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Lecture Plan

Lecture 5: Attention and Transformers

Vanishing gradients (10 mins)

Machine translation (10 mins)

From recurrence (RNN) to attention-based models (15 mins)
Self-attention (15 mins)

The Transformer model (15 mins)
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Great results with Transformers and their drawbacks and variants (5 mins)

Waitlist update; assignment 2 due on Jan 22; course project session next Thur




1. Problems with RNNs: Vanishing and Exploding Gradients
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Vanishing gradient intuition
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Vanishing gradient intuition

A1) h(®2) h(3)

J®(6)

h(4)

V

(ec 00|

o

EYASS oh'2)  §J@)
R~ D " RO

chain rule!

[OJ;Q}




Vanishing gradient intuition
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Vanishing gradient intuition
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Vanishing gradient intuition
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Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

What happens if these are small?
backpropagates further

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanul3-supp.pdf
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Why is vanishing gradient a problem?
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Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.




Effect of vanishing gradient on RNN-LM

LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her

 To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7% step and the target word “tickets” at the end.

e Butif the gradient is small, the model can’t learn this dependency
* So, the model is unable to predict similar long-distance dependencies at test time
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Why is exploding gradient a problem?

* If the gradient becomes too big, then the SGD update step becomes too big:

learning rate

pnew — Qold . EVQJ(Q)

J

Y

gradient

e This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)

* You think you’ve found a hill to climb, but suddenly you’re in lowa

* Inthe worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)
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Gradient clipping: solution for exploding gradient

e Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping

g+ 3

if ||g|| > threshold then
A threshold 4
& el 8

end if

e |Intuition: take a step in the same direction, but a smaller step

* In practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

12 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
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How to fix the vanishing gradient problem?

 The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

* In avanilla RNN, the hidden state is constantly being rewritten

h®) = ¢ (Whh(t_l) +W,z® 4 b)

* First: How about an RNN with separate and explicit memory which is added to?
* Long Short-Term Memory (LSTM) [link]

 And then: Creating more direct and linear pass-through connections in model
* Attention, residual connections, etc.

13



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

2. Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the
source language) to a sentence y in another language (the target language).

X: | like deep learning

14




NMT: the first big success story of NLP Deep Learning

Neural Machine Translation went from a fringe research attempt in 2014 to the leading
standard method in 2016

e 2014: First seq2seq paper published [Sutskever et al. 2014]

e 2016: Google Translate switches from SMT to NMT — and by 2018 everyone has

B® Microsoft &svstran  Google
BaiNEE ®Bwme  Tencentiil  (S)mie=

e Thisis amazing!
* SMT systems, built by hundreds of engineers over many years, outperformed by
NMT systems trained by small groups of engineers in a few months
I 15



Neural Machine Translation (NMT)
The sequence-to-sequence model

Target sentence (output)
Encoding of the source sentence. A

T s \
Provides initial hidden state ) ) .
for Decoder RNN. he hit me with a pie <END>
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Source sentence (input) Decoder RNN is a Language Model that generates

target sentence, conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.
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Sequence-to-sequence is versatile!

 The general notion here is an encoder-decoder model
* One neural network takes input and produces a neural representation
* Another network produces output based on that neural representation

* If the input and output are sequences, we call it a seq2seq model

* Sequence-to-sequence is useful for more than just MT
 Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text - short text)
* Dialogue (previous utterances - next utterance)
* Parsing (input text - output parse as sequence)

* Code generation (natural language - Python code)

17




Neural Machine Translation (NMT)

 The sequence-to-sequence model is an example of a Conditional Language Model

* Language Model because the decoder is predicting the next word of the target sentence y
* Conditional because its predictions are also conditioned on the source sentence x

« NMT directly calculates P(y|z):

P(ylz) = P(y1|z) P(y2|y1, %) P(ys|y1, 92, @) - .. P(yrly1,- - -, y7-1,7)
\ > J
Probability of next target word, given

target words so far and source sentence x

 Question: How to train an NMT system?
* (Easy) Answer: Get a big parallel corpus...
* But there is now exciting work on “unsupervised NMT”, data augmentation, etc.

18




Training a Neural Machine Translation system
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Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.




Multi-layer deep encoder-decoder machine translation net

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i
are the inputs to RNN layer i+1

Translation
generated
r
Encoder:
S T2 < } Decoder
sentence
meaning
-
Source Die  Proteste waren am Wochenende eskaliert <EOS> protests < Feeding in
sentence last word
Conditioning =
Bottleneck

20



The final piece: the bottleneck problem in RNNs

Encoding of the
source sentence.

Target sentence (output)

A

4 A\

he hit me  with a pie <END>
P )
o ] o o () o o o o (@) @) o 3
o el _|O 5| o o Jol _Jo| Jo| . JoL _Joj| .o >O o
o e 10 o @ 101 ‘e 10| “|of “leo| |0 o @
9 () e () () @) o @) o (o) @) o -
c A =z

il a m’  entarté <START> he hit me  with a pie
N\ J
Y

Source sentence (input)

Problems with this architecture?
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3. Attention

e Attention provides a solution to the bottleneck problem.

e Core idea: on each step of the decoder, use direct connection to the encoder to focus
on a particular part of the source sequence

* First, we will show via diagram (no equations), then we will show with equations

22




The starting point: mean-pooling for RNNs

positive How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all
hidden states

Sentence
encoding

@ @ @ @ () () @
@ | @ | @ | @ | @ | @ | @
() 1@ 1@ 1@ 1@ 1@ 1@
@ @ @ . @ () @
overall / enjoyed the movie a lot

e Starting point: a very basic way of ‘passing information from the encoder’ is to average

23




Attention is weighted averaging, which lets you do lookups!

Attention is just a weighted average — this is very powerful if the weights are learned!

In attention, the

matches all keys softly,

to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

keys values Weighted

ki
k2

query
q k3
k4

k5
24

Sum
vl
V2
output
o T
v4
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In a lookup table, we have a table of keys
that map to values. The matches
one of the keys, returning its value.

keys values

a

b

s

query
d

vl
V2
v3

output
v4 % v4
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Sequence-to-sequence with attention

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a

particular part of the source sequence
dot product

Attention
scores
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Sequence-to-sequence with attention

dot product

Attention
scores
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Sequence-to-sequence with attention

dot product

Attention
scores
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Sequence-to-sequence with attention

dot product

Attention
scores
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Sequence-to-sequence with attention

On this decoder timestep, we're
mostly focusing on the first
{ / encoder hidden state ("he”)

Take softmax to turn the scores
into a probability distribution

Attention
distribution
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Attention
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Sequence-to-sequence with attention

Attention Use the attention distribution to take a
output weighted sum of the encoder hidden states.
C
c o
Qo s - A TS
= > S : :
g o { H The attention output mostly contains
25 y =2 = = information from the hidden states that
© received high attention.
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Sequence-to-sequence with attention

Attention he
output

Concatenate attention output
7y, with decoder hidden state, then
/ use to compute ¥y, as before
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Sequence-to-sequence with attention

Attention hit
output

Attention
distribution
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Sequence-to-sequence with attention

Attention
output
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Sequence-to-sequence with attention

Attention with
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Decoder RNN
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Attention is great!

 Attention significantly improves NMT performance /\V

 It's very useful to allow decoder to focus on certain parts of the source

* Attention provides a more “human-like” model of the MT process

* You can look back at the source sentence while translating, rather than needing to remember it all
e Attention solves the bottleneck problem

* Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with the vanishing gradient problem
* Provides shortcut to faraway states

e Attention provides some interpretability

* By inspecting attention distribution, we see what the decoder was focusing on
* We get (soft) alignment for free!

he

hit

me
with
a
pie

a
* The network just learned alignment by itself

© |

37
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Attention is a general Deep Learning technique

« We've seen that attention is a great way to improve the sequence-to-sequence model
for Machine Translation.

« However: You can use attention in many architectures
(not just seg2seq) and many tasks (not just MT)

« More general definition of attention:

* Given a set of vector values, and a vector query, attention is a technique to compute
a weighted sum of the values, dependent on the query.

 We sometimes say that the query attends to the values.

* For example, in the seq2seq + attention model, each decoder hidden state (query)
attends to all the encoder hidden states (values).
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4. Do we even need recurrence at all?

* Abstractly: Attention is a way to pass information from a sequence (x) to a neural
network input. (h;)

 This is also exactly what RNNs are used for — to pass information!

e Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass
information!

T BF  oorme ]

el H»l» and error

2014-2017ish 2021
Recurrence 229?27??

v
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The building block we need: self attention

 What we talked about — Cross attention: paying attention to the input x to generate y;

 What we need — Self attention: to generate y;, we need to pay attention to y_;

41




Self-Attention Hypothetical Example

attention
weights
for
I “learned”
. I .

went to Stanford CS 224n an learned
42




Self-Attention: keys, queries, values from the same sequence

Let w;.,, be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w; , let x; = Ew;, where E € RVl is an embedding matrix.
1. Transform each word embedding with weight matrices Q, K, V, each in R%*¢
= Qx; ki = Kx; (keys) v; = Vx; (values)
2. Compute pairwise similarities between keys and queries; normalize with softmax

exp(e;;)
Zj/ exp(eij’)

— T . —
e;; = q; k; a;

3. Compute output for each word as weighted sum of values

0;, = Z al’j V;
I 43
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Barriers and solutions for Self-Attention as a building block

Barriers Solutions

e Doesn’t have an inherent
notion of order!




Fixing the first self-attention problem: sequence order

* Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

* Consider representing each sequence index as a vector

p; € R%, fori € {1,2, ...,n} are position vectors

 Don’t worry about what the p; are made of yet!
e Easy to incorporate this info into our self-attention block: just add the p; to our inputs!
e Recall that x; is the embedding of the word at index i. The positioned embedding is:

~ In deep self-attention

Xi = X T Di networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add...

45




Position representation vectors through sinusoids

* Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

/sin(i/lOOOOZ*l/d)\ ‘f_,f_fgf-_;_.. - .-;_'é.-_,,f_.,;
cos(i/10000%*1/4) S —-—-""fdf
P = . S
. £
2% /d -
sin(i/10000 2 )
2% /d
COS(l/lOOOO 2 )/ Index in the sequence

* Pros:
 Periodicity indicates that maybe “absolute position” isn’t as important
* Maybe can extrapolate to longer sequences as periods restart!

e Cons:
* Not learnable; also the extrapolation doesn’t really work!

46 Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/




Position representation vectors learned from scratch

Learned absolute position representations: Let all p; be learnable parameters!
Learn a matrix p € R**", and let each p; be a column of that matrix!

 Pros:

* Flexibility: each position gets to be learned to fit the data
* Cons:

* Definitely can’t extrapolate to indices outside 1, ..., n.

Most systems use this!

Sometimes people try more flexible representations of position:
* Relative linear position attention [Shaw et al., 2018]

* Dependency syntax-based position [Wang et al., 2019]
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https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Barriers and solutions for Self-Attention as a building block

Barriers Solutions
 Doesn’t have an inherent _* Add position representations to
notion of order! the inputs

 No nonlinearities for deep
learning! It’s all just weighted
averages




Adding nonlinearities in self-attention

* Note that there are no elementwise
nonlinearities in self-attention; I ] ]
stacking more self-attention layers
just re-averages value vectors T ! ! 1
(Why? Look at the notes!)

I
e Easy fix: add a feed-forward network FF FTF FTF FTF
to post-process each output vector. f ! I !
self-attention
m; = MLP (output;) oo
= W, * ReLU(W; output; + b;) + b, wq W, w3 Wn
The chef who food

I 45 Intuition: the FF network processes the result of attention




Barriers and solutions for Self-Attention as a building block

50

Barriers

Doesn’t have an inherent
notion of order!

No nonlinearities for deep
learning magic! It’s all just
weighted averages

Need to ensure we don’t
“look at the future” when
predicting a sequence

* Like in machine translation
* Or language modeling

Solutions

Add position representations to
the inputs

Easy fix: apply the same
feedforward network to each self-
attention output.




Masking the future in self-attention

We can look at these
(not greyed out) words

* To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

_ [START]
e At every timestep, we could
change the set of keys and ”
queries to include only past The
words. (Inefficient!) For encoding
these words
o ) chef
 To enable parallelization, we
mask out attention to future
words by setting attention who
scores to —oo. CIiTkj»]' <i
eij = -

—00,j > 1
51




Barriers and solutions for Self-Attention as a building block

52

Barriers

Doesn’t have an inherent
notion of order!

No nonlinearities for deep
learning magic! It’s all just
weighted averages

Need to ensure we don’t
“look at the future” when
predicting a sequence

* Like in machine translation
* Or language modeling

Solutions

Add position representations to
the inputs

Easy fix: apply the same
feedforward network to each self-
attention output.

Mask out the future by artificially
setting attention weights!




Necessities for a self-attention building block:

53

Self-attention:
 the basis of the method.
Position representations:
» Specify the sequence order, since self-attention is an

unordered function of its inputs. s

0O X

Nonlinearities: E o
0

* At the output of the self-attention block ; ks
. . + '®)

* Frequently implemented as a simple feed-forward § O
network. o2
RS

Masking:

* In order to parallelize operations while not looking
at the future.

* Keeps information about the future from “leaking”
to the past.

Transformer Decoder

Probabilities

Softmax
N
Linear
N

Feed-Forward

|

Masked Self-
Attention

/LA’) Block

Add Position
Embeddings

/[\

Embeddings
Inputs




5. The Transformer Decoder

A Transformer decoder is how
we’ll build systems like
language models.

* It's a lot like our minimal self-
attention architecture, but
with a few more components. |

Masked Multi-
Head Attention

 The embeddings and position

embeddings are identical. Add Position

«  We'll next replace our self- Embeddings
attentl.on with multi-head self- Embeddings
attention.

Transformer Decoder
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Recall the Self-Attention Hypothetical Example

attention
weights
for
I “learned”
. I .

went to Stanford CS 224n an learned
55




Hypothetical Example of Multi-Head Attention

I

Attention head 1
attends to entities

to

k

Stanford

went

k

CS

Y
Kk

224n

to

q
\Y \%

Kk Kk
and learned
Stanford

Attention head 2 attends to
syntactically relevant words

q
V V.V V VvV V Vv V

k k k k Kk k Kk Kk

I went to Stanford CS 224n and learned

CS 224n and learned




Sequence-Stacked form of Attention

e Let’s look at how key-query-value attention is computed, in matrices.
e Let X = [xq; ...; x, ] € R™*4 be the concatenation of input vectors.
* First, note that XK € R™*%, XQ € R™*¢, XV € R™**4,
« The output is defined as output = softmax(XQ(XK)T)XV €€ R™*4,

First, take the query-key dot All pairs of
products in one matrix X0 = XQKTXT attention scores!
multiplication: XQ(XK) ' KT xT c RRXN
Next, softmax, and ( A
compute the weighted softmax| xokTxT | xy =
average with another

output € R™**4

matrix multiplication. \ /
57




Multi-headed attention

58

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xiTQTKxj is high, but maybe we want to
focus on different j for different reasons?

We’'ll define multiple attention “heads” through multiple Q,K,V matrices

d
Let, Qp, Ky, V) € ]R{dxﬁ, where h is the number of attention heads, and £ ranges from 1

to h.
Each attention head performs attention independently:

- output, = softmax(XQ,K; XT) * XV,, where output, € R"* /R
Then the outputs of all the heads are combined!
- output = [outputy, ..., output,]Y, where Y € R%*¢

Each head gets to “look” at different things, and construct value vectors differently.




Multi-head self-attention is computationally efficient

* Even though we compute h many attention heads, it’s not really more costly.
« We compute XQ € R™ 4, and then reshape to R™*"*a/h_(Likewise for XK, XV .)
* Then we transpose to R"*™%@/1. nhow the head axis is like a batch axis.
* Almost everything else is identical, and the matrices are the same sizes.

First, take the query-key dot 3 sets of all pairs of
products in one matrix X0 — XQK'XT attention scores!

T . T
multiplication: XQ (XK) KL/ € R3XNXN
Next, softmax, and ( )
compute the weighted softmax| X0KTXT | xy = —
average with another p

output € R**4

matrix multiplication. \ J .
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Scaled Dot Product [Vaswani et al., 2017]

* “Scaled Dot Product” attention aids in training.
 When dimensionality d becomes large, dot products between vectors tend to
become large.
* Because of this, inputs to the softmax function can be large, making the
gradients small.
e |Instead of the self-attention function we’ve seen:

output, = softmax(XQ,K, XT) x XV,
* We divide the attention scores by /d/h, to stop the scores from becoming large
just as a function of d/h (The dimensionality divided by the number of heads.)

B XQ{)K{TXT)
output, = softmax( NeI * XV,
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The Transformer Decoder

Add & Norm
 Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two
. . . . Add & Norm
optimization tricks that end up
Masked Multi-

being : :
Head Attention

* Residual Connections i
* Layer Normalization

* |n most Transformer diagrams, Add Position
these are often written Embeddings
together as “Add & Norm ST —

Transformer Decoder
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The Transformer Encoder: Residual connections [He et al., 2016]

* Residual connections are a trick to help models train better.

* Instead of X = Layer(X“~1) (where i represents the layer)

XD —— ) ayer X

« We let X® = X014 Layer(X(~V) (so we only have to learn “the residual”
from the previous layer)

XD — | ayer ?—’ x®

* Gradient is great through the residual
connection; it’s 1!
* Bias towards the identity function! [no residuals] [residuals]

[Loss landscape visualization,
62 Liet al., 2018, on a ResNet]



https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf

The Transformer Encoder: Layer normalization [Ba et al., 2016]

* Layer normalization is a trick to help models train faster.

e |dea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

* LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

e Let x € R? be an individual (word) vector in the model.

e Letu= %Z?zlxj; this is the mean; u € R.

1 2 . .
e leto = P Zj-l:l(xj — ,Ll) : this is the variance; o € R.

« Lety € R% and 8 € R? be learned “gain” and “bias” parameters. (Can omit!)
 Then layer normalization computes:

X —HU
xy +
o+ e€ 4 'B

Normalize by scalar / \ Modulate by learned

mean and variance elementwise gain and bias

output =
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https://arxiv.org/abs/1607.06450
https://papers.nips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf

The Transformer Decoder

64

The Transformer Decoder is a stack
of Transformer Decoder Blocks.

Each Block consists of:
* Self-attention

* Add & Norm

* Feed-Forward
 Add & Norm

That’s it! We've gone through the
Transformer Decoder.

Repeat for number

of encoder blocks

Probabilities

Softmax
N
Linear
N

Add & Norm
N

Feed-Forward

T

(%

Add & Norm
N
Masked Multi-

Head Attention

w Block

Add Position
Embeddings

/l\
Embeddings

Decoder Inputs




The Transformer Encoder Probabilities

65

Softmax
N
The Transformer Decoder e
constrains to unidirectional N
context, as for language Add & Norm
models. C o
. o ] 29 Feed-Forward
What if we want bidirectional = S
. . . . . :) O
context, like in a bidirectional c 3 |
S Add & Norm
— O
RNN? 2% ﬁ 7
This is the Transformer > & Multi-Hea
_ ] %q6 Attention
Encoder. The only difference is o

that we remove the masking ( w Block

in the self-attention. |
Add Position

. Embeddings
No Masking! T

Embeddings

Decoder Inputs




Probabilities

The Transformer Encoder-Decoder softma
Linear
e Recall that in machine 4
. Add & Norm
translation, we processed the N
source sentence with a e
bidirectional model and T
. Add & Norm
generated the target with a Add & Norm A
idirectional model " FRS
uni ) Feed-Forward Attention
* For this kind of seq2seq 2 ,j
format, we often use a Add & Norm Add & Norm
Transformer Encoder-Decoder. T r— Masked Multi-

Attention Head Attention

e We use a normal Transformer w
Encoder. w el Block

e Qur Transformer Decoder is Py ——— Add Position
modified to perform cross- Embeddings Embe,?\dmgs

attention to the output of the Embeﬂdmgs

66 Encoder. Encoder Inputs Decoder Inputs

Embeddings




Cross-attention (details)

67

We saw that self-attention is when keys,
qgueries, and values come from the same
source.

In the decoder, we have attention that
looks more like what we saw last week.

Add & Norm
Add & Norm AN
Let hy, ..., h,, be output vectors from the A Multi-Head
Attention
Transformer encoder; x; € R? Feed-Forward 9
. ¢ ( Zl’ [N ] , Zn
Let 74, ..., z,, be input vectors from the dd & Norm Add & Norm
AN
Transformer decoder, z; € R? Y - Masked Multi-
. Head Attention
Then keys and values are drawn from the Attention w
encoder (like a memory): w Y | Block
| -
* ki = Kh;, v; =Vh,. Add Position Add Position
. Embeddings Embeddings
And the queries are drawn from the
Embeddings

decoder, q; = QZi- Embeddings

Encoder Inputs Decoder Inputs



6. Great Results with Transformers

First, Machine Translation from the original Transformers paper!

Model BLEU Training Cost (FLOPs)
ode EN-DE EN-FR EN-DE  EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 246  39.92 2.3.109 1.4.102%
ConvS2S [9] 25.16  40.46 9.6-10'%  1.5.1020
MoE [32] 26.03  40.56 2.0-10" 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0- 104"
GNMT + RL Ensemble [38] 2630  41.16 1.8-1020  1.1-102!
ConvS2S Ensemble [9] 26.36  41.29 7.7-10%  1.2.10%!

68 [Test sets: WMT 2014 English-German and English-French] [Vaswani et al., 2017]




Great Results with Transformers

Next, document generation!

Model Test perplexity ROUGE-L
seq2seq-attention, L = 500 5.04952 12.7
Transformer-ED, L = 500 2.46645 342
Transformer-D, L = 4000 2.22216 33.6
Transformer-DMCA, no MoE-layer, L = 11000 2.05159 36.2
Transformer-DMCA, MoE-128, L = 11000 1.92871 37.9
Transformer-DMCA, MoE-256, L = 7500 1.90325 38.8
The old standard Transformers all the way down.

69 [Liu et al., 2018]; WikiSum dataset



https://arxiv.org/pdf/1801.10198.pdf

What would we like to fix about the Transformer?

e Quadratic compute in self-attention (today):

* Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

* What if the seq lengthn = 50,0007? E.g., to work on long documents

e Position representations:
* Are simple absolute indices the best we can do to represent position?
e Relative linear position attention [Shaw et al., 2018]
* Dependency syntax-based position [Wang et al., 2019]
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https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Do we even need to remove the quadratic cost of attention?

71

As Transformers grow larger, a larger and larger percent of compute is outside
the self-attention portion, despite the quadratic cost.

In practice, almost no large Transformer language models use anything but the
quadratic cost attention we’ve presented here.

* The cheaper methods tend not to work as well at scale.
So, is there no point in trying to design cheaper alternatives to self-attention?

Or would we unlock much better models with much longer contexts (>100k
tokens?) if we were to do it right?
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