
Natural Language Processing
with Deep Learning

CS224N/Ling284

Diyi Yang

Lecture 10: RAG and Language Agents

Overview

From last lecture: PEFT--adapters (5 mins)

1. Question answering and RAG (15 mins)

2. Introducing language agents (5 mins)

3. Reasoning and planning (15 mins)

4. Memory (15 mins)

5. Tool use (10 mins)

6. Agent data and evaluation (15 mins)

• Redeem credits! Select keywords for your project!

• Huggingface tutorial this Friday

A functional perspective of adaptation

3

• Function composition augments a model’s functions
with new task-specific functions:

• Most commonly used in multi-task learning where
modules of different tasks are composed. Function

Composition

Adapter (Houlsby et al. 2019)

4

• Insert a new function f𝜙 between layers of a pre-

trained model to adapt to a downstream task ---
known as “adapters”

• An adapter in a Transformer layer consists of:

• A feed-forward down-projection 𝑊𝐷 ∈ 𝑅𝑘×𝑑

• A feed-forward up-projection 𝑊𝑈 ∈ 𝑅𝑑×𝑘

• 𝑓𝜙 𝒙 = 𝑊𝑈(𝜎 𝑊𝐷𝒙)

Feedforward
down-projection

Nonlinearity

Feedforward
up-projection

+

https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/pdf/1902.00751.pdf

5

● The adapter is
usually placed after
the multi-head
attention and/or
after the feed-
forward layer

● Most approaches
have used this
bottleneck design
with linear layers

Adapter (Houlsby et al. 2019)

https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/pdf/1902.00751.pdf

Trade-off btw accuracy and # of trained task specific parameters

6

The curves show the 20th, 50th, and 80th
performance percentiles across nine tasks
from the GLUE benchmark.

Adapter based tuning attains a
similar performance to full
finetuning with two orders of
magnitude fewer trained
parameters

Language adapters? Task knowledge ~= language knowledge

7

MLM
(English)

MLM
(Quechuan)

=
~

● Adapters learn transformations that make the
underlying model more suited to a task or language.

● Using masked language modelling (MLM), we can
learn language-specific transformations for e.g.
English and Quechua.

Performance comparison

8

Prompt tuning
underperforms
the other
methods due
to limited
capacity

Adapter
achieves better
performance
but add more
parameters

Other variants of (efficient) adaptation

9

• Knowledge distillation to obtain smaller models

• Also check out: Gist tokens (Wu et al., 2024), ReFT(Wu et al, 2024), etc

The generic teacher-student framework for knowledge distillation (Gou et al.,) Shridhar et al., 2023

https://arxiv.org/pdf/2304.08467
https://arxiv.org/pdf/2304.08467
https://arxiv.org/pdf/2404.03592
https://arxiv.org/pdf/2404.03592
https://www.dcs.bbk.ac.uk/~sjmaybank/KD_Survey-arxiv.pdf
https://arxiv.org/pdf/2212.00193.pdf

(Rajpurkar et al, 2016): SQuAD: 100,000+ Questions for Machine Comprehension of Text

1. Question Answering

10

Reading Comprehension

Conventional methods for reading comprehension

Feature-based

• Generate a list of candidate answers (𝑎1, 𝑎2, … , 𝑎𝑀)

• Define a feature vector 𝜙 𝑝, 𝑞, 𝑎𝑖 ∈ 𝑅𝑑: Word/bigram features; Parse tree matches

• Apply a multi-class logistic regression model

Neural approach:

• Problem formulation

• Input: 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑁 , 𝑄 = 𝑞1, 𝑞2, … , 𝑞𝑀
• Output: 1≤ start ≤ end ≤𝑁

• N~100, M ~15

11

Open-domain question answering

• Different from reading comprehension, we don’t assume a given passage.

• Instead, we only have access to a large collection of documents (e.g., Wikipedia). We
don’t know where the answer is located, and the goal is to return the answer for any
open-domain questions.

• Much more challenging and a more practical problem!

Answer (A)Question (Q)

In contrast to closed-domain systems that deal with questions under a specific domain (medicine, technical support).

Retrieval augmentation

13

Document
Reader

Document
Retriever

833,500

https://github.com/facebookresearch/DrQA

Chen et al., 2017. Reading Wikipedia to Answer Open-domain Questions

How many of Warsaw's inhabitants
spoke Polish in 1933?

Using retrieval to overcome LMs’ shortcomings

• Instead of asking the LM to memorize everything, can we provide the LM with relevant
and useful content just-in-time?

• Retrieval / search is a common mechanism for identifying such relevant information.

• Dynamic: it’s easy to update / add documents to your retrieval system

• Interpretable: LM can generate pointers to retrieved documents that support
human verification of its generations (citations)

Retriever-Reader framework

• Input: a large collection of documents 𝒟 = 𝐷1, 𝐷2, … , 𝐷𝑁 and 𝑄

• Output: an answer string 𝐴

A reading comprehension problem!
K is pre-defined (e.g., 100)Retriever: 𝑓(𝒟, 𝑄) ⟶ 𝑃1, … , 𝑃𝐾

Reader: 𝑔(𝑄, {𝑃1, … , 𝑃𝐾}) ⟶ 𝐴

Retriever = A standard TF-IDF information-retrieval sparse model (a fixed module)

Reader = a neural reading comprehension model
• Could be Trained on SQuAD and other distantly-supervised QA datasets
• Or a zero-shot LLM (ChatGPT etc)

RAG and it’s open problems

Retrieval Augmented Generation (RAG) is very powerful!

See also works like REALM, DPR, ORQA etc.. [Lewis et al., 2021]

https://arxiv.org/pdf/2005.11401
https://arxiv.org/pdf/2005.11401

Different types of retrievers

How should we retrieve relevant passages for our retrieval system?

● Word-overlap (BM25)

● Vector retrieval (DPR, Sentence vectors)

● Other, neural systems (ColBERT)

Fast vs slow retrievers

• Fastest: computing similarities (or word overlap) on pre-computed vectors

• Slowest: using a LM to compute similarities

• Other hybrid (pre-computing the ‘document index’) e.g. in ColBERT

We can train the retriever! Joint training of reader and retriever

• Each text passage can be encoded as a vector using BERT and the retriever score can be measured as the
dot product between the question representation and passage representation.

• However, it is not easy to model as there are a huge number of passages (e.g., 21M in English Wikipedia)

Lee et al., 2019. Latent Retrieval for Weakly Supervised Open Domain Question Answering

We can train the retriever!

• Dense passage retrieval (DPR)

• We can also just train the retriever using question-answer pairs!

• Trainable retriever (using BERT) largely outperforms traditional IR retrieval models

Karpukhin et al., 2020. Dense Passage Retrieval for Open-Domain Question Answering

Deep retrieval + generative models

21

• Recent work shows that it is beneficial to generate answers instead of to
extract answers.

Fusion-in-decoder (FID)=DPR+T5

Izacard and Grave 2020. Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering

Problem: How many documents can we use?

The retriever is key – if we have to use only one document, then we have to get that right.

Why not get lots of documents and pass it to the LM?

LM’s can’t pay attention to the entire context

The long-context problem bites you – LMs do not pay attention to its context well!

Setup: 1 relevant document, all others irrelevant

[Liu+ 2023]

Best Closed-Book performance: GPT-3.5-Turbo, ~56%
Best Oracle (only feed in relevant doc) performance: GPT-3.5-Turbo, ~88.5%

https://arxiv.org/abs/2307.03172

In practice: LMs cant use many documents

Retriever performance (yellow)
rises slowly to 90% recall

RAG performance (other lines)
saturate very quickly – after 10-
20 documents.

LLMs with web search (systems that search and cite the web)

25

RARR: research and revise what LLMs say using LLMs [Guo+2023]

26

Uses QA to check for consistency between
sources and responses

Returns citations for each of these items
using a LM.

Revises by detecting disagreement between
the text and citations, then runs an edit
model to revise the text if needed

Evidence snippets are selected to form an
attribution report

https://arxiv.org/pdf/2210.08726
https://arxiv.org/pdf/2210.08726

LLMs citation and hallucinations

27

Unique benefit of RAG: citing
the source

These citations themselves
are generated by LLMs

So the citations could also be
hallucinated .. How often
does that happen?

LLMs citation and hallucinations

28

Unique benefit of RAG: citing
the source

These citations themselves
are generated by LLMs

So the citations could also be
hallucinated .. How often
does that happen?

Outputs are easy to read / appear useful to rater (1-5 scale)

But precision and recall are both low..

2. Language agents: from words to action

29

• LLMs predict textual output for a given input; while agents perform actions based on
observations from the environment/world

• Lots of debate on what is an agent and what is not an agent

• Same with the definition of “agentic”

• Here, we focus on key components of LLM empowered systems or language agents

Action

Observation

Many slides credit to:
Language Agents: Foundations, Prospects, and Risks. Yu Su, Diyi Yang, Shunyu Yao, Tao Yu. EMNLP 2024 Tutorial.

https://language-agent-tutorial.github.io/

Language agents: key components

30

LLM Core

Planning & Reasoning
ReAct / CoT / Reflexion/etc

Memory
Episodic, semantic, procedural, etc

Tools
Retrieval, Calculator, Code, Search, Read/Write Memory…

Agent actions: tool call, interaction, response to users

Environment
(external world)

Desktop OS,
Web browser,
Mobile apps,

Games,
Robots,

Databases,
etcact

observe

Illustration purpose only; not meant to be the exact process of agent development

Other types of common components of language agents

31

https://lilianweng.github.io/posts/2023-06-23-agent/

Cognitive Language Agents
(Sumers and Yao, 2024)

https://arxiv.org/pdf/2309.02427

3. Language agents: Reasoning

32

LLM Core

Planning & Reasoning
ReAct / CoT / Reflexion/etc

Memory
Episodic, semantic, procedural, etc

Tools
Retrieval, Calculator, Code, Search, Read/Write Memory…

Agent actions: tool call, interaction, response to users

Environment
(external world)

Desktop OS,
Web browser,
Mobile apps,

Games,
Robots,

Databases,
etcact

observe

Reasoning

33

• For humans: various mental
processes

• For LLMs: intermediate
generation that imitate
various (but not all) human
mental processes

• For agents: internal actions

*(Kahneman, 2003), also note that this notion of dual process is put in question. See, e.g., Mercier and Sperber (2017)

Action

Observation

think
about
…

Why is reasoning helpful for agents?

34

Obs

Act

Observation to Action mapping could be hard

“The dish should be savory, and since salt is out, I
should find the soy sauce instead. It is in the cabinet to
my right…”

Reasoning

Reason to act

1. Generalization

2. Alignment

You see a cabinet and a table…

You are cooking a dish and seeing salt is out…Obs t

Turn rightAct t

Obs t+1

Open cabinetAct t+1

Reasoning without acting

35

Answer: iPod

Standard

Thought: Let's think step by step. Apple Remote was originally designed to

interact with Apple TV. Apple TV can be controlled by iPhone, iPad, and iPod

Touch. So the answer is iPhone, iPad, and iPod Touch.

Answer: iPhone, iPad, iPod Touch

Reason Only

Question: Aside from the Apple Remote, what other device can control the

program Apple Remote was originally designed to interact with?

Reasoning with acting

36

Question: Aside from the Apple Remote, what other device can control the

program Apple Remote was originally designed to interact with?

ReAct (Reason + Act)

✓

Thought 1: I need to search Apple Remote and find the program it was originally designed to interact with.

Act 1: Search[Apple Remote]

Obs 1: The Apple Remote is a remote control introduced in October 2005 by Apple … originally designed to control

the Front Row media center program ……(long text omitted)

Thought 2: Apple Remote was originally designed to control the Front Row media center program. I need to search

Front Row next and find what other device can control it.

Act 2: Search[Front Row]

Obs 2: Could not find [Front Row]. Similar: ['Front Row Seat to Earth', 'Front Row Motorsports','Front Row

(software)', …]

Thought 3: Front Row is not found. I need to search Front Row (software) .

Act 3: Search[Front Row (software)]

Obs 3: Front Row is a discontinued media center software …(long text omitted)

Thought 4: Front Row (software) is controlled by an Apple Remote or the keyboard function keys. So the answer is

keyboard function keys.

Act 4: Finish[keyboard function keys]

Comparing ReAct with COT, SC

37

• ReAct outperforms Act consistently

• Hallucination is a serious problem for CoT,
and ReAct can help mitigate it to some extent

Self-Consistency [Wang et al., 2023]

• Prompt a language model using chain-of-thought (CoT) prompting;

• Generate a diverse set of reasoning paths

• Aggregate by choosing the most consistent answer in the final answer set.

https://arxiv.org/abs/2203.11171

Reflextion: reinforce agents via natural language feedback

39

• Reflexion agents verbally reflect on task feedback signals, then maintain their own
reflective text to induce better decision-making.

https://arxiv.org/pdf/2303.11366

Reflextion: reinforce agents via natural language feedback

40

• Improve performance compared to ReAct

• Reduce error cases by using self-reflection to distill long, failed trajectories into
relevant experiences that can are used as "self-hints" in the future

https://arxiv.org/pdf/2303.11366

Multi-agent debate to improve reasoning [Du et al., 2023]

41

https://arxiv.org/pdf/2305.14325

42

Multi-agent debate to improve reasoning [Du et al., 2023]

https://arxiv.org/pdf/2305.14325
https://arxiv.org/pdf/2305.14325

Coordinate with Orchestrator

https://www.microsoft.com/en-us/research/publication/magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks/

4. Language agents: Memory

44

LLM Core

Planning & Reasoning
ReAct / CoT / Reflexion/etc

Memory
Episodic, semantic, procedural, etc

Tools
Retrieval, Calculator, Code, Search, Read/Write Memory…

Agent actions: tool call, interaction, response to users

Environment
(external world)

Desktop OS,
Web browser,
Mobile apps,

Games,
Robots,

Databases,
etcact

observe

Different types of memory for language agents

Note: here we only categorize based on memory content, which is inspired by human long-term memory systems

Type by content Definition Examples

Episodic memory Stores experience Generative agents
[Park et al., 2023]

Semantic memory Stores knowledge

Procedural memory Stores skills Voyager
[Wang et al., 2023]

https://en.wikipedia.org/wiki/Long-term_memory
https://en.wikipedia.org/wiki/Long-term_memory
https://en.wikipedia.org/wiki/Long-term_memory
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2305.16291

Generative agents

46

Generative agents: the need for memory

47

● Context window cannot possibly hold all the event streams
● Even if possible, might be hard to attend to relevant events, or digest over them

Episodic memory

48

● Write: append-only event streams
● Read: retrieval based on heuristic scores

Semantic memory

49

● Write: LLM reasoning over events
● Read: retrieval

Procedural memory

50

● Write: Code-based skills
● Read: Embedding retrieval

MemGPT [Packer+2024]

51

OS-inspired LLM system for virtual context management;

Using function calls, LLM agents can read and write to external data sources, modify their
own context, and choose when to return responses to the user.

https://arxiv.org/pdf/2310.08560

MemGPT [Packer+2024]

52

MemGPT’s performance is unaffected by
increased context length

Deep memory retrieval (DMR) performance

https://arxiv.org/pdf/2310.08560
https://arxiv.org/pdf/2310.08560
https://arxiv.org/pdf/2310.08560

5. Language agents: Tool use

53

LLM Core

Planning & Reasoning
ReAct / CoT / Reflexion/etc

Memory
Episodic, semantic, procedural, etc

Tools
Retrieval, Calculator, Code, Search, Read/Write Memory…

Agent actions: tool call, interaction, response to users

Environment
(external world)

Desktop OS,
Web browser,
Mobile apps,

Games,
Robots,

Databases,
etcact

observe

Toolken GPT [Hao et al., 2024]

54

• ToolkenGPT represents each tool as a token (“toolken”) and learns an embedding for it,
enabling tool calls in the same way as generating a regular word token. Once a toolken
is triggered, LM is prompted to complete arguments for the tool to execute.

https://arxiv.org/pdf/2305.11554
https://arxiv.org/pdf/2305.11554
https://arxiv.org/pdf/2305.11554

Toolformer: language models can teach themselves to use tools

55

• Toolformer trains LMs to decide which
APIs to call, when to call them, what
arguments to pass, and how to best
incorporate the results.

• Use self-supervised learning with only a
handful of demonstrations for each API.

• Tools: calculator, Q&A system, search
engine, translation system, calendar.

https://arxiv.org/pdf/2302.04761

Toolformer: language models can teach themselves to use tools

56

• For an input 𝒙, sample a position 𝑖 and corresponding API call candidates 𝑐𝑖
1, 𝑐𝑖

2, … 𝑐𝑖
𝑘.

• We then execute these API calls and filter out all calls which do not reduce the loss 𝐿𝑖
over the next tokens.

• All remaining API calls are interleaved with the original text, resulting in a new text 𝒙∗

https://arxiv.org/pdf/2302.04761

Toolformer: language models can teach themselves to use tools

https://arxiv.org/pdf/2302.04761

Gorilla: LLMs connected with massive APIs (Patil et al., 2023)

58

• Use self-instruct to generate {instruction, API} pairs and fine-tune LLaMa on it

https://arxiv.org/pdf/2305.15334
https://arxiv.org/pdf/2305.15334
https://arxiv.org/pdf/2305.15334

6. Different agent applications, data and evaluation

59

LLM Core

Planning & Reasoning
ReAct / CoT / Reflexion/etc

Memory
Episodic, semantic, procedural, etc

Tools
Retrieval, Calculator, Code, Search, Read/Write Memory…

Agent actions: tool call, interaction, response to users

Environment
(external world)

Desktop OS,
Web browser,
Mobile apps,

Games,
Robots,

Databases,
etcact

observe

Agent applications based on environments and domains

Digital world

• Coding agents

• Gaming agents

• Mobile agents

• Web/app agents

• Computer agents

Physical world

• Robotics

Coding agents

61

● Environment: project code repos, filesystems, IDEs…
● Observation space: code files, exe outputs, docs, errors, commit history…
● Action space: code edits, file search/view, test updates…

SWE-bench (Jimenez & Yang, 2023)

https://www.swebench.com/
https://www.swebench.com/

Web/app agents

62

● Environment: web browsers/apps
● Observation space: screenshots, DOM trees, HTML, historical actions…
● Action space: browser/app controls (e.g., click, type, scroll, drag, hover…)

Mind2Web: Towards a Generalist Agent for the Web, (Deng et al., 2023)
WebArena: A Realistic Web Environment for Building Autonomous Agents, (Zhou et al., 2023)

https://osu-nlp-group.github.io/Mind2Web/
https://arxiv.org/abs/2307.13854

Computer use agents

● Environment: desktop operating systems
● Observation space: desktop screenshots, a11y trees, historical actions…
● Action space: keyboard/mouse controls (e.g., click, type, drag, shortcuts)

OpenAI Universe, (OpenAI, 2016)
OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments, (Xie et al., 2024)

https://openai.com/index/universe
https://os-world.github.io
https://os-world.github.io
https://os-world.github.io

Agent data --- scaling agent data

64

● Human demonstrations
● Expensive and complex infrastructure setup
● Expert time & cost
● Task coverage

● Synthesis/simulation
● Converting online tutorials into direct training demonstrations [Synatra]

https://arxiv.org/abs/2409.15637

Agent data --- scaling agent data

65

● Human demonstrations
● Expensive and complex infrastructure setup
● Expert time & cost
● Task coverage

● Synthesis/simulation
● Converting online tutorials into direct training demonstrations [Synatra]

● Internet-scale data
● Numerous videos/data exist online showing how humans perform (agent) tasks, but

without grounded trajectories

https://arxiv.org/abs/2409.15637

Case study of SWE-smith: scaling data for coding agents

● A toolkit for (1) creating execution environments, and (2) synthesizing 100s to
1000s of task instances for any (Python) GitHub repository [Yang et al., 2025]

66

https://arxiv.org/abs/2504.21798

Training details and results

● Training Technique: Rejection Sampling Fine Tuning
● Models: Claude 3.5/3.7, GPT 4o (Experts); Qwen 2.5 Coder Instruct (Student)
● Agent System: SWE-agent

67

Agent evaluation

68

Challenges in agent evaluation
• Real-world environmental setup complexity
• Task coverage
• Open-ended success criteria

• Multiple valid solution paths
• Cannot script evaluation metrics, need for human judgment

• Evaluation beyond task success

Agent evaluation:

• via benchmarks; via LLMs/VLMs; via crowdsourcing

• See lecture on “Benchmarking and Evaluation”

Language agents: from words to action

69

LLM Core

Planning & Reasoning
ReAct / CoT / Reflexion/etc

Memory
Episodic, semantic, procedural, etc

Tools
Retrieval, Calculator, Code, Search, Read/Write Memory…

Agent actions: tool call, interaction, response to users

Environment
(external world)

Desktop OS,
Web browser,
Mobile apps,

Games,
Robots,

Databases,
etcact

observe

Bonus: building a coding agent (step by step)

70

At its simplest, an AI coding agent is just a big loop

Given a task, e.g. “create a web app for me”, we
kickstart the following loop:

1. The LM proposes an action
2. You execute the action in a code environment

(e.g., bash terminal, docker container, python
interpreter)

3. Tell the LM the output
4. And then repeat steps 2-4!

John Yang

Bonus: building a coding agent (step by step)

71

At its simplest, An AI coding agent is just a big loop. Some pseudocode:

Let’s implement 3 things: query_lm; parse_action; execute_action

Bonus: building a coding agent (step by step)

72

query_lm

Input: messages
Output: LM’s response

parse_action

Input: LM’s response
Output: bash action

execute_action

Input: base action
Output: std. output

Full tutorial here: https://minimal-agent.com/

https://minimal-agent.com/
https://minimal-agent.com/
https://minimal-agent.com/

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Overview
	Slide 3: A functional perspective of adaptation
	Slide 4: Adapter (Houlsby et al. 2019)
	Slide 5: Adapter (Houlsby et al. 2019)
	Slide 6: Trade-off btw accuracy and # of trained task specific parameters
	Slide 7: Language adapters? Task knowledge ~= language knowledge
	Slide 8: Performance comparison
	Slide 9: Other variants of (efficient) adaptation
	Slide 10: 1. Question Answering
	Slide 11: Conventional methods for reading comprehension
	Slide 12: Open-domain question answering
	Slide 13: Retrieval augmentation
	Slide 14: Using retrieval to overcome LMs’ shortcomings
	Slide 15: Retriever-Reader framework
	Slide 16: RAG and it’s open problems
	Slide 17: Different types of retrievers
	Slide 18: Fast vs slow retrievers
	Slide 19: We can train the retriever! Joint training of reader and retriever
	Slide 20: We can train the retriever!
	Slide 21: Deep retrieval + generative models
	Slide 22: Problem: How many documents can we use?
	Slide 23: LM’s can’t pay attention to the entire context
	Slide 24: In practice: LMs cant use many documents
	Slide 25: LLMs with web search (systems that search and cite the web)
	Slide 26: RARR: research and revise what LLMs say using LLMs [Guo+2023]
	Slide 27: LLMs citation and hallucinations
	Slide 28: LLMs citation and hallucinations
	Slide 29: 2. Language agents: from words to action
	Slide 30: Language agents: key components
	Slide 31: Other types of common components of language agents
	Slide 32: 3. Language agents: Reasoning
	Slide 33: Reasoning
	Slide 34: Why is reasoning helpful for agents?
	Slide 35: Reasoning without acting
	Slide 36: Reasoning with acting
	Slide 37: Comparing ReAct with COT, SC
	Slide 38: Self-Consistency [Wang et al., 2023]
	Slide 39: Reflextion: reinforce agents via natural language feedback
	Slide 40: Reflextion: reinforce agents via natural language feedback
	Slide 41: Multi-agent debate to improve reasoning [Du et al., 2023]
	Slide 42: Multi-agent debate to improve reasoning [Du et al., 2023]
	Slide 43: Coordinate with Orchestrator
	Slide 44: 4. Language agents: Memory
	Slide 45: Different types of memory for language agents
	Slide 46: Generative agents
	Slide 47: Generative agents: the need for memory
	Slide 48: Episodic memory
	Slide 49: Semantic memory
	Slide 50: Procedural memory
	Slide 51: MemGPT [Packer+2024]
	Slide 52: MemGPT [Packer+2024]
	Slide 53: 5. Language agents: Tool use
	Slide 54: Toolken GPT [Hao et al., 2024]
	Slide 55: Toolformer: language models can teach themselves to use tools
	Slide 56: Toolformer: language models can teach themselves to use tools
	Slide 57: Toolformer: language models can teach themselves to use tools
	Slide 58: Gorilla: LLMs connected with massive APIs (Patil et al., 2023)
	Slide 59: 6. Different agent applications, data and evaluation
	Slide 60: Agent applications based on environments and domains
	Slide 61: Coding agents
	Slide 62: Web/app agents
	Slide 63: Computer use agents
	Slide 64: Agent data --- scaling agent data
	Slide 65: Agent data --- scaling agent data
	Slide 66: Case study of SWE-smith: scaling data for coding agents
	Slide 67: Training details and results
	Slide 68: Agent evaluation
	Slide 69: Language agents: from words to action
	Slide 70: Bonus: building a coding agent (step by step)
	Slide 71: Bonus: building a coding agent (step by step)
	Slide 72: Bonus: building a coding agent (step by step)

