Representing Low-Resource Language Varieties:
Improved Methods for Spoken Language Processing

Martijn Bartelds
bartelds@dstanford.edu

7 university of faculty of arts
tanior gomingen ./









There is often substantial variation within languages



* There is often substantial variation within languages
* This most clearly observed in spoken language
 Oral vernaculars or no written system
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They do not perform well when handling languages and
dialects with limited resources



Can we use these models to describe and model
language variation”?



Quantifying differences between language
variants automatically without requiring
transcriptions



Studying language variation may give us
important insights into how varieties relate to their
linguistic communities
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Abstract

Deep acoustic models represent linguistic infor-
mation based on massive amounts of data. Un-
fortunately, for regional languages and dialects
such resources are mostly not available. How-
ever, deep acoustic models might have learned
linguistic information that transfers to low-
resource languages. In this study, we evaluate
whether this is the case through the task of dis-
tinguishing low-resource (Dutch) regional vari-
eties. By extracting embeddings from the hid-
den layers of various wav2vec 2.0 models
(including new models which are pre-trained
and/or fine-tuned on Dutch) and using dynamic
time warping, we compute pairwise pronun-
ciation differences averaged over 10 words
for over 100 individual dialects from four (re-
gional) languages. We then cluster the result-
ing difference matrix in four groups and com-
pare these to a gold standard, and a partitioning
on the basis of comparing phonetic transcrip-
tions. Our results show that acoustic models
outperform the (traditional) transcription-based
approach without requiring phonetic transcrip-
tions, with the best performance achieved by
the multilingual XLSR-53 model fine-tuned
on Dutch. On the basis of only six seconds of
speech, the resulting clustering closely matches
the gold standard.

1 Introduction

Deep acoustic models have improved automatic
speech recognition (ASR) substantially in recent
years (Schneider et al., 2019; Baevski et al.,
2020a,b; Conneau et al., 2020). These models
represent linguistic information based on massive
amounts of data. While these models are gen-
erally evaluated on ASR benchmarks, few stud-
ies have addressed what kind of linguistic infor-
mation is represented by them. The work of
Pasad et al. (2021) examined information repre-
sented by the wav2vec 2.0 model (Baevski
etal., 2020b) across the various Transformer layers.
They showed that different layers encode different
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types of linguistic information. Specifically, the
initial layers appeared to be most similar to the
input speech features, whereas the middle layers
mostly encoded contextual information. The final
layers again turned out to be similar to the input
speech features. However, the representations of
the final layers changed when the model was fine-
tuned, likely because task-specific information was
learned. In addition, Ma et al. (2021) investigated
several deep acoustic models using phonetic prob-
ing tasks, and found that representations from these
models capture information useful for distinguish-
ing English phones. Importantly, these deep acous-
tic models were better able to distinguish English
phones than using conventional MFCC or filterbank
features. Although they evaluated the transferabil-
ity of deep acoustic representations across several
domains, it remains unclear whether these mod-
els learned information that transfers to other lan-
guages. This is, however, important when working
on more inclusive speech technology. Especially
when resources for training these models are lack-
ing, such as for regional languages and dialects. In
this paper, we therefore investigate if hidden layers
of deep acoustic models incorporate fine-grained
information, which can be used to represent dif-
ferences between, and in turn distinguish, regional
language varieties.

Past work on investigating language variation
has often been based on computing pronuncia-
tion distances that rely on phonetically transcribed
speech (Nerbonne and Heeringa, 1997; Livescu
and Glass, 2000; Heeringa, 2004). These (edit) dis-
tances have been found to match perceptual judge-
ments of similarity well (Gooskens and Heeringa,
2004; Wieling et al., 2014). However, transcribing
speech phonetically is time-consuming and prone
to errors (Bucholtz, 2007; Novotney and Callison-
Burch, 2010). While automatic approaches for
computing phonetic transcriptions exist (e.g., Li
et al. 2020), they produce lower quality phonetic
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Armen
Deeg
Draden
Duiven
Naalden
Ogen
Pijpen
Tangen
Volk
Vuur

arms
dough
wires
pigeons
needles
eyes
pipes
pliers
people
fire



Standard Frisian Low Saxon Limburgish

Dutch (Joure) (Eelde) (Echt)
Arms aromon  jeromon Paims &Bom
Dough derx deic deix deix

Wires dradon trrdn drodn drei




Only 6 seconds of speech for each location
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Acoustic models

« w2v2-en pre-trained and fine-tuned on 960 hours of English
speech from Librispeech (Baevski et al., 2020)

« w2v2-nl further pre-trained and subsequently fine-tuned on
243 hours of Dutch speech from the Spoken Dutch Corpus

* XLSR—-nl XLSR-53 fine-tuned on 243 hours of Dutch speech
from the Spoken Dutch Corpus
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Perceptual data

* Online survey

* Listen to the 10 words per village and select the (regional)
language

» Approximately 600 ratings per location




Model Layer Method CDistance

Gold Perception
w2v2-en 13 cl 0.34 047
w2v2-nl 16 wa 0.3 044
xlsr-nl 15 cl 0.20 0.39
LD ga 046 0.58
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Conclusions

* XLSR-n1 can be effectively used to distinguish between
language groups in the Netherlands

» Outperformed the LD algorithm that needs time-consuming
phonetic transcriptions

» Multilingual pre-training and fine-tuning on a similar language
(compared to the target languages) is beneficial over using a
monolingual model



Can these models help empower low-resource
languages and their varieties?



Can we use these models to improve low-
resource speech recognition performance?
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Abstract

The performance of automatic speech recogni-
tion (ASR) systems has advanced substantially
in recent years, particularly for languages for
which a large amount of transcribed speech is
available. Unfortunately, for low-resource lan-
guages, such as minority languages, regional
languages or dialects, ASR performance gen-
erally remains much lower. In this study, we
investigate whether data augmentation tech-
niques could help improve low-resource ASR
performance, focusing on four typologically
diverse minority languages or language vari-
ants (West Germanic: Gronings, West-Frisian;
Malayo-Polynesian: Besemah, Nasal). For all
four languages, we examine the use of self-
training, where an ASR system trained with the
available human-transcribed data is used to gen-
erate transcriptions, which are then combined
with the original data to train a new ASR sys-
tem. For Gronings, for which there was a pre-
existing text-to-speech (TTS) system available,
we also examined the use of TTS to generate
ASR training data from text-only sources. We
find that using a self-training approach consis-
tently yields improved performance (a relative
‘WER reduction up to 20.5% compared to us-
ing an ASR system trained on 24 minutes of
manually transcribed speech). The performance
gain from TTS augmentation for Gronings was
even stronger (up to 25.5% relative reduction
in WER compared to a system based on 24
minutes of manually transcribed speech). In
sum, our results show the benefit of using self-
training or (if possible) TTS-generated data as
an efficient solution to overcome the limita-
tions of data availability for resource-scarce lan-
guages in order to improve ASR performance.

1 Introduction

Self-supervised learning (SSL) enables speech rep-
resentation learning without the need for (manu-
ally) labeled data. Although this approach is very
effective, pre-training an SSL model is costly. This
cost (e.g., training time, resources, and memory)

715

increases with the number of languages added to
the model. Furthermore, transferring information
across languages, or extending a pre-trained model
to new data or to a different domain is computa-
tionally expensive, and catastrophic forgetting may
occur (Goodfellow et al., 2013). To alleviate this,
SSL models are therefore often fine-tuned on the
target task with target domain data. For the task of
automatic speech recognition (ASR), fine-tuning
approaches generally require less data, but training
ASR systems that perform well for languages with
very little data remains challenging. This leads
to (digitally) underrepresented communities and
domains such as minority languages, regional lan-
guages and dialects not profiting sufficiently from
most recent technological advancements.

Recent studies explored fine-tuning of pre-
trained self-supervised models for ASR using
speech from low-resource languages (e.g., Coto-
Solano et al. 2022; Guillaume et al. 2022), and
difficulties of modeling resource-scarce languages
and dialects were acknowledged in previous work
(Aksénova et al., 2022). It remains an open ques-
tion to what extent model performance is dependent
on the amount of fine-tuning data and the type of
language, when the total amount of available data
for a language is limited. Having a better under-
standing of how limited training data affects model
performance paves the way for creating meaningful
speech technology for a wider range of languages.

In this paper, we fine-tune pre-trained SSL mod-
els for ASR using varying amounts of data from
four typologically diverse minority languages or
language variants: Gronings, West-Frisian, Be-
semah and Nasal, which have a limited amount of
data available. We specifically investigate whether
data augmentation approaches can be used to gen-
erate additional training data to improve the perfor-
mance of these models, particularly when very little
resources are available. By using data from (ongo-
ing) language documentation projects, we evaluate
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Understanding how limited training data affects
model performance paves the way for creating
more inclusive speech technology



Can standard data augmentation approaches
iImprove low-resource speech recognition
performance using real-world data?



data augmentation approaches

Self-training and TTS-generated speech
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West-Frisian: + 875,000 = Gronings: + 260,000

Images: https://en.wikipedia.org/wiki/Low_German (modified), Anderbeck, K., &
Aprilani, H. (2013). The improbable language: Survey report on the Nasal
language of Bengkulu, Sumatra. SIL Electronic Survey Report, 12, McDonnell,
B. J. (2016). Symmetrical voice constructions in Besemah: A usage-based
approach. University of California, Santa Barbara.
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XLS-R

436,000 hours in 128 languages

= English m Indo-European m Uralic
m Afro-Asiatic = Atlantic-Congo = Other

Image: Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia,
Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf,
Juan Pino, Alexei Baevski, Alexis Conneau, and Michael Auli. 2021. XLS-R:
Self-supervised Cross-lingual Speech Representation Learning at Scale.
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Effect of data size

Data

Image (modified): Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth
Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, and Michael Auli. 2021. XLS-
R: Self-supervised Cross-lingual Speech Representation Learning at Scale.
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Self-training
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Self-training on Gronings
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Gronings synthetic speech
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(c) Results for the Besemah test set. (d) Results for the Nasal test set.
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(b) Results for the out-of-domain Gronings test set.
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Summary

We found that:

Data augmentation techniques may serve as
a cost-effective way to improve low-resource
ASR performance in a real-world setting;

The largest performance gains were observed
when increasing the amounts of manually
transcribed data;

We hope our experiments help further the
development of more inclusive speech
technology.



Summary

To help researchers to include real-world data into their
analysis and applications, we publicly release our
datasets in addition to our code and models.
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