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Overview 

• Introducing DPO (15 mins)

• Human preferences data (5 mins)

1. Prompting (15 mins)

2. Introduction to PEFT (5 min)

3. Pruning / subnetwork  (10 mins)

4. LoRA (15 mins)

5. Prompt-tuning (5 mins)

6. Adapters (10 mins)

7. Other adaptation methods (5 mins)

Project update; assignment 3 due this Thur; stop by office hours!



RL (PPO) can be quite complex!!! 

• RL optimization can be 
computationally 
expensive and tricky

• Fitting a value function

• Online sampling is slow

• Performance can be 
sensitive to 
hyperparameters

Secrets of RLHF / PPO workflow [Zheng et al., 2023]

[Shao et al., 2024]

https://arxiv.org/pdf/2307.04964
https://arxiv.org/pdf/2307.04964
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300


Removing the ‘RL’ from RLHF --- DPO

Recall we want to maximize the following objective in RLHF 

𝔼 ො𝑦∼𝑝𝜃
𝑅𝐿 ො𝑦 𝑥 [𝑅𝑀𝜙(𝑥, ො𝑦) − 𝛽 log

𝑝𝜃
𝑅𝐿 ො𝑦|𝑥

𝑝𝑃𝑇 ො𝑦|𝑥
]

There is a closed form solution to this:

𝑝∗ ො𝑦 𝑥 =
1

𝑍(𝑥)
𝑝𝑃𝑇 ො𝑦|𝑥 exp(

1

𝛽
𝑅𝑀 𝑥, ො𝑦 )

• Rearrange this via a log transformation 

• This holds true for any arbitrary LMs, thus

𝑅𝑀𝜃 𝑥, ො𝑦 = 𝛽 log
𝑝𝜃

𝑅𝐿 ො𝑦|𝑥

𝑝𝑃𝑇 ො𝑦|𝑥
+ 𝛽 log 𝑍(𝑥)

𝑅𝑀 𝑥, ො𝑦 = 𝛽 (log 𝑝∗ ො𝑦 𝑥 − log 𝑝𝑃𝑇 ො𝑦|𝑥 ) + 𝛽 log 𝑍 𝑥 = 𝛽 log
𝑝∗ ො𝑦|𝑥

𝑝𝑃𝑇 ො𝑦|𝑥
+ 𝛽 log 𝑍(𝑥)



Putting it together for DPO

• Derived reward model:

• Final DPO loss via the Bradley-Terry model of human preferences:

 𝐽𝐷𝑃𝑂 𝜃 = −𝔼 𝑥,𝑦𝑤,𝑦𝑙 ~𝐷 log 𝜎(𝑅𝑀𝜃 𝑥, 𝑦𝑤 − 𝑅𝑀𝜃(𝑥, 𝑦𝑙))

       = −𝔼 𝑥,𝑦𝑤,𝑦𝑙 ~𝐷 log 𝜎(𝛽 log
𝑝𝜃

𝑅𝐿 𝑦𝑤|𝑥

𝑝𝑃𝑇 𝑦𝑤|𝑥
− 𝛽 log

𝑝𝜃
𝑅𝐿 𝑦𝑙|𝑥

𝑝𝑃𝑇 𝑦𝑙|𝑥
)

𝑅𝑀𝜃 𝑥, ො𝑦 = 𝛽 log
𝑝𝜃

𝑅𝐿 ො𝑦|𝑥

𝑝𝑃𝑇 ො𝑦|𝑥
+ 𝛽 log 𝑍(𝑥)

Reward for 
winning sample

Reward for 
losing sample

Log Z term 
cancels as 

the loss only 
measures 

differences 
in rewards

[Rafailov+ 2023]



DPO outperforms prior methods 

• You can replace the complex RL part with a 
very simple weighted MLE objective

• Other variants (KTO, IPO) now emerging too

• TL;DR summarization win rates vs. human-
written summaries (GPT-4 as a judge) 



Open source RLHF is now mostly (not RL)

• Open source LLMs now almost all just use DPO (and it works well!)



Improving the “RL” from RLHF --- GRPO 

Shao, et al., "Deepseekmath: Pushing the limits of mathematical reasoning in open language models." arXiv:2402.03300 (2024).



Where does the RLHF data come from?

• RLHF labels are often obtained from overseas, low-wage workers



Where does the label come from?

• We also need to be quite careful about how annotator biases might creep into LMs

‘Base’ language models 

[Santurkar+ 2023, OpinionQA]
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User: Where are you from?  
AI Assistant: I am from {country}

Starling 7B Reward Model
[Ryan et al., 2024]

Preference tuning might produce unintended impact

https://arxiv.org/abs/2402.15018
https://arxiv.org/abs/2402.15018


What’s next for RLHF?

• RLHF is still a very underexplored and fast-moving area!

• RLHF gets you further than instruction finetuning, but is (still!) data expensive.

• Recent work aims to alleviate such data requirements:

• RL from AI feedback [Bai et al., 2022]

• Finetuning LMs on their own outputs
[Huang et al., 2022; Zelikman et al., 2022]

• However, there are still many limitations of large LMs (size, hallucination) that may 
not be solvable with RLHF!

13



Let’s revisit the Generative Pretrained Transformer (GPT)
models from OpenAI as an example:

GPT (117M parameters; Radford et al., 2018)

• Transformer decoder with 12 layers.

• Trained on BooksCorpus: over 7000 unique books (4.6GB text).

Showed that language modeling at scale can be an effective pretraining technique for 
downstream tasks like natural language inference.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

Emergent abilities of large language models: GPT (2018)

14

entailment

Decoder



Emergent abilities of large language models: GPT-2 (2019)
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Let’s revisit the Generative Pretrained Transformer (GPT)
models from OpenAI as an example:

GPT-2 (1.5B parameters; Radford et al., 2019)

• Same architecture as GPT, just bigger (117M -> 1.5B)

• But trained on much more data: 4GB -> 40GB of internet text data (WebText)

• Scrape links posted on Reddit w/ at least 3 upvotes (rough proxy of human quality)

GPT
(2018)

GPT-2
(2019)

117M 1.5B



One key emergent ability in GPT-2 [Radford et al., 2019] is zero-shot learning: the ability to do 
many tasks with no examples, and no gradient updates, by simply:

• Specifying the right sequence prediction problem (e.g. question answering):

Passage: Tom Brady... Q: Where was Tom Brady born? A: ...

• Comparing probabilities of sequences (e.g. Winograd Schema Challenge [Levesque, 2011]):

The cat couldn’t fit into the hat because it was too big.

Does it = the cat or the hat? 
≡ Is P(...because the cat was too big) >=
    P(...because the hat was too big)?

Emergent zero-shot learning

16



Emergent zero-shot learning

17

You can get interesting zero-shot behavior if you’re creative enough with how you specify 
your task!
Summarization on CNN/DailyMail dataset [See et al., 2017]:

SAN FRANCISCO, 

California (CNN) -- 

A magnitude 4.2 

earthquake shook 

the San Francisco

...

overturn unstable 

objects.

2018 SoTA

Supervised (287K) 

“Too Long, Didn’t Read”
“Prompting”?

     TL;DR: Select from article

ROUGE

GPT-2 beats SoTA on language modeling benchmarks with no task-specific fine-tuning



Emergent abilities of large language models: GPT-3 (2020)
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GPT-3 (175B parameters; Brown et al., 2020)

• Another increase in size (1.5B -> 175B)

• and data (40GB -> over 600GB)

117M 1.5B

GPT
(2018)

GPT-2
(2019)

GPT-3
(2020)

175B



Emergent few-shot learning
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[Brown et al., 2020]

• Specify a task by simply prepending examples of the task before your example

• Also called in-context learning, to stress that no gradient updates are performed when 
learning a new task (there is a separate literature on few-shot learning with gradient updates)



Emergent few-shot learning

20

Zero-shot



Emergent few-shot learning

21

One-shot



Emergent few-shot learning

22

Few-shot



Few-shot learning is an emergent property of model scale

23

Synthetic “word unscrambling” tasks, 100-shot

Cycle letters:
pleap ->

apple

Random insertion:
a.p!p/l!e ->

apple

Reversed words:
elppa ->

apple

[Brown et al., 2020]



1. Prompting 

24

Traditional fine-tuning

Zero/few-shot prompting



Limits of prompting for harder tasks?

Some tasks seem too hard for even large LMs to learn through prompting alone.

Especially tasks involving richer, multi-step reasoning.

(Humans struggle at these tasks too!)

        Solution: change the prompt!

25

19583 + 29534 = 49117

98394 + 49384 = 147778

29382 + 12347 = 41729

93847 + 39299 = ?



Chain-of-thought prompting

26
[Wei et al., 2022; also see Nye et al., 2021]



Chain-of-thought prompting is an emergent property of model scale

27

Middle school 
math word 
problems

[Wei et al., 2022; also see Nye et al., 2021]



Chain-of-thought prompting

28

Do we even need
examples of reasoning?

[Wei et al., 2022; also see Nye et al., 2021]

Can we just ask the model
to reason through things?



There are 16 

balls in total. Half of the balls are golf 

balls. That means there are 8 golf balls. 

Half of the golf balls are blue. That means 

there are 4 blue golf balls. 

A: Let’s think step by step. 

Zero-shot chain-of-thought prompting

29
[Kojima et al., 2022]

Q: A juggler can juggle 16 balls. Half of 

the balls are golf balls, and half of the golf 

balls are blue. How many blue golf balls 

are there?



Zero-shot chain-of-thought prompting

30
[Kojima et al., 2022]

Manual CoT 
still better

Greatly outperforms 
zero-shot



Zero-shot chain-of-thought prompting

31
[Zhou et al., 2022; Kojima et al., 2022]

LM-Designed



Sensitivity and inconsistency in prompting

Random demonstrations in classification 
and multiple-choices (Min et al., 2022) Inconsistent output (Moore at al., 2024)

https://arxiv.org/pdf/2202.12837
https://arxiv.org/pdf/2202.12837
https://arxiv.org/pdf/2202.12837
https://arxiv.org/pdf/2202.12837
https://arxiv.org/abs/2407.02996
https://arxiv.org/abs/2407.02996
https://arxiv.org/pdf/2202.12837


The new dark art of “prompt engineering”?

Use Google code header to generate more “professional” code?

Asking a model for reasoning

On Second Thought, Let's Not Think Step by Step! Bias and 
Toxicity in Zero-Shot Reasoning (Shaikh et al., 2023)

“Jailbreaking” LMs 
https://twitter.com/goodside/status/1569128808308957185/photo/1



The new dark art of “prompt engineering”?

34



Downside of prompt–based learning

35

1. Inefficiency: The prompt needs to be processed every time the model makes a 
prediction.

2. Poor performance: Prompting generally performs worse than fine-tuning [Brown et 
al., 2020].

3. Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], order of examples 
[Zhao et al., 2021; Lu et al., 2022], etc.

4. Lack of clarity regarding what the model learns from the prompt. Even random labels 
work [Zhang et al., 2022; Min et al., 2022]!

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2022.naacl-main.167/
https://aclanthology.org/2022.naacl-main.167/
https://aclanthology.org/2022.naacl-main.167/
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
https://aclanthology.org/2022.acl-long.556/
https://aclanthology.org/2022.acl-long.556/
https://aclanthology.org/2022.acl-long.556/
https://arxiv.org/abs/2202.12837
https://arxiv.org/pdf/2210.10693.pdf
https://arxiv.org/pdf/2210.10693.pdf
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2202.12837


2. From fine-tuning to parameter efficient fine-tuning (PEFT)

36

Full Fine-tuning
Update all model 

parameters

Parameter-efficient Fine-tuning
Update a small subset of model 

parameters

Why fine-tuning only some 
parameters?

1. Fine-tuning all parameters is 
impractical with large models

2. State-of-the-art models are 
massively over-
parameterized
→ Parameter-efficient fine-
tuning matches performance 
of full fine-tuning



Why do we need efficient adaptation? 

● Emphasis on accuracy over efficiency in 
current AI paradigm

● Hidden environmental costs of training 
(and fine tuning) LLMs

● As costs of training go up, AI 
development becomes concentrated in 
well-funded organizations, especially in 
industry

AI papers tend to target accuracy rather than efficiency. 

The figure shows the proportion of papers that target 
accuracy, efficiency, both or other from a sample of 60 
papers from top AI conferences (Green AI)

Slides credit to Benji Xie and Regina Wang

https://arxiv.org/abs/1907.10597


Even the impact of a class like ours

“At Stanford, for example, more than 200 students in a class on reinforcement learning 
were asked to implement common algorithms for a homework assignment. Though two 
of the algorithms performed equally well, one used far more power. 

If all the students had used the more efficient algorithm, the researchers estimated they 
would have reduced their collective power consumption by 880 kilowatt-hours — about 
what a typical American household uses in a month.”

An example using CS234 in Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning.  

Slides credit to Benji Xie and Regina Wang

https://www.jmlr.org/papers/volume21/20-312/20-312.pdf


2. Different perspectives to think about PEFT

39

Parameter Input Function

Some slides and examples adapted from Ruder, Sebastian, Jonas Pfeiffer, and Ivan Vulić on their EMNLP 2022 Tutorial on "Modular and Parameter-

Efficient Fine-Tuning for NLP Models”. For details, check out: https://www.modulardeeplearning.com/ 

https://www.modulardeeplearning.com/


A Parameter Perspective of Adaptation 

40

• Sparse Subnetworks

• Low-rank Composition



3. Sparse subnetworks 

41

[Han et al., 2017]

● A common inductive bias on the module parameters is sparsity

● Most common sparsity method: pruning

● Pruning can be seen as applying a binary mask 𝐛 ∈ 0, 1 𝜃  that selectively keeps or 
removes each connection in a model and produces a subnetwork.

● Most common pruning criterion: weight magnitude [Han et al., 2017]

https://arxiv.org/abs/1607.04381


Pruning

42

• During pruning, a fraction of the lowest-magnitude weights are removed

• The non-pruned weights are re-trained

• Pruning for multiple iterations is more common (Frankle & Carbin, 2019)

Initial 
training

Pruning

Re-training

…

Pruning

Re-training

One-shot pruning

Iterative pruning

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7


Pruning and Binary Mask

43

[Zhou et al., 2019]

[Guo et al., 2021]

• We can also view pruning as adding a task-specific vector 𝜙 to the parameters of an 
existing model 𝑓𝜃

′ = 𝑓𝜃+𝜙 where 𝜙𝑖 = 0 if 𝑏𝑖 = 0

• If the final model should be sparse, we can multiply the existing weights with the binary 
mask to set the pruned weights to 0: 𝑓𝜃

′ = 𝑓𝜃∘𝒃+𝜙. These weight values were moving to 

0 anyway  [Zhou et al., 2019]

  

• Diff pruning: we can perform pruning only based on the magnitude of the module 
parameters 𝜙 rather than the updated 𝜃 + 𝜙 parameters [Guo et al., 2021]

Element-wise product (Hadamard product) 

https://proceedings.neurips.cc/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf
https://aclanthology.org/2021.acl-long.378/


The Lottery Ticket Hypothesis

44

● Dense, randomly-initialized models contain subnetworks (“winning tickets”) that—
when trained in isolation—reach test accuracy comparable to the original network in a 
similar number of iterations [Frankle & Carbin, 2019]

● Has also been verified in RL and NLP [Yu et al., 2020] and for larger models in computer 
vision [Frankle et al., 2020]

● Prior work [Chen et al., 2020; Prasanna et al., 2020] has found winning tickets in pre-
trained models such as BERT
● Sparsity ratios: from 40% (SQuAD) to 90% (QQP and WNLI)

● Subnetworks trained on a general task like masked language modelling transfer best

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=S1xnXRVFwH
https://openreview.net/forum?id=S1xnXRVFwH
https://openreview.net/forum?id=S1xnXRVFwH
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/1912.05671
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://aclanthology.org/2020.emnlp-main.259/
https://aclanthology.org/2020.emnlp-main.259/
https://aclanthology.org/2020.emnlp-main.259/


A Parameter Perspective of Adaptation 

45

✓ Sparse Subnetworks

• Low-rank Composition



4. Revisit the full fine-tuning

46

• Assume we have a pre-trained autoregressive language model 𝑃𝜙(𝑦|𝑥)

• E.g., GPT based on Transformer

• Adapt this pretrained model to downstream tasks (e.g., summarization, QA)

• Training dataset of context-target pairs 𝑥𝑖 , 𝑦𝑖 𝑖=1,…,𝑁 

• During full fine-tuning, we update 𝜙𝑜 to 𝜙𝑜 + Δ𝜙 by following the gradient to 
maximize the conditional language modeling objective 

max
𝜙

෍

(𝑥,𝑦)

෍
𝑡=1

|𝑦|

log(𝑃𝜙(𝑦𝑡|𝑥, 𝑦<𝑡))



LoRA: low rank adaptation (Hu et al., 2021) 

47

• For each downstream task, we learn a different set of parameters Δ𝜙 

• |Δ𝜙| = 𝜙𝑜

• GPT-3 has a | 𝜙𝑜| of 175 billion

• Expensive and challenging for storing and deploying many independent instances

• Can we do better?

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685


LoRA: low rank adaptation (Hu et al., 2021) 
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• For each downstream task, we learn a different set of parameters Δ𝜙 

• |Δ𝜙| = |𝜙𝑜|

• GPT-3 has a | 𝜙𝑜| of 175 billion

• Expensive and challenging for storing and deploying many independent instances

• Key idea: encode the task-specific parameter increment Δ𝜙 = Δ𝜙(Θ) by a smaller-
sized set of parameters 𝚯, Θ ≪ |𝜙𝑜|

• The task of finding Δ𝜙 becomes optimizing over Θ

max
Θ

෍

(𝑥,𝑦)

෍
𝑡=1

|𝑦|

log(𝑃𝜙𝑜+Δ𝜙(Θ) (𝑦𝑡|𝑥, 𝑦<𝑡))

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685


Low-rank-parameterized update matrices 

49

• Updates to the weights have a low “intrinsic 
rank” during adaptation (Aghajanyan et al. 2020)

• 𝑊0 ∈  ℝ𝑑×𝑘: a pretrained weight matrix 

• Constrain its update with a low-rank 
decomposition: 

  𝑊0 + Δ𝑊 = 𝑊0 + 𝛼𝐵𝐴

 where 𝐵 ∈  ℝ𝑑×𝑟 , 𝐴 ∈  ℝ𝑟×𝑘 , 𝑟 ≪ min(𝑑, 𝑘)

• 𝛼 is the tradeoff between pre-trained 
“knowledge” and task-specific “knowledge”

• Only A and B contain trainable parameters

𝑊 ∈ ℝ𝑑×𝑘



Low-rank-parameterized update matrices 

50

• As one increase the number of trainable 
parameters, training LoRA converges to training 
the original model

• No additional inference latency: when switching 
to a different task, recover 𝑊0 by subtracting 𝐵𝐴 
and adding a different 𝐵′𝐴′

• Often LoRA is applied to the weight matrices in 
the self-attention module 

 

𝑊 ∈ ℝ𝑑×𝑘



Example implementation of LoRA

51 Credit to https://lightning.ai/pages/community/article/lora-llm/



LoRA in practice: scaling up to GPT-3 175B

52

LoRA matches or 
exceeds the fine-
tuning baseline on 
all three datasets

LoRA exhibits better 
scalability and task 
performance



Understanding low-rank adaptation 

53



From LoRA to QLoRA

54

• QLORA improves over LoRA by 
quantizing the transformer model to 4-
bit precision and using paged 
optimizer to handle memory

• 4-bit NormalFloat (NF4)

• A new data type that is information 
theoretically optimal for normally 
distributed weights

Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. "Qlora: Efficient finetuning of quantized llms." arXiv preprint arXiv:2305.14314 (2023).

https://arxiv.org/abs/2305.14314


LoRA matches full finetuning for RL, even with rank as low as 1

55

DeepMath with Qwen3-8b-base. The learning 
curve for different ranks and full fine-tuning

https://thinkingmachines.ai/blog/lora/

LoRA shows a wider range of performant learning rates and 
arrives at the same peak performance as FullFT



5. An input perspective of adaptation

56
[Li and Liang, 2021; Lester et al., 2021]

(Transformer, LSTM, ++ )

☺/

… the movie was … 
Learnable prefix 
parameters

https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691


Prefix-Tuning (Li and Liang, 2021)
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• Prefix-Tuning adds a prefix of 
parameters and freezes all 
pretrained parameters.

• The prefix is a sequence of 
continuous task-specific vector 
and is processed by the model 
just like real words would be, 
i.e., “virtual tokens”.

• Advantage: each element of a 
batch at inference could run a 
different tuned model.

https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190


Prompt-Tuning (Lester et al., 2021)

58

• Learning “soft prompts” to condition frozen LMs to perform downstream tasks

• Prepend virtual tokens to input, and learn embeddings of these special tokens only 

https://arxiv.org/pdf/2104.08691
https://arxiv.org/pdf/2104.08691


Prompt tuning only works well at scale

59

• Standard model tuning 
achieves strong 
performances but requires 
scoring separate copies of 
model for each end task

• Prompt tuning matches the 
quality of model tuning as 
size increases

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021).



6. A functional perspective of adaptation 
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• Function composition augments a model’s functions 
with new task-specific functions: 

• Most commonly used in multi-task learning where 
modules of different tasks are composed. Function 

Composition



Adapter (Houlsby et al. 2019) 
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• Insert a new function f𝜙 between layers of a pre-

trained model to adapt to a downstream task --- 
known as “adapters”

• An adapter in a Transformer layer consists of:

• A feed-forward down-projection 𝑊𝐷 ∈ 𝑅𝑘×𝑑

• A feed-forward up-projection 𝑊𝑈 ∈ 𝑅𝑑×𝑘

• 𝑓𝜙 𝒙 = 𝑊𝑈(𝜎 𝑊𝐷𝒙 ) 

Feedforward 
down-projection

Nonlinearity

Feedforward 
up-projection

+

https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/pdf/1902.00751.pdf
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● The adapter is 
usually placed after 
the multi-head 
attention and/or 
after the feed-
forward layer

● Most approaches 
have used this 
bottleneck design 
with linear layers

Adapter (Houlsby et al. 2019) 

https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/pdf/1902.00751.pdf


Trade-off btw accuracy and # of trained task specific parameters
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The curves show the 20th, 50th, and 80th
performance percentiles across nine tasks
from the GLUE benchmark.

Adapter based tuning attains a 
similar performance to full 
finetuning with two orders of 
magnitude fewer trained
parameters



Language adapters? Task knowledge ~= language knowledge
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MLM 
(English)

MLM 
(Quechuan)

=
~

● Adapters learn transformations that make the 
underlying model more suited to a task or language.

● Using masked language modelling (MLM), we can 
learn language-specific transformations for e.g. 
English and Quechua.



Using adapters for English dialect adaptation 
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Adapting LLMs trained on Standard American English to different English dialects 
(Held et al., 2023; Liu et al., 2023) 

Pre-Trained Language Model on 
Standard American English 

Task Adapters

Dialect Adapters

https://aclanthology.org/2023.findings-acl.51/
https://aclanthology.org/2023.findings-acl.51/
https://arxiv.org/abs/2305.13406
https://arxiv.org/abs/2305.13406


Unifying View 
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He et al. [2022]

• He et al. [2022] show that LoRA, prefix tuning, and adapters can be expressed with a 
similar functional form

• All methods can be expressed as modifying a model’s hidden representation 𝒉

• Sparsity, structure, low-rank approximations, rescaling, and other properties can also 
be applied and combined in many settings

https://openreview.net/pdf?id=0RDcd5Axok


Performance comparison
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Prompt tuning 
underperforms 
the other 
methods due 
to limited 
capacity

Adapter 
achieves better 
performance 
but add more 
parameters



7. Other variants of (efficient) adaptation
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• Knowledge distillation to obtain smaller models 

• Also check out: Gist tokens (Wu et al., 2024), ReFT(Wu et al, 2024), etc

The generic teacher-student framework for knowledge distillation (Gou et al., ) Shridhar et al., 2023

https://arxiv.org/pdf/2304.08467
https://arxiv.org/pdf/2304.08467
https://arxiv.org/pdf/2404.03592
https://arxiv.org/pdf/2404.03592
https://www.dcs.bbk.ac.uk/~sjmaybank/KD_Survey-arxiv.pdf
https://arxiv.org/pdf/2212.00193.pdf
https://arxiv.org/pdf/2212.00193.pdf
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