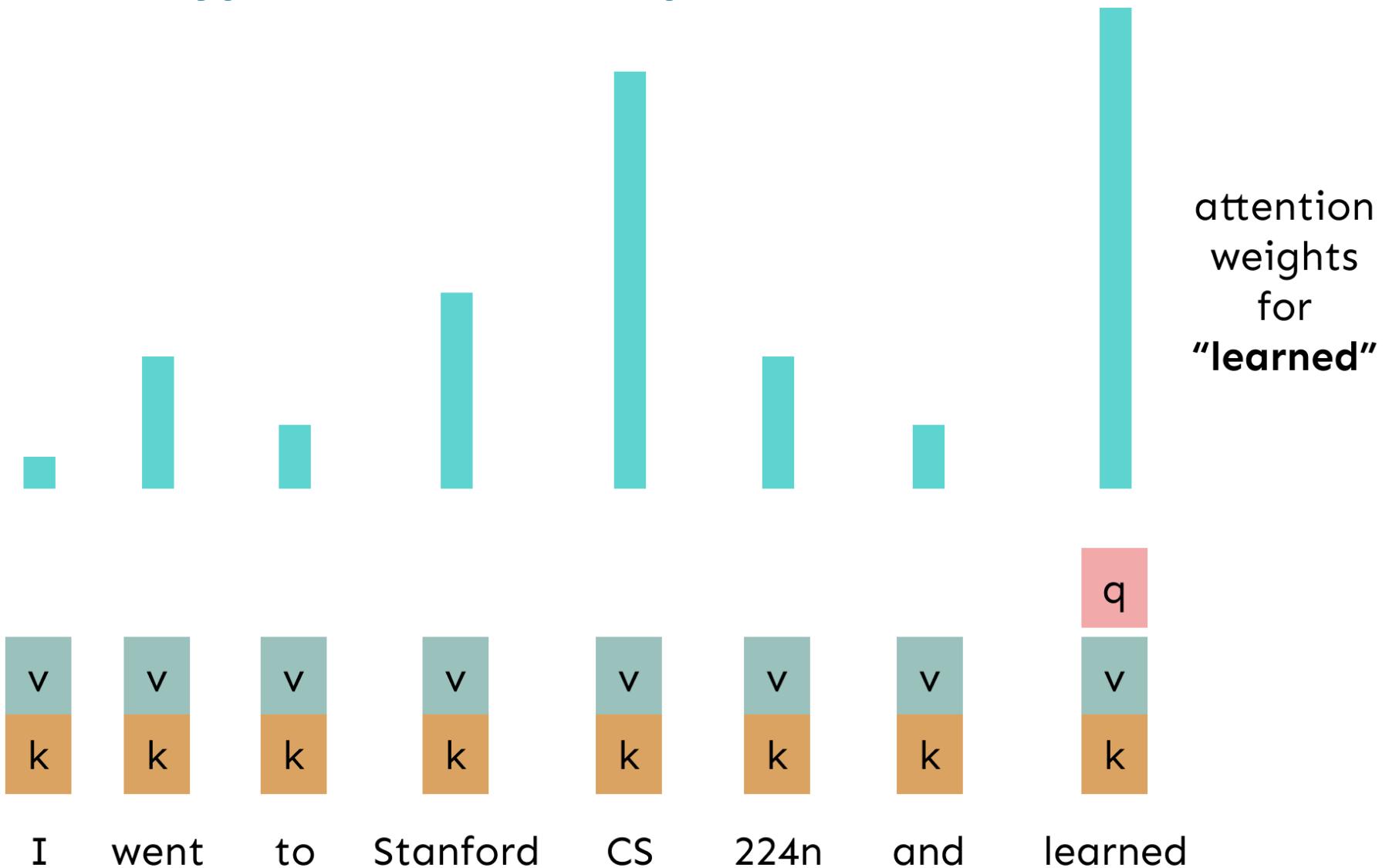
The building block we need: *self* attention

- What we talked about – **Cross** attention: paying attention to the input x to generate y_t



- What we need – **Self** attention: to generate y_t , we need to pay attention to $y_{<t}$

Self-Attention Hypothetical Example



Self-Attention: keys, queries, values from the same sequence

Let $\mathbf{w}_{1:n}$ be a sequence of words in vocabulary V , like *Zuko made his uncle tea*.

For each \mathbf{w}_i , let $\mathbf{x}_i = E\mathbf{w}_i$, where $E \in \mathbb{R}^{d \times |V|}$ is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in $\mathbb{R}^{d \times d}$

$$\mathbf{q}_i = Q\mathbf{x}_i \text{ (queries)} \quad \mathbf{k}_i = K\mathbf{x}_i \text{ (keys)} \quad \mathbf{v}_i = V\mathbf{x}_i \text{ (values)}$$

2. Compute pairwise similarities between keys and queries; normalize with softmax

$$\mathbf{e}_{ij} = \mathbf{q}_i^\top \mathbf{k}_j \quad \alpha_{ij} = \frac{\exp(\mathbf{e}_{ij})}{\sum_j \exp(\mathbf{e}_{ij})}$$

3. Compute output for each word as weighted sum of values

$$\mathbf{o}_i = \sum_j \alpha_{ij} \mathbf{v}_j$$

Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!

Solutions

Fixing the first self-attention problem: sequence order

- Since self-attention doesn't build in order information, we need to encode the order of the sentence in our keys, queries, and values.
- Consider representing each **sequence index** as a **vector**

$\mathbf{p}_i \in \mathbb{R}^d$, for $i \in \{1, 2, \dots, n\}$ are position vectors

- Don't worry about what the \mathbf{p}_i are made of yet!
- Easy to incorporate this info into our self-attention block: just add the \mathbf{p}_i to our inputs!
- Recall that \mathbf{x}_i is the embedding of the word at index i . The positioned embedding is:

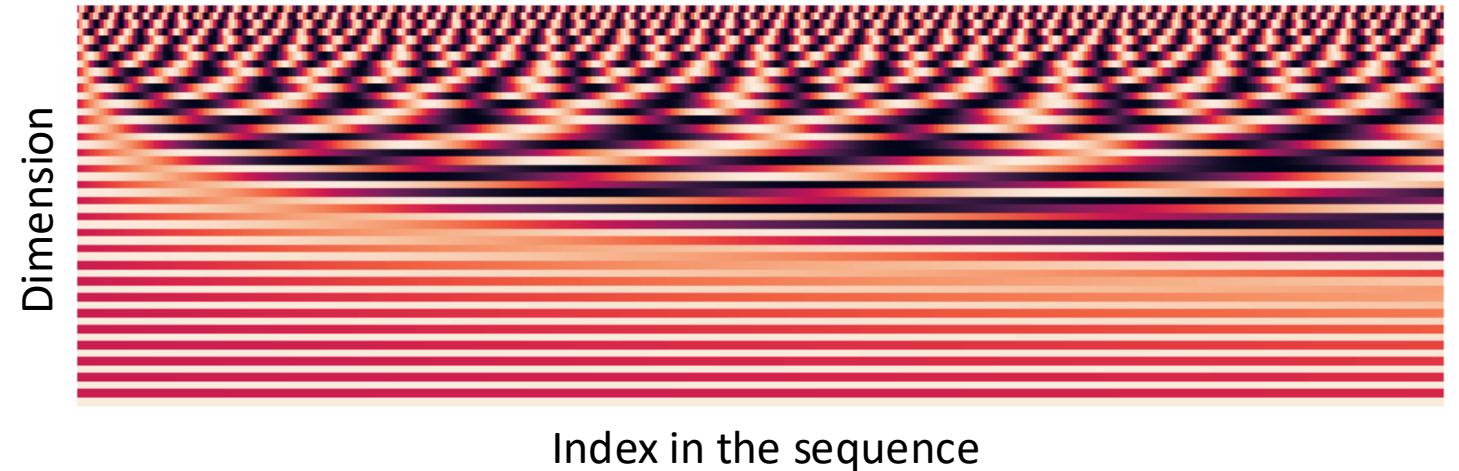
$$\tilde{\mathbf{x}}_i = \mathbf{x}_i + \mathbf{p}_i$$

In deep self-attention networks, we do this at the first layer! You could concatenate them as well, but people mostly just add...

Position representation vectors through sinusoids

- **Sinusoidal position representations:** concatenate sinusoidal functions of varying periods:

$$p_i = \begin{pmatrix} \sin(i/10000^{2*1/d}) \\ \cos(i/10000^{2*1/d}) \\ \vdots \\ \vdots \\ \sin(i/10000^{2*\frac{d}{2}/d}) \\ \cos(i/10000^{2*\frac{d}{2}/d}) \end{pmatrix}$$



- Pros:
 - Periodicity indicates that maybe “absolute position” isn’t as important
 - Maybe can extrapolate to longer sequences as periods restart!
- Cons:
 - Not learnable; also the extrapolation doesn’t really work!

Position representation vectors learned from scratch

- **Learned absolute position representations:** Let all p_i be learnable parameters!
Learn a matrix $\mathbf{p} \in \mathbb{R}^{d \times n}$, *and let each p_i be a column of that matrix!*
- Pros:
 - Flexibility: each position gets to be learned to fit the data
- Cons:
 - Definitely can't extrapolate to indices outside $1, \dots, n$.
- Most systems use this!
- Sometimes people try more flexible representations of position:
 - Relative linear position attention [\[Shaw et al., 2018\]](#)
 - Dependency syntax-based position [\[Wang et al., 2019\]](#)

Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!

Solutions

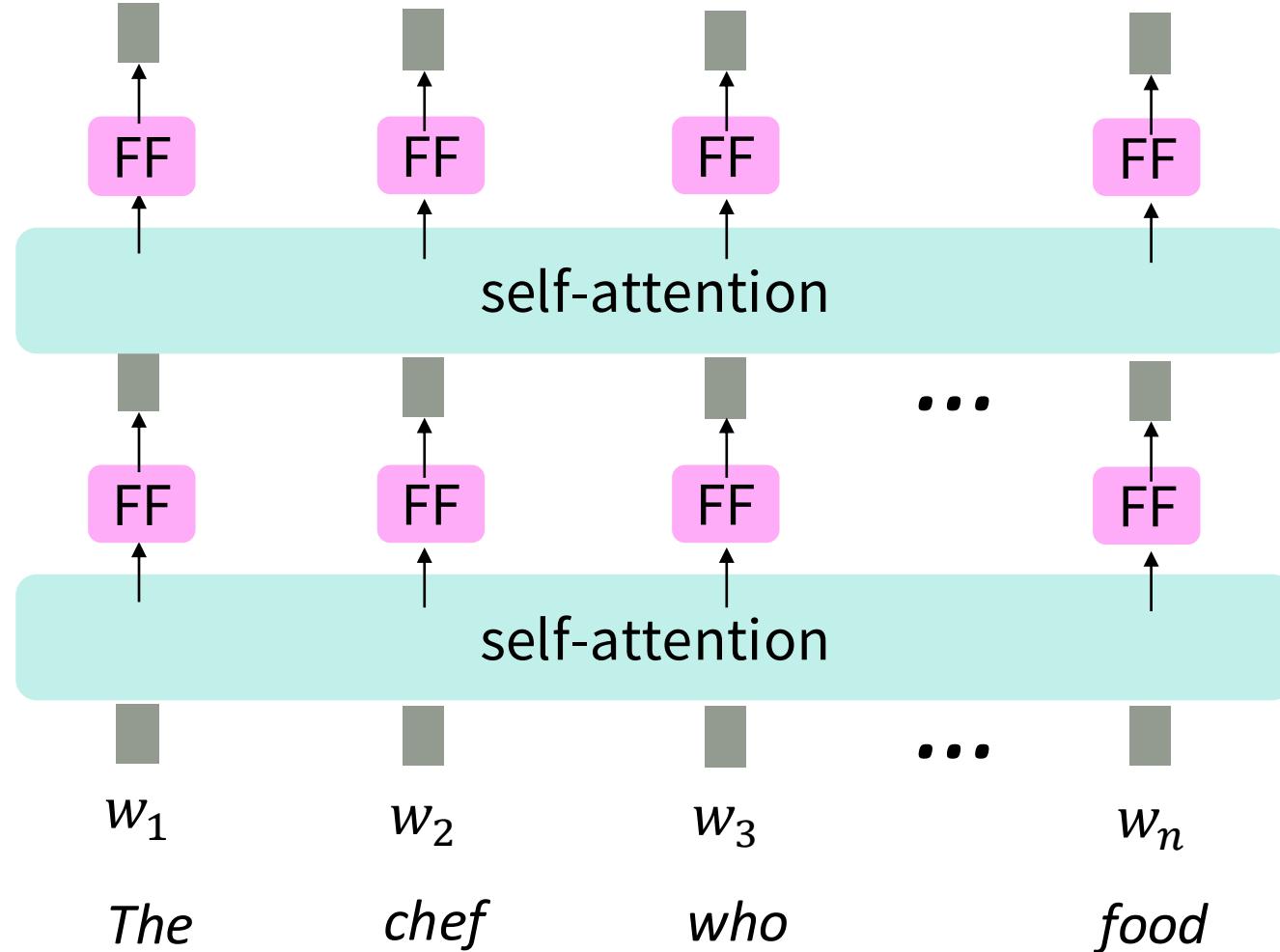
- Add position representations to the inputs

- No nonlinearities for deep learning! It's all just weighted averages

Adding nonlinearities in self-attention

- Note that there are no elementwise nonlinearities in self-attention; stacking more self-attention layers just re-averages **value** vectors (Why? Look at the notes!)
- Easy fix: add a **feed-forward network** to post-process each output vector.

$$\begin{aligned}m_i &= \text{MLP}(\text{output}_i) \\&= W_2 * \text{ReLU}(W_1 \text{ output}_i + b_1) + b_2\end{aligned}$$



Intuition: the FF network processes the result of attention

Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!

Solutions

- Add position representations to the inputs

- No nonlinearities for deep learning magic! It's all just weighted averages

- Easy fix: apply the same feedforward network to each self-attention output.

- Need to ensure we don't "look at the future" when predicting a sequence

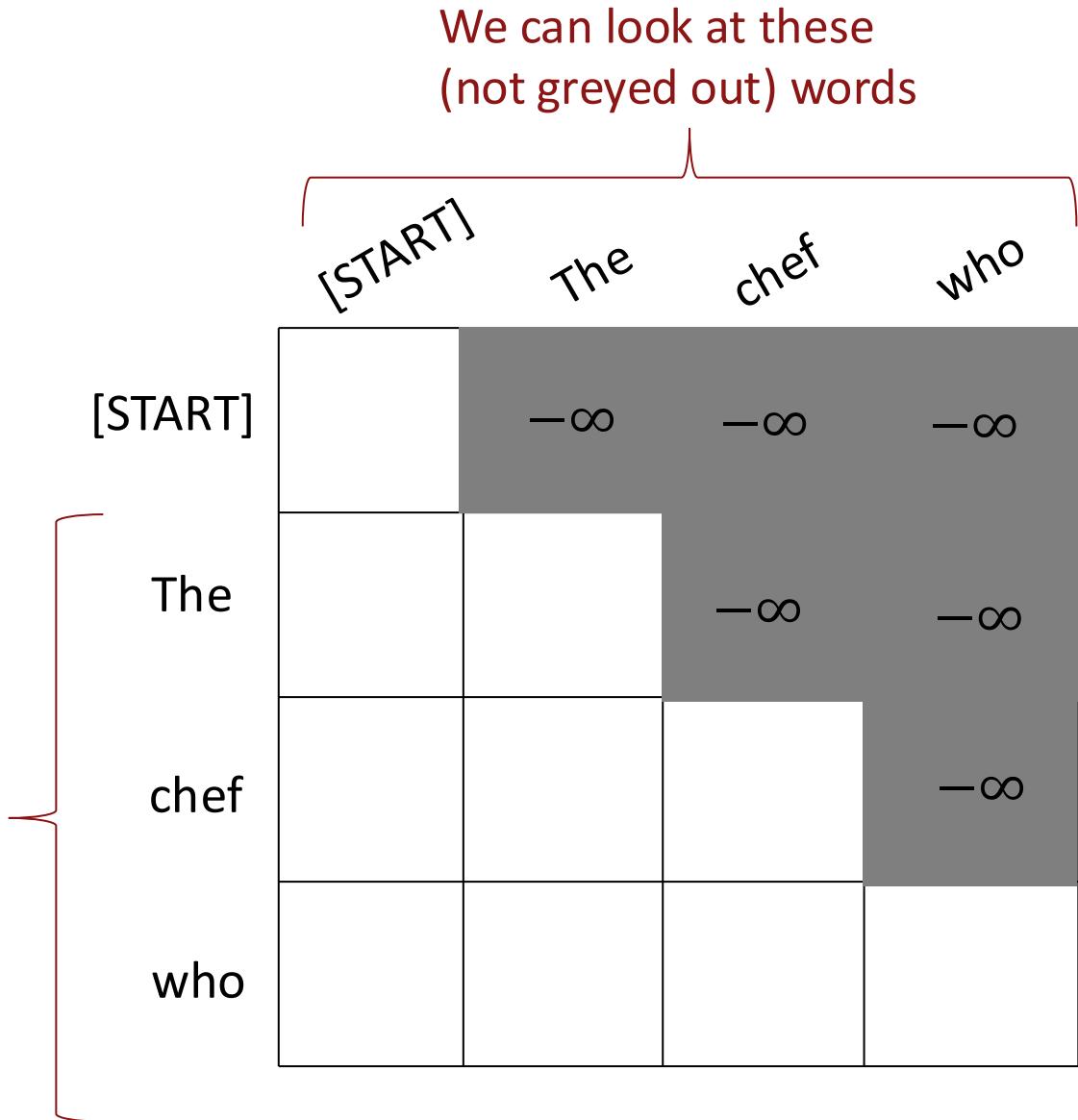
- Like in machine translation
- Or language modeling

Masking the future in self-attention

- To use self-attention in **decoders**, we need to ensure we can't peek at the future.
- At every timestep, we could change the set of **keys and queries** to include only past words. (Inefficient!)
- To enable parallelization, we **mask out attention** to future words by setting attention scores to $-\infty$.

$$e_{ij} = \begin{cases} q_i^T k_j, & j \leq i \\ -\infty, & j > i \end{cases}$$

For encoding these words



Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!

Solutions

- Add position representations to the inputs

- No nonlinearities for deep learning magic! It's all just weighted averages

- Easy fix: apply the same feedforward network to each self-attention output.

- Need to ensure we don't "look at the future" when predicting a sequence

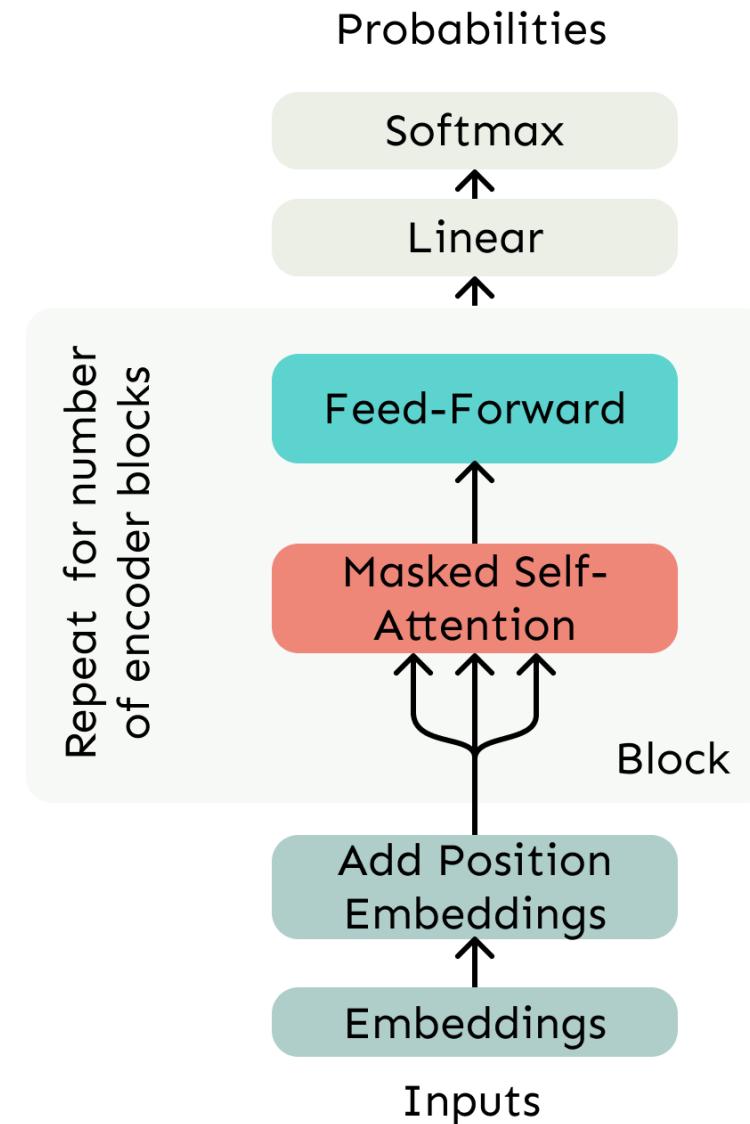
- Mask out the future by artificially setting attention weights!

- Like in machine translation
- Or language modeling

Necessities for a self-attention building block:

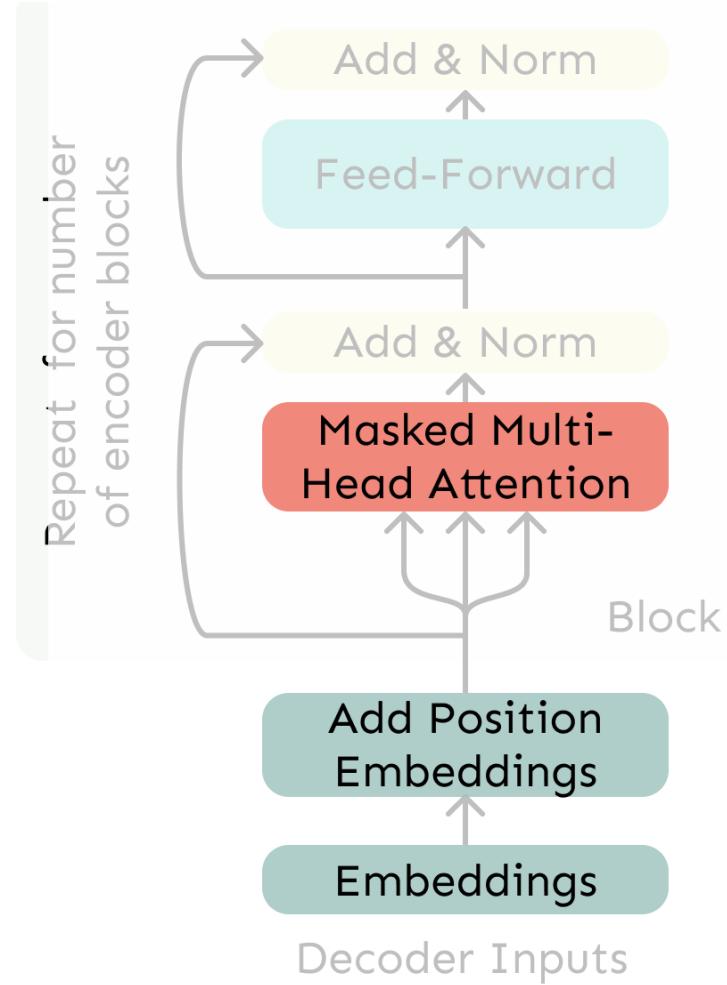
- **Self-attention:**
 - the basis of the method.
- **Position representations:**
 - Specify the sequence order, since self-attention is an unordered function of its inputs.
- **Nonlinearities:**
 - At the output of the self-attention block
 - Frequently implemented as a simple feed-forward network.
- **Masking:**
 - In order to parallelize operations while not looking at the future.
 - Keeps information about the future from “leaking” to the past.

Transformer **Decoder**



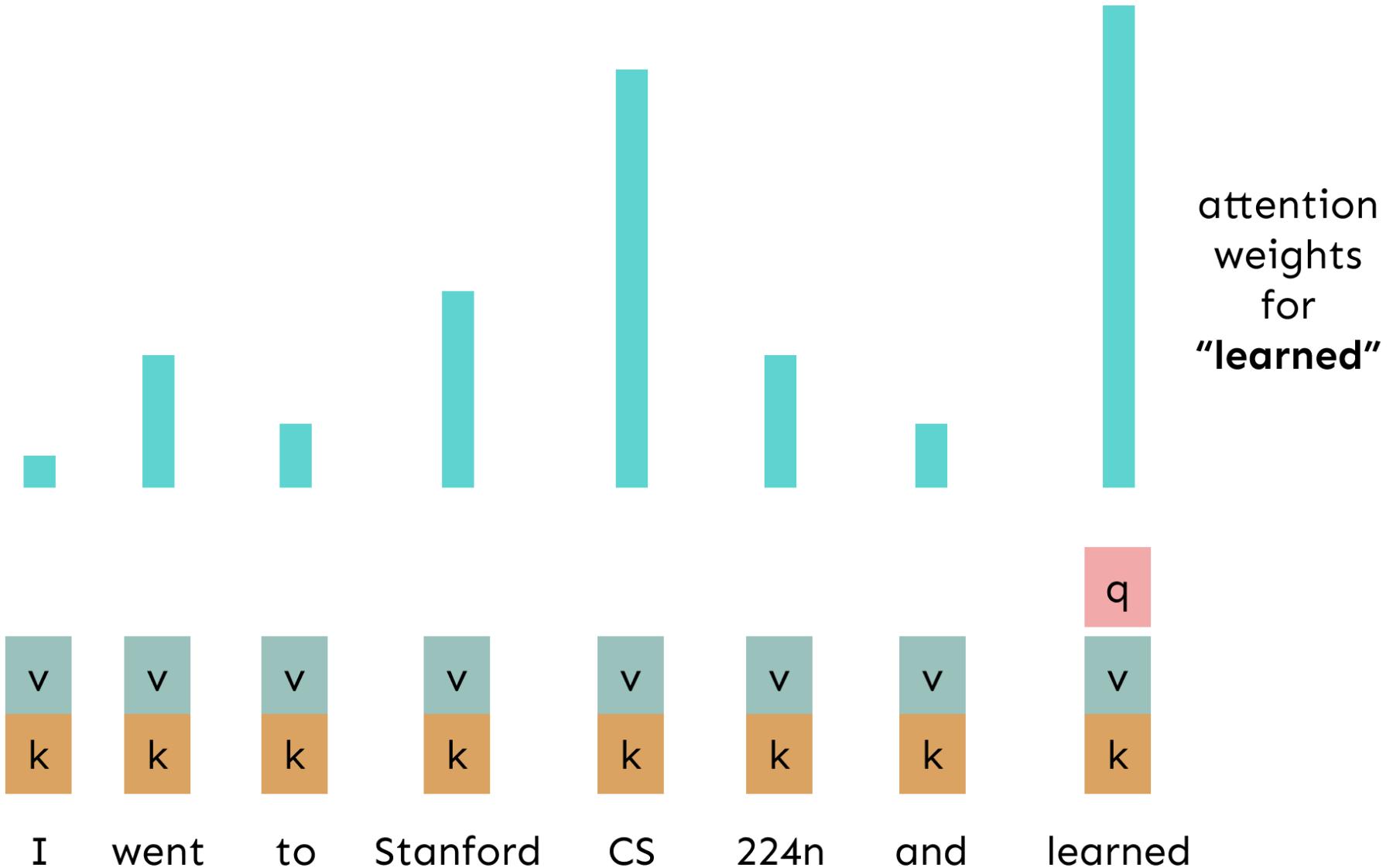
5. The Transformer Decoder

- A Transformer decoder is how we'll build systems like **language models**.
- It's a lot like our minimal self-attention architecture, but with a few more components.
- The embeddings and position embeddings are identical.
- We'll next replace our self-attention with **multi-head self-attention**.



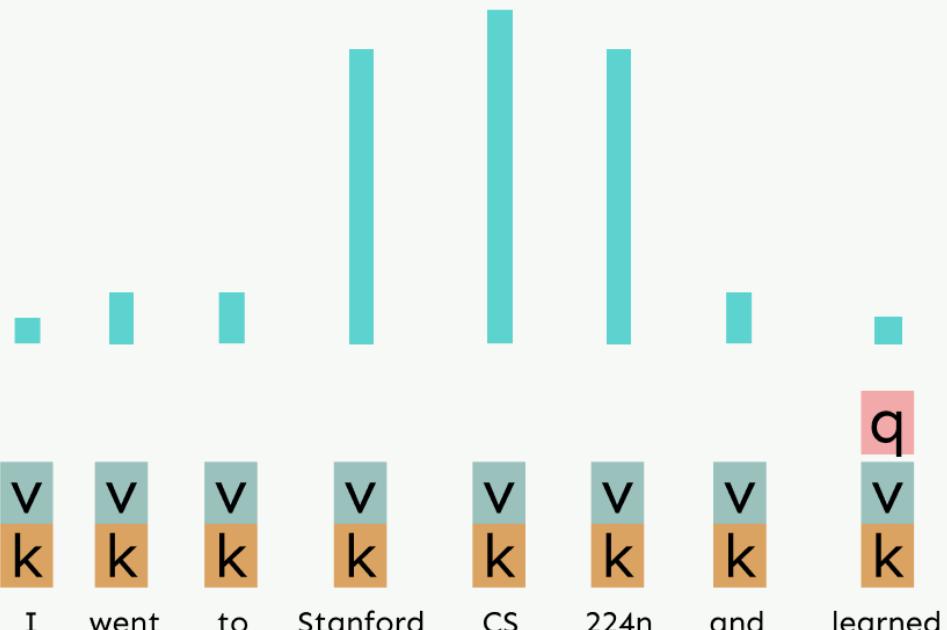
Transformer Decoder

Recall the Self-Attention Hypothetical Example

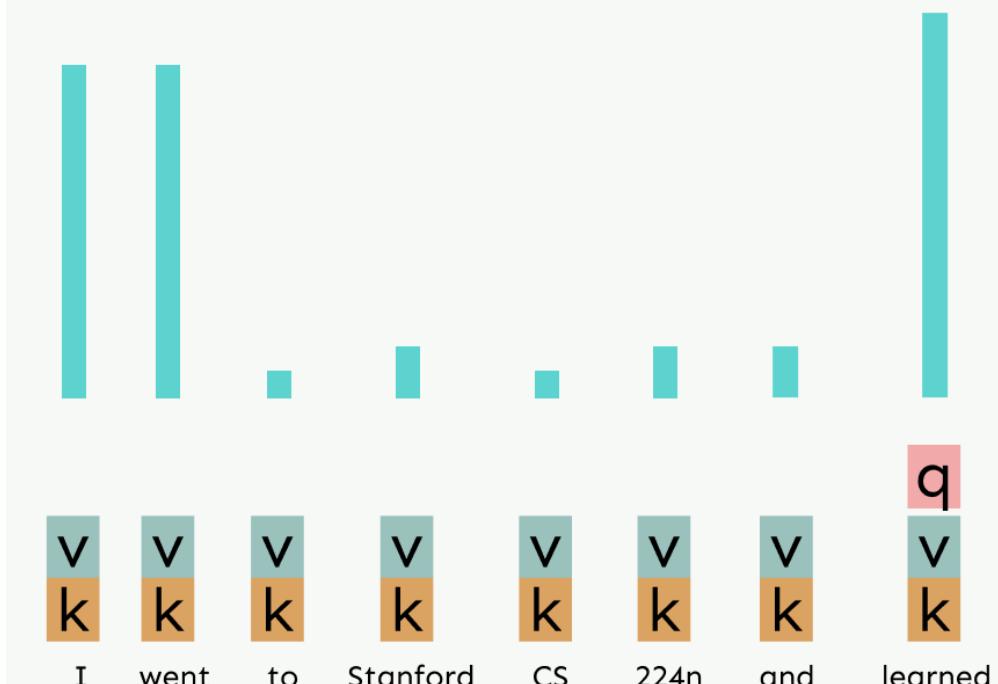


Hypothetical Example of Multi-Head Attention

Attention head 1
attends to entities



Attention head 2 attends to
syntactically relevant words



I went to Stanford CS 224n and learned

Sequence-Stacked form of Attention

- Let's look at how key-query-value attention is computed, in matrices.
 - Let $X = [x_1; \dots; x_n] \in \mathbb{R}^{n \times d}$ be the concatenation of input vectors.
 - First, note that $XK \in \mathbb{R}^{n \times d}$, $XQ \in \mathbb{R}^{n \times d}$, $XV \in \mathbb{R}^{n \times d}$.
 - The output is defined as $\text{output} = \text{softmax}(XQ(XK)^\top)XV \in \mathbb{R}^{n \times d}$.

First, take the query-key dot products in one matrix multiplication: $XQ(XK)^\top$

$$\begin{array}{ccc} XQ & \times & K^\top X^\top \\ & & \downarrow \\ \text{softmax} \left(\begin{array}{c} XQK^\top X^\top \end{array} \right) & \times & XV \\ & & \downarrow \\ & & \text{output} \in \mathbb{R}^{n \times d} \end{array}$$

All pairs of attention scores!

Next, softmax, and compute the weighted average with another matrix multiplication.

Multi-headed attention

- What if we want to look in multiple places in the sentence at once?
 - For word i , self-attention “looks” where $x_i^T Q^T K x_j$ is high, but maybe we want to focus on different j for different reasons?
- We’ll define **multiple attention “heads”** through multiple Q,K,V matrices
- Let, $Q_\ell, K_\ell, V_\ell \in \mathbb{R}^{d \times \frac{d}{h}}$, where h is the number of attention heads, and ℓ ranges from 1 to h .
- Each attention head performs attention independently:
 - $\text{output}_\ell = \text{softmax}(X Q_\ell K_\ell^T X^T) * X V_\ell$, where $\text{output}_\ell \in \mathbb{R}^{n \times d/h}$
- Then the outputs of all the heads are combined!
 - $\text{output} = [\text{output}_1, \dots, \text{output}_h] Y$, where $Y \in \mathbb{R}^{d \times d}$
- Each head gets to “look” at different things, and construct value vectors differently.

Multi-head self-attention is computationally efficient

- Even though we compute h many attention heads, it's not really more costly.
 - We compute $XQ \in \mathbb{R}^{n \times d}$, and then reshape to $\mathbb{R}^{n \times h \times d/h}$. (Likewise for XK, XV .)
 - Then we transpose to $\mathbb{R}^{h \times n \times d/h}$; now the head axis is like a batch axis.
 - Almost everything else is identical, and the **matrices are the same sizes**.

First, take the query-key dot products in one matrix multiplication: $XQ(XK)^\top$

$$XQ \quad \begin{matrix} K^\top X^\top \\ \hline \end{matrix} = \begin{matrix} XQK^\top X^\top \\ \hline \end{matrix} \in \mathbb{R}^{3 \times n \times n}$$

3 sets of all pairs of attention scores!

Next, softmax, and compute the weighted average with another matrix multiplication.

$$\text{softmax} \left(\begin{matrix} XQK^\top X^\top \\ \hline \end{matrix} \right) \begin{matrix} XV \\ \hline \end{matrix} = \begin{matrix} P \\ \hline \end{matrix} = \begin{matrix} \text{output} \in \mathbb{R}^{n \times d} \\ \hline \end{matrix}$$

mix

Scaled Dot Product [Vaswani et al., 2017]

- “Scaled Dot Product” attention aids in training.
- When dimensionality d becomes large, dot products between vectors tend to become large.
 - Because of this, inputs to the softmax function can be large, making the gradients small.
- Instead of the self-attention function we’ve seen:

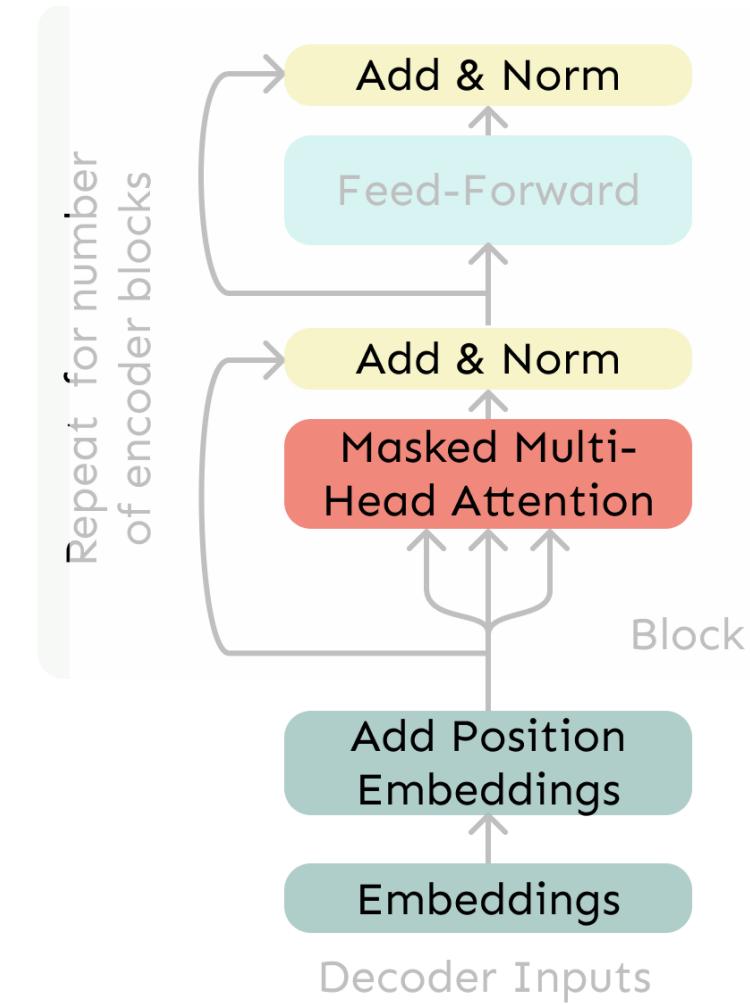
$$\text{output}_\ell = \text{softmax}(XQ_\ell K_\ell^\top X^\top) * XV_\ell$$

- We divide the attention scores by $\sqrt{d/h}$, to stop the scores from becoming large just as a function of d/h (The dimensionality divided by the number of heads.)

$$\text{output}_\ell = \text{softmax}\left(\frac{XQ_\ell K_\ell^\top X^\top}{\sqrt{d/h}}\right) * XV_\ell$$

The Transformer Decoder

- Now that we've replaced self-attention with multi-head self-attention, we'll go through two **optimization tricks** that end up being :
 - Residual Connections**
 - Layer Normalization**
- In most Transformer diagrams, these are often written together as "Add & Norm"



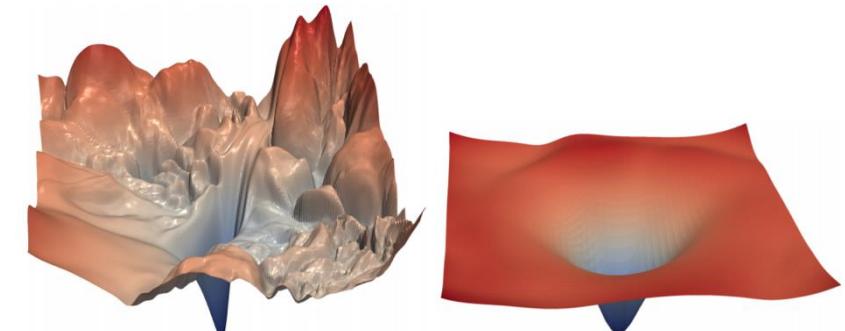
Transformer Decoder

The Transformer Encoder: Residual connections [He et al., 2016]

- **Residual connections** are a trick to help models train better.
 - Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (where i represents the layer)

- We let $X^{(i)} = X^{(i-1)} + \text{Layer}(X^{(i-1)})$ (so we only have to learn “the residual” from the previous layer)

- Gradient is **great** through the residual connection; it's 1!
- Bias towards the identity function!



[no residuals] [residuals]
[Loss landscape visualization,
Li et al., 2018, on a ResNet]

The Transformer Encoder: Layer normalization [Ba et al., 2016]

- **Layer normalization** is a trick to help models train faster.
- Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation **within each layer**.
 - LayerNorm's success may be due to its normalizing gradients [Xu et al., 2019]
- Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.
- Let $\mu = \frac{1}{d} \sum_{j=1}^d x_j$; this is the mean; $\mu \in \mathbb{R}$.
- Let $\sigma = \frac{1}{d} \sum_{j=1}^d (x_j - \mu)^2$; this is the variance; $\sigma \in \mathbb{R}$.
- Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned “gain” and “bias” parameters. (Can omit!)
- Then layer normalization computes:

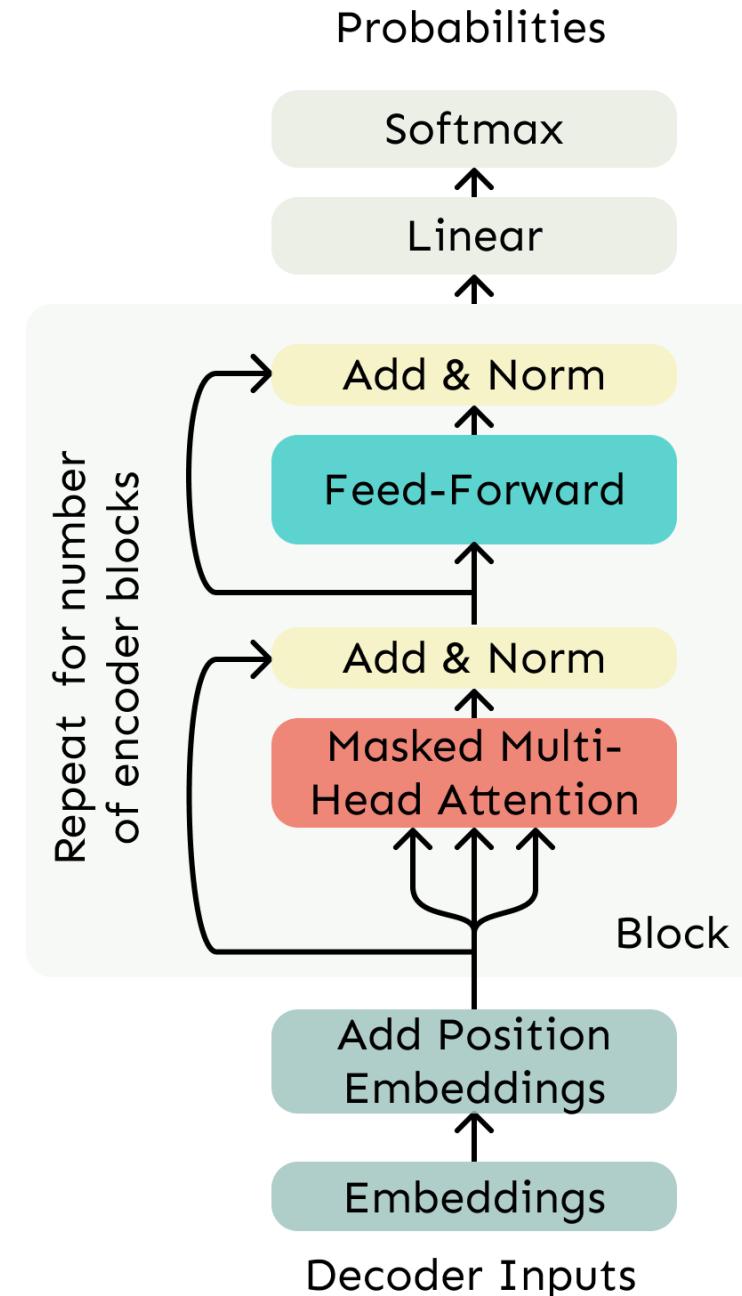
$$\text{output} = \frac{x - \mu}{\sqrt{\sigma + \epsilon}} * \gamma + \beta$$

Normalize by scalar
mean and variance

Modulate by learned
elementwise gain and bias

The Transformer Decoder

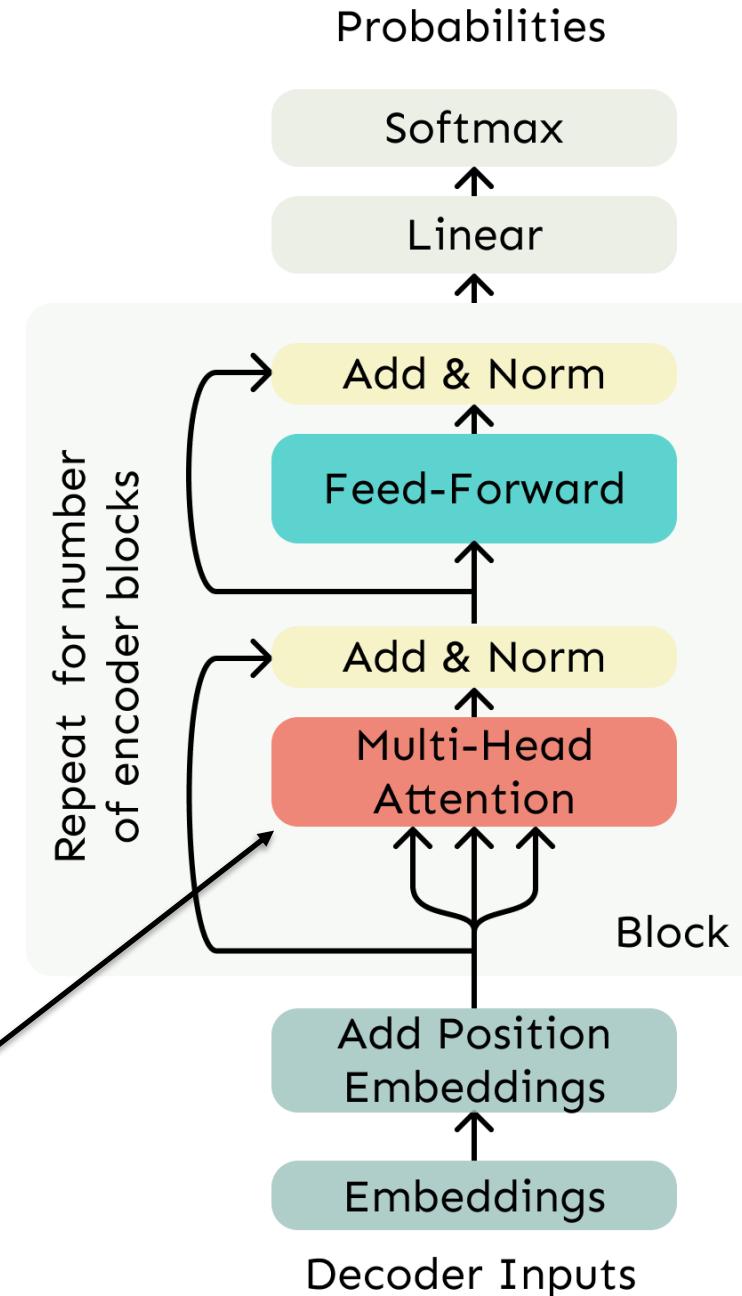
- The Transformer Decoder is a stack of Transformer Decoder **Blocks**.
- Each Block consists of:
 - Self-attention
 - Add & Norm
 - Feed-Forward
 - Add & Norm
- That's it! We've gone through the Transformer Decoder.



The Transformer Encoder

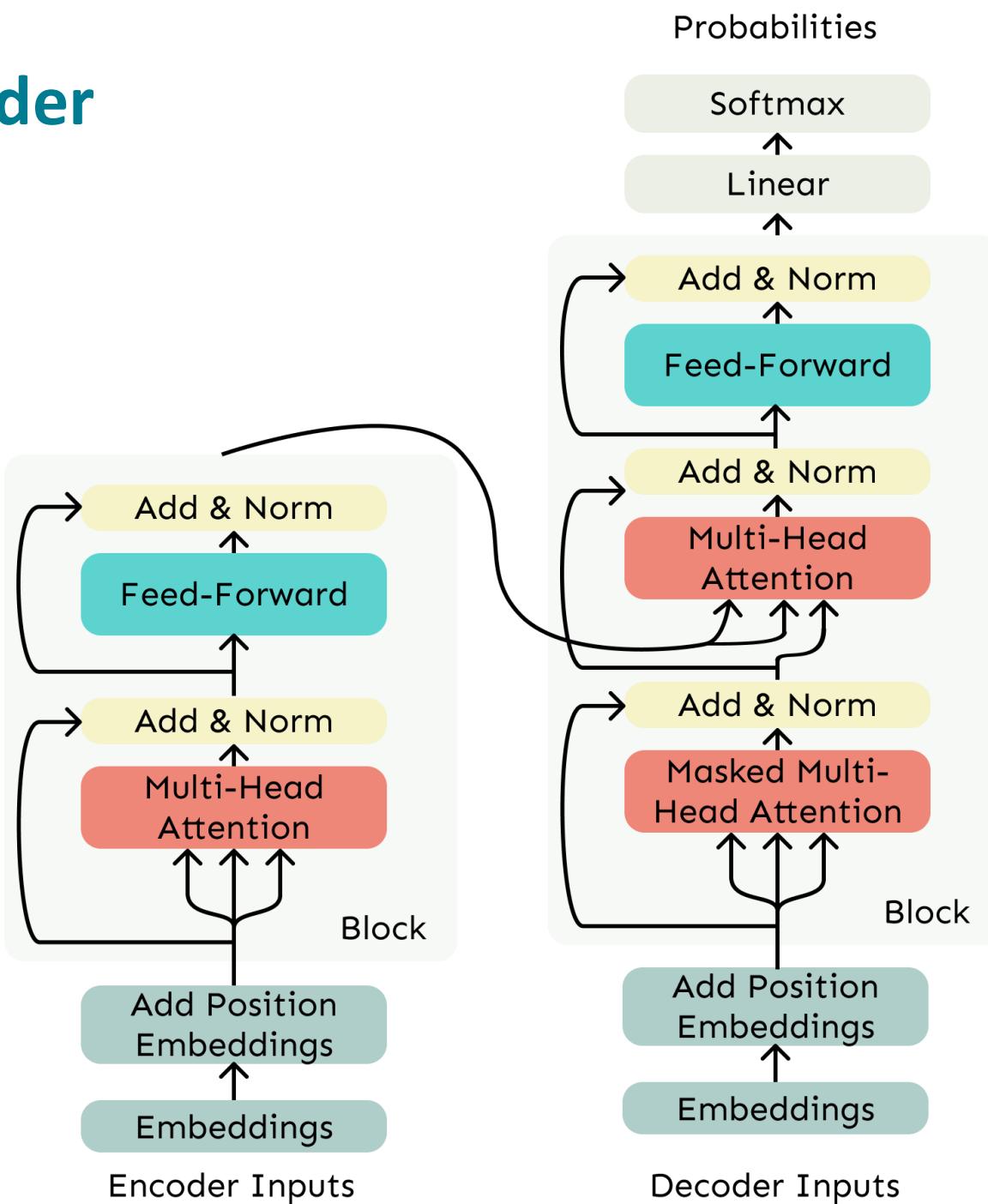
- The Transformer Decoder constrains to **unidirectional context**, as for **language models**.
- What if we want **bidirectional context**, like in a bidirectional RNN?
- This is the Transformer Encoder. The only difference is that we **remove the masking** in the self-attention.

No Masking!



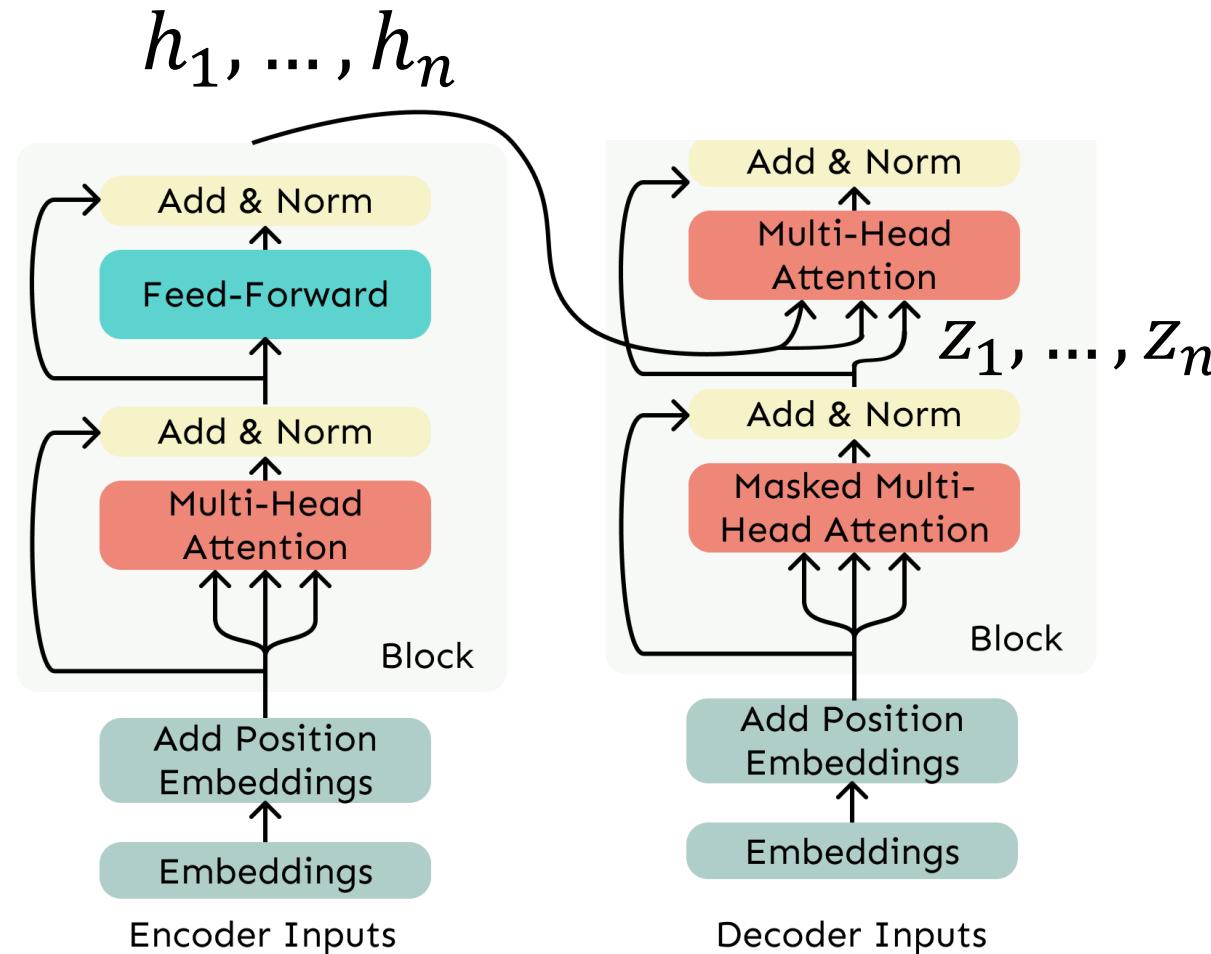
The Transformer Encoder-Decoder

- Recall that in machine translation, we processed the source sentence with a **bidirectional** model and generated the target with a **unidirectional model**.
- For this kind of seq2seq format, we often use a Transformer Encoder-Decoder.
- We use a normal Transformer Encoder.
- Our Transformer Decoder is modified to perform **cross-attention** to the output of the Encoder.



Cross-attention (details)

- We saw that self-attention is when keys, queries, and values come from the same source.
- In the decoder, we have attention that looks more like what we saw last week.
- Let h_1, \dots, h_n be **output vectors from the Transformer encoder**; $x_i \in \mathbb{R}^d$
- Let z_1, \dots, z_n be input vectors from the Transformer **decoder**, $z_i \in \mathbb{R}^d$
- Then keys and values are drawn from the **encoder** (like a memory):
 - $k_i = Kh_i, v_i = Vh_i$.
 - And the queries are drawn from the **decoder**, $q_i = Qz_i$.



6. Great Results with Transformers

First, Machine Translation from the original Transformers paper!

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$

Great Results with Transformers

Next, document generation!

Model	Test perplexity	ROUGE-L
<i>seq2seq-attention, L = 500</i>	5.04952	12.7
<i>Transformer-ED, L = 500</i>	2.46645	34.2
<i>Transformer-D, L = 4000</i>	2.22216	33.6
<i>Transformer-DMCA, no MoE-layer, L = 11000</i>	2.05159	36.2
<i>Transformer-DMCA, MoE-128, L = 11000</i>	1.92871	37.9
<i>Transformer-DMCA, MoE-256, L = 7500</i>	1.90325	38.8

The old standard

Transformers all the way down.

What would we like to fix about the Transformer?

- **Quadratic compute in self-attention (today):**
 - Computing all pairs of interactions means our computation grows **quadratically** with the sequence length!
 - **What if the seq length $n \geq 50,000$?** E.g., to work on long documents
- **Position representations:**
 - Are simple absolute indices the best we can do to represent position?
 - Relative linear position attention [\[Shaw et al., 2018\]](#)
 - Dependency syntax-based position [\[Wang et al., 2019\]](#)

Do we even need to remove the quadratic cost of attention?

- As Transformers grow larger, a larger and larger percent of compute is **outside** the self-attention portion, despite the quadratic cost.
- In practice, **almost no large Transformer language models use anything but the quadratic cost attention we've presented here.**
 - The cheaper methods tend not to work as well at scale.
- So, is there no point in trying to design cheaper alternatives to self-attention?
- Or would we unlock much better models with much longer contexts (>100k tokens?) if we were to do it right?