
Natural Language Processing
with Deep Learning

CS224N/Ling284

Diyi Yang

Lecture 9: Efficient Adaptation

Overview

• Introducing DPO (15 mins)

• Human preferences data (5 mins)

1. Prompting (15 mins)

2. Introduction to PEFT (5 min)

3. Pruning / subnetwork (10 mins)

4. LoRA (15 mins)

5. Prompt-tuning (5 mins)

6. Adapters (10 mins)

7. Other adaptation methods (5 mins)

Project update; assignment 3 due this Thur; stop by office hours!

RL (PPO) can be quite complex!!!

• RL optimization can be
computationally
expensive and tricky

• Fitting a value function

• Online sampling is slow

• Performance can be
sensitive to
hyperparameters

Secrets of RLHF / PPO workflow [Zheng et al., 2023]

[Shao et al., 2024]

https://arxiv.org/pdf/2307.04964
https://arxiv.org/pdf/2307.04964
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

Removing the ‘RL’ from RLHF --- DPO

Recall we want to maximize the following objective in RLHF

𝔼 ො𝑦∼𝑝𝜃
𝑅𝐿 ො𝑦 𝑥 [𝑅𝑀𝜙(𝑥, ො𝑦) − 𝛽 log

𝑝𝜃
𝑅𝐿 ො𝑦|𝑥

𝑝𝑃𝑇 ො𝑦|𝑥
]

There is a closed form solution to this:

𝑝∗ ො𝑦 𝑥 =
1

𝑍(𝑥)
𝑝𝑃𝑇 ො𝑦|𝑥 exp(

1

𝛽
𝑅𝑀 𝑥, ො𝑦)

• Rearrange this via a log transformation

• This holds true for any arbitrary LMs, thus

𝑅𝑀𝜃 𝑥, ො𝑦 = 𝛽 log
𝑝𝜃

𝑅𝐿 ො𝑦|𝑥

𝑝𝑃𝑇 ො𝑦|𝑥
+ 𝛽 log 𝑍(𝑥)

𝑅𝑀 𝑥, ො𝑦 = 𝛽 (log 𝑝∗ ො𝑦 𝑥 − log 𝑝𝑃𝑇 ො𝑦|𝑥) + 𝛽 log 𝑍 𝑥 = 𝛽 log
𝑝∗ ො𝑦|𝑥

𝑝𝑃𝑇 ො𝑦|𝑥
+ 𝛽 log 𝑍(𝑥)

Putting it together for DPO

• Derived reward model:

• Final DPO loss via the Bradley-Terry model of human preferences:

 𝐽𝐷𝑃𝑂 𝜃 = −𝔼 𝑥,𝑦𝑤,𝑦𝑙 ~𝐷 log 𝜎(𝑅𝑀𝜃 𝑥, 𝑦𝑤 − 𝑅𝑀𝜃(𝑥, 𝑦𝑙))

 = −𝔼 𝑥,𝑦𝑤,𝑦𝑙 ~𝐷 log 𝜎(𝛽 log
𝑝𝜃

𝑅𝐿 𝑦𝑤|𝑥

𝑝𝑃𝑇 𝑦𝑤|𝑥
− 𝛽 log

𝑝𝜃
𝑅𝐿 𝑦𝑙|𝑥

𝑝𝑃𝑇 𝑦𝑙|𝑥
)

𝑅𝑀𝜃 𝑥, ො𝑦 = 𝛽 log
𝑝𝜃

𝑅𝐿 ො𝑦|𝑥

𝑝𝑃𝑇 ො𝑦|𝑥
+ 𝛽 log 𝑍(𝑥)

Reward for
winning sample

Reward for
losing sample

Log Z term
cancels as

the loss only
measures

differences
in rewards

[Rafailov+ 2023]

DPO outperforms prior methods

• You can replace the complex RL part with a
very simple weighted MLE objective

• Other variants (KTO, IPO) now emerging too

• TL;DR summarization win rates vs. human-
written summaries (GPT-4 as a judge)

Open source RLHF is now mostly (not RL)

• Open source LLMs now almost all just use DPO (and it works well!)

Improving the “RL” from RLHF --- GRPO

Shao, et al., "Deepseekmath: Pushing the limits of mathematical reasoning in open language models." arXiv:2402.03300 (2024).

Where does the RLHF data come from?

• RLHF labels are often obtained from overseas, low-wage workers

Where does the label come from?

• We also need to be quite careful about how annotator biases might creep into LMs

‘Base’ language models

[Santurkar+ 2023, OpinionQA]

12

User: Where are you from?
AI Assistant: I am from {country}

Starling 7B Reward Model
[Ryan et al., 2024]

Preference tuning might produce unintended impact

https://arxiv.org/abs/2402.15018
https://arxiv.org/abs/2402.15018

What’s next for RLHF?

• RLHF is still a very underexplored and fast-moving area!

• RLHF gets you further than instruction finetuning, but is (still!) data expensive.

• Recent work aims to alleviate such data requirements:

• RL from AI feedback [Bai et al., 2022]

• Finetuning LMs on their own outputs
[Huang et al., 2022; Zelikman et al., 2022]

• However, there are still many limitations of large LMs (size, hallucination) that may
not be solvable with RLHF!

13

Let’s revisit the Generative Pretrained Transformer (GPT)
models from OpenAI as an example:

GPT (117M parameters; Radford et al., 2018)

• Transformer decoder with 12 layers.

• Trained on BooksCorpus: over 7000 unique books (4.6GB text).

Showed that language modeling at scale can be an effective pretraining technique for
downstream tasks like natural language inference.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

Emergent abilities of large language models: GPT (2018)

14

entailment

Decoder

Emergent abilities of large language models: GPT-2 (2019)

15

Let’s revisit the Generative Pretrained Transformer (GPT)
models from OpenAI as an example:

GPT-2 (1.5B parameters; Radford et al., 2019)

• Same architecture as GPT, just bigger (117M -> 1.5B)

• But trained on much more data: 4GB -> 40GB of internet text data (WebText)

• Scrape links posted on Reddit w/ at least 3 upvotes (rough proxy of human quality)

GPT
(2018)

GPT-2
(2019)

117M 1.5B

One key emergent ability in GPT-2 [Radford et al., 2019] is zero-shot learning: the ability to do
many tasks with no examples, and no gradient updates, by simply:

• Specifying the right sequence prediction problem (e.g. question answering):

Passage: Tom Brady... Q: Where was Tom Brady born? A: ...

• Comparing probabilities of sequences (e.g. Winograd Schema Challenge [Levesque, 2011]):

The cat couldn’t fit into the hat because it was too big.

Does it = the cat or the hat?
≡ Is P(...because the cat was too big) >=
 P(...because the hat was too big)?

Emergent zero-shot learning

16

Emergent zero-shot learning

17

You can get interesting zero-shot behavior if you’re creative enough with how you specify
your task!
Summarization on CNN/DailyMail dataset [See et al., 2017]:

SAN FRANCISCO,

California (CNN) --

A magnitude 4.2

earthquake shook

the San Francisco

...

overturn unstable

objects.

2018 SoTA

Supervised (287K)

“Too Long, Didn’t Read”
“Prompting”?

 TL;DR: Select from article

ROUGE

GPT-2 beats SoTA on language modeling benchmarks with no task-specific fine-tuning

Emergent abilities of large language models: GPT-3 (2020)

18

GPT-3 (175B parameters; Brown et al., 2020)

• Another increase in size (1.5B -> 175B)

• and data (40GB -> over 600GB)

117M 1.5B

GPT
(2018)

GPT-2
(2019)

GPT-3
(2020)

175B

Emergent few-shot learning

19

[Brown et al., 2020]

• Specify a task by simply prepending examples of the task before your example

• Also called in-context learning, to stress that no gradient updates are performed when
learning a new task (there is a separate literature on few-shot learning with gradient updates)

Emergent few-shot learning

20

Zero-shot

Emergent few-shot learning

21

One-shot

Emergent few-shot learning

22

Few-shot

Few-shot learning is an emergent property of model scale

23

Synthetic “word unscrambling” tasks, 100-shot

Cycle letters:
pleap ->

apple

Random insertion:
a.p!p/l!e ->

apple

Reversed words:
elppa ->

apple

[Brown et al., 2020]

1. Prompting

24

Traditional fine-tuning

Zero/few-shot prompting

Limits of prompting for harder tasks?

Some tasks seem too hard for even large LMs to learn through prompting alone.

Especially tasks involving richer, multi-step reasoning.

(Humans struggle at these tasks too!)

 Solution: change the prompt!

25

19583 + 29534 = 49117

98394 + 49384 = 147778

29382 + 12347 = 41729

93847 + 39299 = ?

Chain-of-thought prompting

26
[Wei et al., 2022; also see Nye et al., 2021]

Chain-of-thought prompting is an emergent property of model scale

27

Middle school
math word
problems

[Wei et al., 2022; also see Nye et al., 2021]

Chain-of-thought prompting

28

Do we even need
examples of reasoning?

[Wei et al., 2022; also see Nye et al., 2021]

Can we just ask the model
to reason through things?

There are 16

balls in total. Half of the balls are golf

balls. That means there are 8 golf balls.

Half of the golf balls are blue. That means

there are 4 blue golf balls.

A: Let’s think step by step.

Zero-shot chain-of-thought prompting

29
[Kojima et al., 2022]

Q: A juggler can juggle 16 balls. Half of

the balls are golf balls, and half of the golf

balls are blue. How many blue golf balls

are there?

Zero-shot chain-of-thought prompting

30
[Kojima et al., 2022]

Manual CoT
still better

Greatly outperforms
zero-shot

Zero-shot chain-of-thought prompting

31
[Zhou et al., 2022; Kojima et al., 2022]

LM-Designed

Sensitivity and inconsistency in prompting

Random demonstrations in classification
and multiple-choices (Min et al., 2022) Inconsistent output (Moore at al., 2024)

https://arxiv.org/pdf/2202.12837
https://arxiv.org/pdf/2202.12837
https://arxiv.org/pdf/2202.12837
https://arxiv.org/pdf/2202.12837
https://arxiv.org/abs/2407.02996
https://arxiv.org/abs/2407.02996
https://arxiv.org/pdf/2202.12837

The new dark art of “prompt engineering”?

Use Google code header to generate more “professional” code?

Asking a model for reasoning

On Second Thought, Let's Not Think Step by Step! Bias and
Toxicity in Zero-Shot Reasoning (Shaikh et al., 2023)

“Jailbreaking” LMs
https://twitter.com/goodside/status/1569128808308957185/photo/1

The new dark art of “prompt engineering”?

34

Downside of prompt–based learning

35

1. Inefficiency: The prompt needs to be processed every time the model makes a
prediction.

2. Poor performance: Prompting generally performs worse than fine-tuning [Brown et
al., 2020].

3. Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], order of examples
[Zhao et al., 2021; Lu et al., 2022], etc.

4. Lack of clarity regarding what the model learns from the prompt. Even random labels
work [Zhang et al., 2022; Min et al., 2022]!

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2022.naacl-main.167/
https://aclanthology.org/2022.naacl-main.167/
https://aclanthology.org/2022.naacl-main.167/
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
https://aclanthology.org/2022.acl-long.556/
https://aclanthology.org/2022.acl-long.556/
https://aclanthology.org/2022.acl-long.556/
https://arxiv.org/abs/2202.12837
https://arxiv.org/pdf/2210.10693.pdf
https://arxiv.org/pdf/2210.10693.pdf
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2202.12837

2. From fine-tuning to parameter efficient fine-tuning (PEFT)

36

Full Fine-tuning
Update all model

parameters

Parameter-efficient Fine-tuning
Update a small subset of model

parameters

Why fine-tuning only some
parameters?

1. Fine-tuning all parameters is
impractical with large models

2. State-of-the-art models are
massively over-
parameterized
→ Parameter-efficient fine-
tuning matches performance
of full fine-tuning

Why do we need efficient adaptation?

● Emphasis on accuracy over efficiency in
current AI paradigm

● Hidden environmental costs of training
(and fine tuning) LLMs

● As costs of training go up, AI
development becomes concentrated in
well-funded organizations, especially in
industry

AI papers tend to target accuracy rather than efficiency.

The figure shows the proportion of papers that target
accuracy, efficiency, both or other from a sample of 60
papers from top AI conferences (Green AI)

Slides credit to Benji Xie and Regina Wang

https://arxiv.org/abs/1907.10597

Even the impact of a class like ours

“At Stanford, for example, more than 200 students in a class on reinforcement learning
were asked to implement common algorithms for a homework assignment. Though two
of the algorithms performed equally well, one used far more power.

If all the students had used the more efficient algorithm, the researchers estimated they
would have reduced their collective power consumption by 880 kilowatt-hours — about
what a typical American household uses in a month.”

An example using CS234 in Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning.

Slides credit to Benji Xie and Regina Wang

https://www.jmlr.org/papers/volume21/20-312/20-312.pdf

2. Different perspectives to think about PEFT

39

Parameter Input Function

Some slides and examples adapted from Ruder, Sebastian, Jonas Pfeiffer, and Ivan Vulić on their EMNLP 2022 Tutorial on "Modular and Parameter-

Efficient Fine-Tuning for NLP Models”. For details, check out: https://www.modulardeeplearning.com/

https://www.modulardeeplearning.com/

A Parameter Perspective of Adaptation

40

• Sparse Subnetworks

• Low-rank Composition

3. Sparse subnetworks

41

[Han et al., 2017]

● A common inductive bias on the module parameters is sparsity

● Most common sparsity method: pruning

● Pruning can be seen as applying a binary mask 𝐛 ∈ 0, 1 𝜃 that selectively keeps or
removes each connection in a model and produces a subnetwork.

● Most common pruning criterion: weight magnitude [Han et al., 2017]

https://arxiv.org/abs/1607.04381

Pruning

42

• During pruning, a fraction of the lowest-magnitude weights are removed

• The non-pruned weights are re-trained

• Pruning for multiple iterations is more common (Frankle & Carbin, 2019)

Initial
training

Pruning

Re-training

…

Pruning

Re-training

One-shot pruning

Iterative pruning

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

Pruning and Binary Mask

43

[Zhou et al., 2019]

[Guo et al., 2021]

• We can also view pruning as adding a task-specific vector 𝜙 to the parameters of an
existing model 𝑓𝜃

′ = 𝑓𝜃+𝜙 where 𝜙𝑖 = 0 if 𝑏𝑖 = 0

• If the final model should be sparse, we can multiply the existing weights with the binary
mask to set the pruned weights to 0: 𝑓𝜃

′ = 𝑓𝜃∘𝒃+𝜙. These weight values were moving to

0 anyway [Zhou et al., 2019]

• Diff pruning: we can perform pruning only based on the magnitude of the module
parameters 𝜙 rather than the updated 𝜃 + 𝜙 parameters [Guo et al., 2021]

Element-wise product (Hadamard product)

https://proceedings.neurips.cc/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf
https://aclanthology.org/2021.acl-long.378/

The Lottery Ticket Hypothesis

44

● Dense, randomly-initialized models contain subnetworks (“winning tickets”) that—
when trained in isolation—reach test accuracy comparable to the original network in a
similar number of iterations [Frankle & Carbin, 2019]

● Has also been verified in RL and NLP [Yu et al., 2020] and for larger models in computer
vision [Frankle et al., 2020]

● Prior work [Chen et al., 2020; Prasanna et al., 2020] has found winning tickets in pre-
trained models such as BERT
● Sparsity ratios: from 40% (SQuAD) to 90% (QQP and WNLI)

● Subnetworks trained on a general task like masked language modelling transfer best

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=S1xnXRVFwH
https://openreview.net/forum?id=S1xnXRVFwH
https://openreview.net/forum?id=S1xnXRVFwH
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/1912.05671
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://aclanthology.org/2020.emnlp-main.259/
https://aclanthology.org/2020.emnlp-main.259/
https://aclanthology.org/2020.emnlp-main.259/

A Parameter Perspective of Adaptation

45

✓ Sparse Subnetworks

• Low-rank Composition

4. Revisit the full fine-tuning

46

• Assume we have a pre-trained autoregressive language model 𝑃𝜙(𝑦|𝑥)

• E.g., GPT based on Transformer

• Adapt this pretrained model to downstream tasks (e.g., summarization, QA)

• Training dataset of context-target pairs 𝑥𝑖 , 𝑦𝑖 𝑖=1,…,𝑁

• During full fine-tuning, we update 𝜙𝑜 to 𝜙𝑜 + Δ𝜙 by following the gradient to
maximize the conditional language modeling objective

max
𝜙

෍

(𝑥,𝑦)

෍
𝑡=1

|𝑦|

log(𝑃𝜙(𝑦𝑡|𝑥, 𝑦<𝑡))

LoRA: low rank adaptation (Hu et al., 2021)

47

• For each downstream task, we learn a different set of parameters Δ𝜙

• |Δ𝜙| = 𝜙𝑜

• GPT-3 has a | 𝜙𝑜| of 175 billion

• Expensive and challenging for storing and deploying many independent instances

• Can we do better?

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

LoRA: low rank adaptation (Hu et al., 2021)

48

• For each downstream task, we learn a different set of parameters Δ𝜙

• |Δ𝜙| = |𝜙𝑜|

• GPT-3 has a | 𝜙𝑜| of 175 billion

• Expensive and challenging for storing and deploying many independent instances

• Key idea: encode the task-specific parameter increment Δ𝜙 = Δ𝜙(Θ) by a smaller-
sized set of parameters 𝚯, Θ ≪ |𝜙𝑜|

• The task of finding Δ𝜙 becomes optimizing over Θ

max
Θ

෍

(𝑥,𝑦)

෍
𝑡=1

|𝑦|

log(𝑃𝜙𝑜+Δ𝜙(Θ) (𝑦𝑡|𝑥, 𝑦<𝑡))

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

Low-rank-parameterized update matrices

49

• Updates to the weights have a low “intrinsic
rank” during adaptation (Aghajanyan et al. 2020)

• 𝑊0 ∈ ℝ𝑑×𝑘: a pretrained weight matrix

• Constrain its update with a low-rank
decomposition:

 𝑊0 + Δ𝑊 = 𝑊0 + 𝛼𝐵𝐴

 where 𝐵 ∈ ℝ𝑑×𝑟 , 𝐴 ∈ ℝ𝑟×𝑘 , 𝑟 ≪ min(𝑑, 𝑘)

• 𝛼 is the tradeoff between pre-trained
“knowledge” and task-specific “knowledge”

• Only A and B contain trainable parameters

𝑊 ∈ ℝ𝑑×𝑘

Low-rank-parameterized update matrices

50

• As one increase the number of trainable
parameters, training LoRA converges to training
the original model

• No additional inference latency: when switching
to a different task, recover 𝑊0 by subtracting 𝐵𝐴
and adding a different 𝐵′𝐴′

• Often LoRA is applied to the weight matrices in
the self-attention module

𝑊 ∈ ℝ𝑑×𝑘

Example implementation of LoRA

51 Credit to https://lightning.ai/pages/community/article/lora-llm/

LoRA in practice: scaling up to GPT-3 175B

52

LoRA matches or
exceeds the fine-
tuning baseline on
all three datasets

LoRA exhibits better
scalability and task
performance

Understanding low-rank adaptation

53

From LoRA to QLoRA

54

• QLORA improves over LoRA by
quantizing the transformer model to 4-
bit precision and using paged
optimizer to handle memory

• 4-bit NormalFloat (NF4)

• A new data type that is information
theoretically optimal for normally
distributed weights

Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. "Qlora: Efficient finetuning of quantized llms." arXiv preprint arXiv:2305.14314 (2023).

https://arxiv.org/abs/2305.14314

LoRA matches full finetuning for RL, even with rank as low as 1

55

DeepMath with Qwen3-8b-base. The learning
curve for different ranks and full fine-tuning

https://thinkingmachines.ai/blog/lora/

LoRA shows a wider range of performant learning rates and
arrives at the same peak performance as FullFT

5. An input perspective of adaptation

56
[Li and Liang, 2021; Lester et al., 2021]

(Transformer, LSTM, ++)

☺/

… the movie was …
Learnable prefix
parameters

https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691

Prefix-Tuning (Li and Liang, 2021)

57

• Prefix-Tuning adds a prefix of
parameters and freezes all
pretrained parameters.

• The prefix is a sequence of
continuous task-specific vector
and is processed by the model
just like real words would be,
i.e., “virtual tokens”.

• Advantage: each element of a
batch at inference could run a
different tuned model.

https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190

Prompt-Tuning (Lester et al., 2021)

58

• Learning “soft prompts” to condition frozen LMs to perform downstream tasks

• Prepend virtual tokens to input, and learn embeddings of these special tokens only

https://arxiv.org/pdf/2104.08691
https://arxiv.org/pdf/2104.08691

Prompt tuning only works well at scale

59

• Standard model tuning
achieves strong
performances but requires
scoring separate copies of
model for each end task

• Prompt tuning matches the
quality of model tuning as
size increases

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021).

6. A functional perspective of adaptation

60

• Function composition augments a model’s functions
with new task-specific functions:

• Most commonly used in multi-task learning where
modules of different tasks are composed. Function

Composition

Adapter (Houlsby et al. 2019)

61

• Insert a new function f𝜙 between layers of a pre-

trained model to adapt to a downstream task ---
known as “adapters”

• An adapter in a Transformer layer consists of:

• A feed-forward down-projection 𝑊𝐷 ∈ 𝑅𝑘×𝑑

• A feed-forward up-projection 𝑊𝑈 ∈ 𝑅𝑑×𝑘

• 𝑓𝜙 𝒙 = 𝑊𝑈(𝜎 𝑊𝐷𝒙)

Feedforward
down-projection

Nonlinearity

Feedforward
up-projection

+

https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/pdf/1902.00751.pdf

62

● The adapter is
usually placed after
the multi-head
attention and/or
after the feed-
forward layer

● Most approaches
have used this
bottleneck design
with linear layers

Adapter (Houlsby et al. 2019)

https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/pdf/1902.00751.pdf

Trade-off btw accuracy and # of trained task specific parameters

63

The curves show the 20th, 50th, and 80th
performance percentiles across nine tasks
from the GLUE benchmark.

Adapter based tuning attains a
similar performance to full
finetuning with two orders of
magnitude fewer trained
parameters

Language adapters? Task knowledge ~= language knowledge

64

MLM
(English)

MLM
(Quechuan)

=
~

● Adapters learn transformations that make the
underlying model more suited to a task or language.

● Using masked language modelling (MLM), we can
learn language-specific transformations for e.g.
English and Quechua.

Using adapters for English dialect adaptation

65

Adapting LLMs trained on Standard American English to different English dialects
(Held et al., 2023; Liu et al., 2023)

Pre-Trained Language Model on
Standard American English

Task Adapters

Dialect Adapters

https://aclanthology.org/2023.findings-acl.51/
https://aclanthology.org/2023.findings-acl.51/
https://arxiv.org/abs/2305.13406
https://arxiv.org/abs/2305.13406

Unifying View

66

He et al. [2022]

• He et al. [2022] show that LoRA, prefix tuning, and adapters can be expressed with a
similar functional form

• All methods can be expressed as modifying a model’s hidden representation 𝒉

• Sparsity, structure, low-rank approximations, rescaling, and other properties can also
be applied and combined in many settings

https://openreview.net/pdf?id=0RDcd5Axok

Performance comparison

67

Prompt tuning
underperforms
the other
methods due
to limited
capacity

Adapter
achieves better
performance
but add more
parameters

7. Other variants of (efficient) adaptation

68

• Knowledge distillation to obtain smaller models

• Also check out: Gist tokens (Wu et al., 2024), ReFT(Wu et al, 2024), etc

The generic teacher-student framework for knowledge distillation (Gou et al.,) Shridhar et al., 2023

https://arxiv.org/pdf/2304.08467
https://arxiv.org/pdf/2304.08467
https://arxiv.org/pdf/2404.03592
https://arxiv.org/pdf/2404.03592
https://www.dcs.bbk.ac.uk/~sjmaybank/KD_Survey-arxiv.pdf
https://arxiv.org/pdf/2212.00193.pdf
https://arxiv.org/pdf/2212.00193.pdf

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Overview
	Slide 3: RL (PPO) can be quite complex!!!
	Slide 4: Removing the ‘RL’ from RLHF --- DPO
	Slide 5: Putting it together for DPO
	Slide 6: DPO outperforms prior methods
	Slide 7: Open source RLHF is now mostly (not RL)
	Slide 8: Improving the “RL” from RLHF --- GRPO
	Slide 10: Where does the RLHF data come from?
	Slide 11: Where does the label come from?
	Slide 12: Preference tuning might produce unintended impact
	Slide 13: What’s next for RLHF?
	Slide 14: Emergent abilities of large language models: GPT (2018)
	Slide 15: Emergent abilities of large language models: GPT-2 (2019)
	Slide 16: Emergent zero-shot learning
	Slide 17: Emergent zero-shot learning
	Slide 18: Emergent abilities of large language models: GPT-3 (2020)
	Slide 19: Emergent few-shot learning
	Slide 20: Emergent few-shot learning
	Slide 21: Emergent few-shot learning
	Slide 22: Emergent few-shot learning
	Slide 23: Few-shot learning is an emergent property of model scale
	Slide 24: 1. Prompting
	Slide 25: Limits of prompting for harder tasks?
	Slide 26: Chain-of-thought prompting
	Slide 27: Chain-of-thought prompting is an emergent property of model scale
	Slide 28: Chain-of-thought prompting
	Slide 29: Zero-shot chain-of-thought prompting
	Slide 30: Zero-shot chain-of-thought prompting
	Slide 31: Zero-shot chain-of-thought prompting
	Slide 32: Sensitivity and inconsistency in prompting
	Slide 33: The new dark art of “prompt engineering”?
	Slide 34: The new dark art of “prompt engineering”?
	Slide 35: Downside of prompt–based learning
	Slide 36: 2. From fine-tuning to parameter efficient fine-tuning (PEFT)
	Slide 37: Why do we need efficient adaptation?
	Slide 38: Even the impact of a class like ours
	Slide 39: 2. Different perspectives to think about PEFT
	Slide 40: A Parameter Perspective of Adaptation
	Slide 41: 3. Sparse subnetworks
	Slide 42: Pruning
	Slide 43: Pruning and Binary Mask
	Slide 44: The Lottery Ticket Hypothesis
	Slide 45: A Parameter Perspective of Adaptation
	Slide 46: 4. Revisit the full fine-tuning
	Slide 47: LoRA: low rank adaptation (Hu et al., 2021)
	Slide 48: LoRA: low rank adaptation (Hu et al., 2021)
	Slide 49: Low-rank-parameterized update matrices
	Slide 50: Low-rank-parameterized update matrices
	Slide 51: Example implementation of LoRA
	Slide 52: LoRA in practice: scaling up to GPT-3 175B
	Slide 53: Understanding low-rank adaptation
	Slide 54: From LoRA to QLoRA
	Slide 55: LoRA matches full finetuning for RL, even with rank as low as 1
	Slide 56: 5. An input perspective of adaptation
	Slide 57: Prefix-Tuning (Li and Liang, 2021)
	Slide 58: Prompt-Tuning (Lester et al., 2021)
	Slide 59: Prompt tuning only works well at scale
	Slide 60: 6. A functional perspective of adaptation
	Slide 61: Adapter (Houlsby et al. 2019)
	Slide 62: Adapter (Houlsby et al. 2019)
	Slide 63: Trade-off btw accuracy and # of trained task specific parameters
	Slide 64: Language adapters? Task knowledge ~= language knowledge
	Slide 65: Using adapters for English dialect adaptation
	Slide 66: Unifying View
	Slide 67: Performance comparison
	Slide 68: 7. Other variants of (efficient) adaptation

