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Lecture Plan

Lecture 5: Attention and Transformers

1. Vanishing gradients (10 mins) 

2. Machine translation (10 mins) 

3. From recurrence (RNN) to attention-based models (15 mins)

4. Self-attention (15 mins)

5. The Transformer model (15 mins)

6. Great results with Transformers and their drawbacks and variants (5 mins)

Waitlist update; assignment 2 due on Jan 22; course project session next Thur
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1. Problems with RNNs: Vanishing and Exploding Gradients
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Vanishing gradient intuition
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Vanishing gradient intuition

chain rule!

5



Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem: 
When these are small, the gradient 
signal gets smaller and smaller as it 

backpropagates further
Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf


Why is vanishing gradient a problem?

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.
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Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the printer was out of toner. 
She went to the stationery store to buy more toner. It was very overpriced. After 
installing the toner into the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to model the dependency 
between “tickets” on the 7th step and the target word “tickets” at the end.

• But if the gradient is small, the model can’t learn this dependency

• So, the model is unable to predict similar long-distance dependencies at test time
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Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step becomes too big:

• This can cause bad updates: we take too large a step and reach a weird and bad 
parameter configuration (with large loss)

• You think you’ve found a hill to climb, but suddenly you’re in Iowa

• In the worst case, this will result in Inf or NaN in your network 
(then you have to restart training from an earlier checkpoint)
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Gradient clipping: solution for exploding gradient
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• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it 
down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

• In practice, remembering to clip gradients is important, but exploding gradients are an 
easy problem to solve

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf


How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information 
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• First: How about an RNN with separate and explicit memory which is added to?

• Long Short-Term Memory (LSTM) [link]

• And then: Creating more direct and linear pass-through connections in model

• Attention, residual connections, etc.
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/


2. Machine Translation

14

Machine Translation (MT) is the task of translating a sentence x from one language (the 
source language) to a sentence y in another language (the target language).

x: I like deep learning 

y: 我喜欢深度学习



NMT: the first big success story of NLP Deep Learning
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Neural Machine Translation went from a fringe research attempt in 2014 to the leading 
standard method in 2016

• 2014: First seq2seq paper published [Sutskever et al. 2014]

• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone has

• This is amazing!

• SMT systems, built by hundreds of engineers over many years, outperformed by 
NMT systems trained by small groups of engineers in a few months
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Neural Machine Translation (NMT)

<START>

Source sentence (input)

il      m’ a entarté

The sequence-to-sequence model
Target sentence (output)
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Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence, conditioned on encoding.
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hit
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me

Note: This diagram shows test time behavior: decoder 
output is fed in          as next step’s input

with     a        pie    <END>

me       with    a       pie
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Sequence-to-sequence is versatile!

• The general notion here is an encoder-decoder model

• One neural network takes input and produces a neural representation

• Another network produces output based on that neural representation

• If the input and output are sequences, we call it a seq2seq model

• Sequence-to-sequence is useful for more than just MT

• Many NLP tasks can be phrased as sequence-to-sequence:

• Summarization (long text → short text)

• Dialogue (previous utterances → next utterance)

• Parsing (input text → output parse as sequence)

• Code generation (natural language → Python code)
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Neural Machine Translation (NMT)

• The sequence-to-sequence model is an example of a Conditional Language Model
• Language Model because the decoder is predicting the next word of the target sentence y

• Conditional because its predictions are also conditioned on the source sentence x

• NMT directly calculates            :

• Question: How to train an NMT system?

• (Easy) Answer: Get a big parallel corpus…

• But there is now exciting work on “unsupervised NMT”, data augmentation, etc.

Probability of next target word, given 
target words so far and source sentence x
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Training a Neural Machine Translation system
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Source sentence (from corpus)

<START>    he        hit         me      with         a         pieil           m’         a      entarté

Target sentence (from corpus)

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.
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ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4 ො𝑦5 ො𝑦6 ො𝑦7

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6 𝐽7 

= negative log 

prob of “he”

𝐽 =
1

𝑇
෍

𝑡=1

𝑇

𝐽𝑡 =                 +          +         +         +          +         +

= negative log 

prob of <END>

= negative log 

prob of “with”
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Multi-layer deep encoder-decoder machine translation net

Die       Proteste    waren    am  Wochenende eskaliert <EOS>      The       protests    escalated    over          the     weekend
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Encoder:
Builds up 
sentence 
meaning 

Source 
sentence

Translation 
generated

Feeding in 
last word

Decoder

Conditioning =
Bottleneck

[Sutskever et al. 2014; Luong et al. 2015]
The hidden states from RNN layer i 
are the inputs to RNN layer i+1
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The final piece: the bottleneck problem in RNNs
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Source sentence (input)

<START>    he        hit        me       with        a         pieil           a         m’      entarté

he        hit        me       with        a          pie    <END>
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N
Target sentence (output)

Problems with this architecture?

Encoding of the 
source sentence. 
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3. Attention

• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, use direct connection to the encoder to focus 
on a particular part of the source sequence

• First, we will show via diagram (no equations), then we will show with equations

22



The starting point: mean-pooling for RNNs
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• Starting point: a very basic way of ‘passing information from the encoder’ is to average

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

Usually better: 
Take element-wise 
max or mean of all 

hidden states



Attention is weighted averaging, which lets you do lookups!

24

Attention is just a weighted average – this is very powerful if the weights are learned!

In a lookup table, we have a table of keys 
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, 
to a weight between 0 and 1. The keys’ values 
are multiplied by the weights and summed.



Sequence-to-sequence with attention
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Core idea: on each step of the decoder, use direct connection to the encoder to focus on a 
particular part of the source sequence



Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”he”)
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Take softmax to turn the scores 
into a probability distribution

29



Sequence-to-sequence with attention
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Attention 
output

Use the attention distribution to take a 
weighted sum of the encoder hidden states.

The attention output mostly contains 
information from the hidden states that 
received high attention.
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Sequence-to-sequence with attention
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Attention 
output

Concatenate attention output 
with decoder hidden state, then 
use to compute ො𝑦1 as before

ො𝑦1 

he

31



Sequence-to-sequence with attention
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hit
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Sometimes we take the 
attention output from the 
previous step, and also 
feed it into the decoder 
(along with the usual 
decoder input). 



Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Attention is great!

• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the source

• Attention provides a more “human-like” model of the MT process

• You can look back at the source sentence while translating, rather than needing to remember it all

• Attention solves the bottleneck problem

• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with the vanishing gradient problem

• Provides shortcut to faraway states

• Attention provides some interpretability

• By inspecting attention distribution, we see what the decoder was focusing on

• We get (soft) alignment for free!

• The network just learned alignment by itself

• (One issue – attention has quadratic cost with respect to sequence length)
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Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the sequence-to-sequence model 
for Machine Translation.

• However: You can use attention in many architectures 
(not just seq2seq) and many tasks (not just MT)

• More general definition of attention:

• Given a set of vector values, and a vector query, attention is a technique to compute 
a weighted sum of the values, dependent on the query.

• We sometimes say that the query attends to the values.

• For example, in the seq2seq + attention model, each decoder hidden state (query) 
attends to all the encoder hidden states (values).
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4. Do we even need recurrence at all? 

40

• Abstractly: Attention is a way to pass information from a sequence (𝑥) to a neural 
network input. (ℎ𝑡)

• This is also exactly what RNNs are used for – to pass information!

• Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass 
information!

2014-2017ish 
Recurrence

Lots of trial 
and error

2021
??????



The building block we need: self attention

41

• What we talked about – Cross attention: paying attention to the input x to generate 𝑦𝑡
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• What we need – Self attention: to generate 𝑦𝑡, we need to pay attention to 𝑦<𝑡



Self-Attention Hypothetical Example
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Self-Attention: keys, queries, values from the same sequence
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Let 𝒘1:𝑛 be a sequence of words in vocabulary 𝑉, like Zuko made his uncle tea.

For each 𝒘𝑖  , let 𝒙𝑖 = 𝐸𝒘𝒊, where 𝐸 ∈ ℝ𝑑×|𝑉| is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in ℝ𝑑×𝑑

2. Compute pairwise similarities between keys and queries; normalize with softmax

𝒆𝑖𝑗 = 𝒒𝒊
⊤𝒌𝒋 𝜶𝑖𝑗 =

exp(𝒆𝑖𝑗) 

σ𝑗′ exp(𝒆𝑖𝑗′)

3. Compute output for each word as weighted sum of values

𝒒𝑖 = 𝑄𝒙𝒊 (queries) 𝒌𝑖 = 𝐾𝒙𝒊 (keys) 𝒗𝑖 = 𝑉𝒙𝒊 (values)

𝒐𝑖 = ෍

𝒋

𝜶𝑖𝑗 𝒗𝒋



Barriers
• Doesn’t have an inherent 

notion of order! 

Barriers and solutions for Self-Attention as a building block

44

Solutions



Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the 
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝒑𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝𝑖  are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝒑𝑖  to our inputs!

• Recall that 𝒙𝑖  is the embedding of the word at index 𝑖. The positioned embedding is:

෥𝒙𝑖 = 𝒙𝑖 + 𝒑𝑖
In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…

45



• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

•  Cons:

• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids 

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2

/𝑑)

cos(𝑖/100002∗
𝑑
2

/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

D
im

e
n

si
o

n
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[Shaw et al., 2018]

[Wang et al., 2019]

• Learned absolute position representations: Let all 𝑝𝑖  be learnable parameters!

Learn a matrix 𝒑 ∈ ℝ𝑑×𝑛, and let each 𝒑𝑖  be a column of that matrix!

• Pros:

• Flexibility: each position gets to be learned to fit the data

•  Cons:

• Definitely can’t extrapolate to indices outside 1, … , 𝑛.

• Most systems use this!

• Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

47

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning! It’s all just weighted 
averages

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

48



Adding nonlinearities in self-attention

• Note that there are no elementwise 
nonlinearities in self-attention; 
stacking more self-attention layers 
just re-averages value vectors
(Why? Look at the notes!)

• Easy fix: add a feed-forward network 
to post-process each output vector.

𝑚𝑖 = 𝑀𝐿𝑃 output𝑖  

    =  𝑊2 ∗ ReLU 𝑊1 output𝑖 + 𝑏1 + 𝑏2

The

𝑤1 𝑤2

chef

𝑤3

who

𝑤𝑛

food

…
self-attention

Intuition: the FF network processes the result of attention

FF FF FF FF

…
self-attention

FF FF FF FF

49



Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each self-
attention output.

50



Masking the future in self-attention

• To use self-attention in 
decoders, we need to ensure 
we can’t peek at the future.

• At every timestep, we could 
change the set of keys and 
queries to include only past 
words. (Inefficient!)

• To enable parallelization, we 
mask out attention to future 
words by setting attention 
scores to −∞.

The

chef

who

[START]

For encoding 
these words

We can look at these 
(not greyed out) words

𝑒𝑖𝑗 =  ൝
𝑞𝑖

⊤𝑘𝑗 , 𝑗 ≤ 𝑖

−∞, 𝑗 > 𝑖

−∞

−∞−∞

−∞−∞ −∞
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each self-
attention output.

• Mask out the future by artificially 
setting attention weights!
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• Self-attention:

• the basis of the method.

• Position representations:

• Specify the sequence order, since self-attention is an 
unordered function of its inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple feed-forward 
network.

• Masking:

• In order to parallelize operations while not looking 
at the future.

• Keeps information about the future from “leaking” 
to the past.

Necessities for a self-attention building block:

53
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5. The Transformer Decoder

54

• A Transformer decoder is how 
we’ll build systems like 
language models.

• It’s a lot like our minimal self-
attention architecture, but 
with a few more components.

• The embeddings and position 
embeddings are identical.

• We’ll next replace our self-
attention with multi-head self-
attention.

Transformer Decoder



Recall the Self-Attention Hypothetical Example
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Hypothetical Example of Multi-Head Attention
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Sequence-Stacked form of Attention

• Let’s look at how key-query-value attention is computed, in matrices.

• Let 𝑋 = 𝑥1; … ; 𝑥𝑛 ∈ ℝ𝑛×𝑑  be the concatenation of input vectors.

• First, note that 𝑋𝐾 ∈ ℝ𝑛×𝑑, 𝑋𝑄 ∈ ℝ𝑛×𝑑, 𝑋𝑉 ∈ ℝ𝑛×𝑑.

• The output is defined as output =  softmax 𝑋𝑄 𝑋𝐾 ⊤ 𝑋𝑉 ∈∈ ℝ𝑛×𝑑.

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑛×𝑛

All pairs of 
attention scores!

output ∈ ℝ𝑛×𝑑

=

𝐾⊤ 𝑋⊤

𝑋𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

𝑋𝑄𝐾⊤ 𝑋⊤softmax 𝑋𝑉
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Multi-headed attention

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗  is high, but maybe we want to 

focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads, and ℓ ranges from 1 
to ℎ.

• Each attention head performs attention independently:

• outputℓ =  softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ, where  outputℓ ∈ ℝ𝑛 × 𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = output1, … , outputℎ 𝑌, where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value vectors differently.
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Multi-head self-attention is computationally efficient

• Even though we compute ℎ many attention heads, it’s not really more costly.

• We compute 𝑋𝑄 ∈ ℝ𝑛×𝑑, and then reshape to ℝ𝑛×ℎ×𝑑/ℎ. (Likewise for 𝑋𝐾, 𝑋𝑉.)  

• Then we transpose to ℝℎ×𝑛×𝑑/ℎ; now the head axis is like a batch axis.

• Almost everything else is identical, and the matrices are the same sizes.
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𝑋𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

𝐾⊤ 𝑋⊤

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

softmax 𝑋𝑉𝑋𝑄𝐾⊤ 𝑋⊤
𝑋𝑉

output ∈ ℝ𝑛×𝑑

=
𝑃

=

mix

∈ ℝ3×𝑛×𝑛

3 sets of all pairs of 
attention scores!𝑋𝑄𝐾⊤ 𝑋⊤=



Scaled Dot Product [Vaswani et al., 2017]

• “Scaled Dot Product” attention aids in training.

• When dimensionality 𝑑 becomes large, dot products between vectors tend to 
become large.

• Because of this, inputs to the softmax function can be large, making the 
gradients small.

• Instead of the self-attention function we’ve seen:

outputℓ =  softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ 

• We divide the attention scores by 𝑑/ℎ, to stop the scores from becoming large 
just as a function of 𝑑/ℎ (The dimensionality divided by the number of heads.)

outputℓ =  softmax
𝑋𝑄ℓ𝐾ℓ

⊤𝑋⊤

𝑑/ℎ
∗ 𝑋𝑉ℓ 
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The Transformer Decoder

61

• Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two 
optimization tricks that end up 
being :

• Residual Connections

• Layer Normalization

• In most Transformer diagrams, 
these are often written 
together as “Add & Norm”

Transformer Decoder



The Transformer Encoder: Residual connections [He et al., 2016]

• Residual connections are a trick to help models train better.

• Instead of 𝑋(𝑖) = Layer(𝑋 𝑖−1 ) (where 𝑖 represents the layer)

• We let 𝑋(𝑖) = 𝑋(𝑖−1) +  Layer(𝑋 𝑖−1 ) (so we only have to learn “the residual” 
from the previous layer)

• Gradient is great through the residual
connection; it’s 1!

• Bias towards the identity function!

𝑋(𝑖−1)
Layer 𝑋(𝑖)

𝑋(𝑖−1)
Layer 𝑋(𝑖)+

[no residuals] [residuals]

[Loss landscape visualization,

Li et al., 2018, on a ResNet]62
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The Transformer Encoder: Layer normalization  [Ba et al., 2016]

Xu et al., 2019

• Layer normalization is a trick to help models train faster.

• Idea: cut down on uninformative variation in hidden vector values by normalizing 
to unit mean and standard deviation within each layer.

• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let 𝑥 ∈ ℝ𝑑  be an individual (word) vector in the model.

• Let 𝜇 =
1

𝑑
σ𝑗=1

𝑑 𝑥𝑗; this is the mean; 𝜇 ∈ ℝ.

• Let 𝜎 =
1

𝑑
 σ𝑗=1

𝑑 𝑥𝑗 − 𝜇
2

; this is the variance; 𝜎 ∈ ℝ.

• Let 𝛾 ∈ ℝ𝑑  and 𝛽 ∈ ℝ𝑑  be learned “gain” and “bias” parameters. (Can omit!)

• Then layer normalization computes:

output =
𝑥 − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽

Normalize by scalar 
mean and variance

Modulate by learned 
elementwise gain and bias
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The Transformer Decoder

64

• The Transformer Decoder is a stack 
of Transformer Decoder Blocks.

• Each Block consists of:

• Self-attention

• Add & Norm

• Feed-Forward

• Add & Norm

• That’s it! We’ve gone through the 
Transformer Decoder.

Transformer Decoder



The Transformer Encoder

65

• The Transformer Decoder 
constrains to unidirectional 
context, as for language 
models.

• What if we want bidirectional 
context, like in a bidirectional 
RNN?

• This is the Transformer 
Encoder. The only difference is 
that we remove the masking 
in the self-attention.

Transformer DecoderNo Masking!



The Transformer Encoder-Decoder

66

• Recall that in machine 
translation, we processed the 
source sentence with a 
bidirectional model and 
generated the target with a 
unidirectional model.

• For this kind of seq2seq 
format, we often use a 
Transformer Encoder-Decoder.

• We use a normal Transformer 
Encoder.

• Our Transformer Decoder is 
modified to perform cross-
attention to the output of the 
Encoder.



Cross-attention (details)

• We saw that self-attention is when keys, 
queries, and values come from the same 
source.

• In the decoder, we have attention that 
looks more like what we saw last week.

• Let ℎ1, … , ℎ𝑛 be output vectors from the 
Transformer encoder;  𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑛 be input vectors from the 
Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the 
encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the 
decoder, 𝑞𝑖 = 𝑄𝑧𝑖.
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ℎ1, … , ℎ𝑛

𝑧1, … , 𝑧𝑛 



6. Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine 
Translation BLEU scores

Also more efficient to 
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]68



Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation! 

The old standard
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https://arxiv.org/pdf/1801.10198.pdf


[Shaw et al., 2018]

[Wang et al., 2019]

• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows 
quadratically with the sequence length!

• What if the seq length 𝒏 ≥ 𝟓𝟎, 𝟎𝟎𝟎? E.g., to work on long documents

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?
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https://arxiv.org/abs/1803.02155
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• As Transformers grow larger, a larger and larger percent of compute is outside 
the self-attention portion, despite the quadratic cost.

• In practice, almost no large Transformer language models use anything but the 
quadratic cost attention we’ve presented here.

• The cheaper methods tend not to work as well at scale.

• So, is there no point in trying to design cheaper alternatives to self-attention?

• Or would we unlock much better models with much longer contexts (>100k 
tokens?) if we were to do it right?

Do we even need to remove the quadratic cost of attention?

71


	Slide 1: Natural Language Processing with Deep Learning   CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: 1. Problems with RNNs: Vanishing and Exploding Gradients
	Slide 4: Vanishing gradient intuition
	Slide 5: Vanishing gradient intuition
	Slide 6: Vanishing gradient intuition
	Slide 7: Vanishing gradient intuition
	Slide 8: Vanishing gradient intuition
	Slide 9: Why is vanishing gradient a problem?
	Slide 10: Effect of vanishing gradient on RNN-LM
	Slide 11: Why is exploding gradient a problem?
	Slide 12: Gradient clipping: solution for exploding gradient
	Slide 13: How to fix the vanishing gradient problem?
	Slide 14: 2. Machine Translation
	Slide 15: NMT: the first big success story of NLP Deep Learning
	Slide 16: Neural Machine Translation (NMT)
	Slide 17: Sequence-to-sequence is versatile!
	Slide 18: Neural Machine Translation (NMT)
	Slide 19: Training a Neural Machine Translation system
	Slide 20: Multi-layer deep encoder-decoder machine translation net
	Slide 21: The final piece: the bottleneck problem in RNNs
	Slide 22: 3. Attention
	Slide 23: The starting point: mean-pooling for RNNs
	Slide 24: Attention is weighted averaging, which lets you do lookups!
	Slide 25: Sequence-to-sequence with attention
	Slide 26: Sequence-to-sequence with attention
	Slide 27: Sequence-to-sequence with attention
	Slide 28: Sequence-to-sequence with attention
	Slide 29: Sequence-to-sequence with attention
	Slide 30: Sequence-to-sequence with attention
	Slide 31: Sequence-to-sequence with attention
	Slide 32: Sequence-to-sequence with attention
	Slide 33: Sequence-to-sequence with attention
	Slide 34: Sequence-to-sequence with attention
	Slide 35: Sequence-to-sequence with attention
	Slide 36: Sequence-to-sequence with attention
	Slide 37: Attention is great!
	Slide 38: Attention is a general Deep Learning technique
	Slide 40: 4. Do we even need recurrence at all? 
	Slide 41: The building block we need: self attention
	Slide 42: Self-Attention Hypothetical Example
	Slide 43: Self-Attention: keys, queries, values from the same sequence
	Slide 44: Barriers and solutions for Self-Attention as a building block 
	Slide 45: Fixing the first self-attention problem: sequence order 
	Slide 46: Position representation vectors through sinusoids  
	Slide 47: Position representation vectors learned from scratch 
	Slide 48: Barriers and solutions for Self-Attention as a building block 
	Slide 49: Adding nonlinearities in self-attention 
	Slide 50: Barriers and solutions for Self-Attention as a building block 
	Slide 51: Masking the future in self-attention 
	Slide 52: Barriers and solutions for Self-Attention as a building block 
	Slide 53: Necessities for a self-attention building block: 
	Slide 54: 5. The Transformer Decoder
	Slide 55: Recall the Self-Attention Hypothetical Example
	Slide 56: Hypothetical Example of Multi-Head Attention
	Slide 57: Sequence-Stacked form of Attention 
	Slide 58: Multi-headed attention 
	Slide 59: Multi-head self-attention is computationally efficient 
	Slide 60: Scaled Dot Product [Vaswani et al., 2017] 
	Slide 61: The Transformer Decoder
	Slide 62: The Transformer Encoder: Residual connections [He et al., 2016] 
	Slide 63: The Transformer Encoder: Layer normalization  [Ba et al., 2016] 
	Slide 64: The Transformer Decoder
	Slide 65: The Transformer Encoder
	Slide 66: The Transformer Encoder-Decoder
	Slide 67: Cross-attention (details) 
	Slide 68: 6. Great Results with Transformers 
	Slide 69: Great Results with Transformers 
	Slide 70: What would we like to fix about the Transformer? 
	Slide 71: Do we even need to remove the quadratic cost of attention? 

