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There is often substantial variation within languages



• There is often substantial variation within languages
• This most clearly observed in spoken language

• Oral vernaculars or no written system



Baevski et al. (2020)



They do not perform well when handling languages and 
dialects with limited resources 



Can we use these models to describe and model 
language variation?



Can we use these models to describe and model 
language variation?

Quantifying differences between language 
variants automatically without requiring 

transcriptions



Studying language variation may give us 
important insights into how varieties relate to their 

linguistic communities
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Abstract

Deep acoustic models represent linguistic infor-
mation based on massive amounts of data. Un-
fortunately, for regional languages and dialects
such resources are mostly not available. How-
ever, deep acoustic models might have learned
linguistic information that transfers to low-
resource languages. In this study, we evaluate
whether this is the case through the task of dis-
tinguishing low-resource (Dutch) regional vari-
eties. By extracting embeddings from the hid-
den layers of various wav2vec 2.0 models
(including new models which are pre-trained
and/or fine-tuned on Dutch) and using dynamic
time warping, we compute pairwise pronun-
ciation differences averaged over 10 words
for over 100 individual dialects from four (re-
gional) languages. We then cluster the result-
ing difference matrix in four groups and com-
pare these to a gold standard, and a partitioning
on the basis of comparing phonetic transcrip-
tions. Our results show that acoustic models
outperform the (traditional) transcription-based
approach without requiring phonetic transcrip-
tions, with the best performance achieved by
the multilingual XLSR-53 model fine-tuned
on Dutch. On the basis of only six seconds of
speech, the resulting clustering closely matches
the gold standard.

1 Introduction

Deep acoustic models have improved automatic
speech recognition (ASR) substantially in recent
years (Schneider et al., 2019; Baevski et al.,
2020a,b; Conneau et al., 2020). These models
represent linguistic information based on massive
amounts of data. While these models are gen-
erally evaluated on ASR benchmarks, few stud-
ies have addressed what kind of linguistic infor-
mation is represented by them. The work of
Pasad et al. (2021) examined information repre-
sented by the wav2vec 2.0 model (Baevski
et al., 2020b) across the various Transformer layers.
They showed that different layers encode different

types of linguistic information. Specifically, the
initial layers appeared to be most similar to the
input speech features, whereas the middle layers
mostly encoded contextual information. The final
layers again turned out to be similar to the input
speech features. However, the representations of
the final layers changed when the model was fine-
tuned, likely because task-specific information was
learned. In addition, Ma et al. (2021) investigated
several deep acoustic models using phonetic prob-
ing tasks, and found that representations from these
models capture information useful for distinguish-
ing English phones. Importantly, these deep acous-
tic models were better able to distinguish English
phones than using conventional MFCC or filterbank
features. Although they evaluated the transferabil-
ity of deep acoustic representations across several
domains, it remains unclear whether these mod-
els learned information that transfers to other lan-
guages. This is, however, important when working
on more inclusive speech technology. Especially
when resources for training these models are lack-
ing, such as for regional languages and dialects. In
this paper, we therefore investigate if hidden layers
of deep acoustic models incorporate fine-grained
information, which can be used to represent dif-
ferences between, and in turn distinguish, regional
language varieties.

Past work on investigating language variation
has often been based on computing pronuncia-
tion distances that rely on phonetically transcribed
speech (Nerbonne and Heeringa, 1997; Livescu
and Glass, 2000; Heeringa, 2004). These (edit) dis-
tances have been found to match perceptual judge-
ments of similarity well (Gooskens and Heeringa,
2004; Wieling et al., 2014). However, transcribing
speech phonetically is time-consuming and prone
to errors (Bucholtz, 2007; Novotney and Callison-
Burch, 2010). While automatic approaches for
computing phonetic transcriptions exist (e.g., Li
et al. 2020), they produce lower quality phonetic
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Armen 
Deeg
Draden
Duiven
Naalden
Ogen
Pijpen
Tangen 
Volk 
Vuur

arms
dough
wires
pigeons
needles
eyes
pipes
pliers
people
fire

-
-
-
-
-
-
-
-
-
-



transcriptions than human transcribers do. Addi-
tionally, (discrete) phonetic transcriptions do not
capture all (continuous) aspects of human speech
(Liberman, 2018).

To mitigate these shortcomings, acoustic ap-
proaches have been developed for investigating lan-
guage variation (Huckvale, 2007; Ferragne and Pel-
legrino, 2010; Strycharczuk et al., 2020; Bartelds
et al., 2020). However, these studies either exclu-
sively focused on the vowels (ignoring differences
in the consonants), or were negatively influenced
by non-linguistic variation in the speech signal.

Recently, Bartelds et al. (2022) found that repre-
sentations from the hidden layers of pre-trained and
fine-tuned wav2vec 2.0 (large) models are suit-
able to represent language variation. They showed
that these representations capture linguistic infor-
mation that is not represented by phonetic transcrip-
tions, while being less sensitive to non-linguistic
variation in the speech signal. Furthermore, this
approach seems to provide a better match to human
perceptual judgements than phonetic transcription-
based approaches.

To investigate if wav2vec 2.0 acoustic mod-
els (including newly trained Dutch models) learn
fine-grained linguistic information that can transfer
to regional languages and dialects, we will assess
whether or not regional languages and dialects spo-
ken in the Netherlands can be distinguished using
these models. Our code and newly trained models
are publicly available.1

2 Dataset

We use Dutch dialect pronunciation recordings
from the Goeman-Taeldeman-Van Reenen-Project
(Goeman and Taeldeman, 1996). Audio recordings
of hundreds of words were obtained (and manually
phonetically transcribed) in the 1980s and 1990s
and are available for 613 dialect varieties in the
Netherlands and Belgium. Unfortunately, the hour-
long audio recordings were not segmented, and the
metadata with the time stamps we use to extract the
audio containing individual word pronunciations
were only partially available. In total, therefore,
we extract the acoustic recordings (judged to be
of sufficient quality) for 10 words (armen: ‘arms’,
deeg: ‘dough’, draden: ‘wires’, duiven: ‘pigeons’,
naalden: ‘needles’, ogen: ‘eyes’, pijpen: ‘pipes’,
tangen: ‘pliers’, volk: ‘people’, vuur: ‘fire’) pro-

1https://github.com/Bartelds/
language-variation

nounced in 106 locations in the Netherlands. On
average, the duration of these 10 words is only 6.3
seconds for each location. Some example pronun-
ciations are shown in Table 1.

Standard Frisian Low Saxon Limburgish

Dutch (Joure) (Eelde) (Echt)

Arms Ar@m@n jEr@m@n Paôms æK@m
Dough deIx deiç dEix deix
Wires drad@n trIdn drOdn dö8i

Table 1: Phonetic transcriptions of the words ‘arms’,
‘dough’, and ‘wires’ obtained from three locations where
different regional languages (Frisian, Low Saxon, and
Limburgish) are spoken, as well as in Standard Dutch.
The names of the locations are provided between paren-
theses.

3 Methods

We compute embeddings from the hidden Trans-
former layers of three fine-tuned deep acoustic
wav2vec 2.0 large models, and subsequently
determine pronunciation differences using dy-
namic time warping (DTW) with these embeddings
(Müller, 2007). We use fine-tuned acoustic mod-
els in this study as their hidden representations
were found to show the closest match with human
perceptual judgements of pronunciation variation
(Bartelds et al., 2022). For the transcription-based
approach, we apply a (phonetically sensitive) Lev-
enshtein distance algorithm to the available corre-
sponding phonetic transcriptions of the 10 words in
all locations. After averaging the word-based dif-
ferences, the result of both approaches is a distance
matrix representing the aggregate pronunciation
difference between every pair of locations. Both
distance matrices are then clustered in four groups
and quantitatively compared to a gold standard clus-
tering of four groups (see Figure 1a). These groups
correspond to the three regional languages spoken
in the Netherlands that are recognised by the Euro-
pean Charter for Regional or Minority Languages
(Frisian: light blue in Figure 1a, Low Saxon: dark
blue, Limburgish: light green) and standard Dutch
(dark green).

We use the fine-tuned English wav2vec 2.0
large model (abbreviated as w2v2-en) released
by Baevski et al. (2020b). In addition, we use
a new pre-trained Dutch wav2vec 2.0 large
model that is fine-tuned on Dutch labelled data
(abbreviated as w2v2-nl), and we use the multi-
lingual XLSR-53 model of Conneau et al. (2020)



Only 6 seconds of speech for each location







Acoustic models
• w2v2-en pre-trained and fine-tuned on 960 hours of English 

speech from Librispeech (Baevski et al., 2020)

• w2v2-nl further pre-trained and subsequently fine-tuned on 
243 hours of Dutch speech from the Spoken Dutch Corpus

• XLSR-nl XLSR-53 fine-tuned on 243 hours of Dutch speech 
from the Spoken Dutch Corpus









Previously applied to distance 
matrices of dialect pronunciations 
(e.g., Heeringa et al. (2002); Prokić
and Nerbonne (2008))



Correlation between the original 
distances and the clustering-based 
cophenetic distances (extracted from the 
dendrogram underlying the clustering)





Perceptual data
• Online survey

• Listen to the 10 words per village and select the (regional) 
language

• Approximately 600 ratings per location





Gold standard 
clustering

xlsr-nl layer 15 
(cl clustering)

w2v2-nl layer 16 
(wa clustering)

w2v2-en layer 13 
(cl clustering)



xlsr-nl layer 15 
(cl clustering)

LD (ga clustering)



Conclusions
• XLSR-nl can be effectively used to distinguish between 

language groups in the Netherlands

• Outperformed the LD algorithm that needs time-consuming 
phonetic transcriptions

• Multilingual pre-training and fine-tuning on a similar language 
(compared to the target languages) is beneficial over using a 
monolingual model



Can these models help empower low-resource 
languages and their varieties?



Can we use these models to improve low-
resource speech recognition performance?
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Abstract

The performance of automatic speech recogni-
tion (ASR) systems has advanced substantially
in recent years, particularly for languages for
which a large amount of transcribed speech is
available. Unfortunately, for low-resource lan-
guages, such as minority languages, regional
languages or dialects, ASR performance gen-
erally remains much lower. In this study, we
investigate whether data augmentation tech-
niques could help improve low-resource ASR
performance, focusing on four typologically
diverse minority languages or language vari-
ants (West Germanic: Gronings, West-Frisian;
Malayo-Polynesian: Besemah, Nasal). For all
four languages, we examine the use of self-
training, where an ASR system trained with the
available human-transcribed data is used to gen-
erate transcriptions, which are then combined
with the original data to train a new ASR sys-
tem. For Gronings, for which there was a pre-
existing text-to-speech (TTS) system available,
we also examined the use of TTS to generate
ASR training data from text-only sources. We
find that using a self-training approach consis-
tently yields improved performance (a relative
WER reduction up to 20.5% compared to us-
ing an ASR system trained on 24 minutes of
manually transcribed speech). The performance
gain from TTS augmentation for Gronings was
even stronger (up to 25.5% relative reduction
in WER compared to a system based on 24
minutes of manually transcribed speech). In
sum, our results show the benefit of using self-
training or (if possible) TTS-generated data as
an efficient solution to overcome the limita-
tions of data availability for resource-scarce lan-
guages in order to improve ASR performance.

1 Introduction

Self-supervised learning (SSL) enables speech rep-
resentation learning without the need for (manu-
ally) labeled data. Although this approach is very
effective, pre-training an SSL model is costly. This
cost (e.g., training time, resources, and memory)

increases with the number of languages added to
the model. Furthermore, transferring information
across languages, or extending a pre-trained model
to new data or to a different domain is computa-
tionally expensive, and catastrophic forgetting may
occur (Goodfellow et al., 2013). To alleviate this,
SSL models are therefore often fine-tuned on the
target task with target domain data. For the task of
automatic speech recognition (ASR), fine-tuning
approaches generally require less data, but training
ASR systems that perform well for languages with
very little data remains challenging. This leads
to (digitally) underrepresented communities and
domains such as minority languages, regional lan-
guages and dialects not profiting sufficiently from
most recent technological advancements.

Recent studies explored fine-tuning of pre-
trained self-supervised models for ASR using
speech from low-resource languages (e.g., Coto-
Solano et al. 2022; Guillaume et al. 2022), and
difficulties of modeling resource-scarce languages
and dialects were acknowledged in previous work
(Aksënova et al., 2022). It remains an open ques-
tion to what extent model performance is dependent
on the amount of fine-tuning data and the type of
language, when the total amount of available data
for a language is limited. Having a better under-
standing of how limited training data affects model
performance paves the way for creating meaningful
speech technology for a wider range of languages.

In this paper, we fine-tune pre-trained SSL mod-
els for ASR using varying amounts of data from
four typologically diverse minority languages or
language variants: Gronings, West-Frisian, Be-
semah and Nasal, which have a limited amount of
data available. We specifically investigate whether
data augmentation approaches can be used to gen-
erate additional training data to improve the perfor-
mance of these models, particularly when very little
resources are available. By using data from (ongo-
ing) language documentation projects, we evaluate
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wav2vec 2.0: A Framework for Self-Supervised
Learning of Speech Representations
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Abstract

We show for the first time that learning powerful representations from speech
audio alone followed by fine-tuning on transcribed speech can outperform the best
semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks
the speech input in the latent space and solves a contrastive task defined over a
quantization of the latent representations which are jointly learned. Experiments
using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other
test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0
outperforms the previous state of the art on the 100 hour subset while using 100
times less labeled data. Using just ten minutes of labeled data and pre-training
on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the
feasibility of speech recognition with limited amounts of labeled data.1

1 Introduction

Neural networks benefit from large quantities of labeled training data. However, in many settings
labeled data is much harder to come by than unlabeled data: current speech recognition systems
require thousands of hours of transcribed speech to reach acceptable performance which is not
available for the vast majority of the nearly 7,000 languages spoken worldwide [31]. Learning purely
from labeled examples does not resemble language acquisition in humans: infants learn language by
listening to adults around them - a process that requires learning good representations of speech.

In machine learning, self-supervised learning has emerged as a paradigm to learn general data
representations from unlabeled examples and to fine-tune the model on labeled data. This has been
particularly successful for natural language processing [43, 45, 9] and is an active research area for
computer vision [20, 2, 36, 19, 6].

In this paper, we present a framework for self-supervised learning of representations from raw audio
data. Our approach encodes speech audio via a multi-layer convolutional neural network and then
masks spans of the resulting latent speech representations [26, 56], similar to masked language
modeling [9]. The latent representations are fed to a Transformer network to build contextualized rep-
resentations and the model is trained via a contrastive task where the true latent is to be distinguished
from distractors [54, 49, 48, 28] (§ 2).

As part of training, we learn discrete speech units [53, 32, 7, 18] via a gumbel softmax [24, 5]
to represent the latent representations in the contrastive task (Figure 1) which we find to be more
effective than non-quantized targets. After pre-training on unlabeled speech, the model is fine-tuned

1Code and models are available at https://github.com/pytorch/fairseq

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

XLS-R: SELF-SUPERVISED CROSS-LINGUAL SPEECH
REPRESENTATION LEARNING AT SCALE

Arun Babu4⇤, Changhan Wang4⇤, Andros Tjandra4, Kushal Lakhotia⌃†, Qiantong Xu4,
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ABSTRACT

This paper presents XLS-R, a large-scale model for cross-lingual speech represen-
tation learning based on wav2vec 2.0. We train models with up to 2B parameters on
nearly half a million hours of publicly available speech audio in 128 languages, an
order of magnitude more public data than the largest known prior work. Our evalu-
ation covers a wide range of tasks, domains, data regimes and languages, both high
and low-resource. On the CoVoST-2 speech translation benchmark, we improve the
previous state of the art by an average of 7.4 BLEU over 21 translation directions
into English. For speech recognition, XLS-R improves over the best known prior
work on BABEL, MLS, CommonVoice as well as VoxPopuli, lowering error rates
by 14-34% relative on average. XLS-R also sets a new state of the art on VoxLin-
gua107 language identification. Moreover, we show that with sufficient model size,
cross-lingual pretraining can perform as well as English-only pretraining when
translating English speech into other languages, a setting which favors monolingual
pretraining. We hope XLS-R can help to improve speech processing tasks for many
more languages of the world. Models and code are available at www.github.com/
pytorch/fairseq/tree/master/examples/wav2vec/xlsr.1

1 INTRODUCTION

Self-supervised learning of generic neural representations has gathered much recent interest with a
large body of work in natural language processing (NLP; Radford et al. 2018; Baevski et al. 2019;
Devlin et al. 2019; Raffel et al. 2019), computer vision (Chen et al., 2020; He et al., 2020; Caron
et al., 2021) as well as speech processing (van den Oord et al., 2018; Schneider et al., 2019; Baevski
et al., 2020b; Hsu et al., 2021b; Chung et al., 2021). Self-supervised learning provides general
representations that can be used across domains and languages.

Multilingually pretrained NLP models such as mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020) or mT5 (Xue et al., 2020) brought significant improvements in multilingual language
understanding (Conneau et al., 2018; Hu et al., 2020; Ruder et al., 2021). These models offer a
promising path towards more ubiquitous NLP technology by improving performance for low-resource
languages through leveraging data from high-resource languages. Furthermore, it is only necessary
to maintain a single multilingual model instead of a myriad of monolingual models.

For speech processing, self-supervised approaches such as wav2vec 2.0 (Baevski et al., 2020b; Xu
et al., 2021) have also been extended to the multilingual setting (Kawakami et al., 2020; Conneau
et al., 2021). The recent XLSR (Conneau et al., 2021) leverages cross-lingual transfer from high-
resource languages to build better representations for languages with little unlabeled data. The
largest model, XLSR-53, was trained on about 50K hours of public training data in 53 languages and
comprises about 300M parameters (Conneau et al., 2021). But such models only scratch the surface
of self-supervised cross-lingual speech representation learning.

⇤Equal contribution.
†Work done while at Facebook AI.
‡Equal advising.
1Hugging Face: https://huggingface.co/models?other=xls_r
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Robust Speech Recognition via Large-Scale Weak Supervision

Alec Radford * 1 Jong Wook Kim * 1 Tao Xu 1 Greg Brockman 1 Christine McLeavey 1 Ilya Sutskever 1

Abstract
We study the capabilities of speech processing
systems trained simply to predict large amounts of
transcripts of audio on the internet. When scaled
to 680,000 hours of multilingual and multitask
supervision, the resulting models generalize well
to standard benchmarks and are often competitive
with prior fully supervised results but in a zero-
shot transfer setting without the need for any fine-
tuning. When compared to humans, the models
approach their accuracy and robustness. We are
releasing models and inference code to serve as
a foundation for further work on robust speech
processing.

1. Introduction
Progress in speech recognition has been energized by the
development of unsupervised pre-training techniques exem-
plified by Wav2Vec 2.0 (Baevski et al., 2020). Since these
methods learn directly from raw audio without the need for
human labels, they can productively use large datasets of un-
labeled speech and have been quickly scaled up to 1,000,000
hours of training data (Zhang et al., 2021), far more than the
1,000 or so hours typical of an academic supervised dataset.
When fine-tuned on standard benchmarks, this approach
has improved the state of the art, especially in a low-data
setting.

These pre-trained audio encoders learn high-quality repre-
sentations of speech, but because they are purely unsuper-
vised they lack an equivalently performant decoder mapping
those representations to usable outputs, necessitating a fine-
tuning stage in order to actually perform a task such as
speech recognition1. This unfortunately limits their use-
fulness and impact as fine-tuning can still be a complex
process requiring a skilled practitioner. There is an addi-
tional risk with requiring fine-tuning. Machine learning

*Equal contribution 1OpenAI, San Francisco, CA 94110, USA.
Correspondence to: Alec Radford <alec@openai.com>, Jong
Wook Kim <jongwook@openai.com>.

1Baevski et al. (2021) is an exciting exception - having devel-
oped a fully unsupervised speech recognition system

methods are exceedingly adept at finding patterns within a
training dataset which boost performance on held-out data
from the same dataset. However, some of these patterns are
brittle and spurious and don’t generalize to other datasets
and distributions. In a particularly disturbing example, Rad-
ford et al. (2021) documented a 9.2% increase in object
classification accuracy when fine-tuning a computer vision
model on the ImageNet dataset (Russakovsky et al., 2015)
without observing any improvement in average accuracy
when classifying the same objects on seven other natural
image datasets. A model that achieves “superhuman” per-
formance when trained on a dataset can still make many
basic errors when evaluated on another, possibly precisely
because it is exploiting those dataset-specific quirks that
humans are oblivious to (Geirhos et al., 2020).

This suggests that while unsupervised pre-training has im-
proved the quality of audio encoders dramatically, the lack
of an equivalently high-quality pre-trained decoder, com-
bined with a recommended protocol of dataset-specific fine-
tuning, is a crucial weakness which limits their usefulness
and robustness. The goal of a speech recognition system
should be to work reliably “out of the box” in a broad range
of environments without requiring supervised fine-tuning of
a decoder for every deployment distribution.

As demonstrated by Narayanan et al. (2018), Likhomanenko
et al. (2020), and Chan et al. (2021) speech recognition sys-
tems that are pre-trained in a supervised fashion across many
datasets/domains exhibit higher robustness and generalize
much more effectively to held-out datasets than models
trained on a single source. These works achieve this by
combining as many existing high-quality speech recogni-
tion datasets as possible. However, there is still only a
moderate amount of this data easily available. SpeechStew
(Chan et al., 2021) mixes together 7 pre-existing datasets
totalling 5,140 hours of supervision. While not insignifi-
cant, this is still tiny compared to the previously mentioned
1,000,000 hours of unlabeled speech data utilized in Zhang
et al. (2021).

Recognizing the limiting size of existing high-quality super-
vised datasets, recent efforts have created larger datasets for
speech recognition. By relaxing the requirement of gold-
standard human-validated transcripts, Chen et al. (2021) and
Galvez et al. (2021) make use of sophisticated automated

UNSUPERVISED CROSS-LINGUAL REPRESENTATION
LEARNING FOR SPEECH RECOGNITION

Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli
Facebook AI

ABSTRACT

This paper presents XLSR which learns cross-lingual speech representations by
pretraining a single model from the raw waveform of speech in multiple languages.
We build on wav2vec 2.0 which is trained by solving a contrastive task over masked
latent speech representations and jointly learns a quantization of the latents shared
across languages. The resulting model is fine-tuned on labeled data and experi-
ments show that cross-lingual pretraining significantly outperforms monolingual
pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme
error rate reduction of 72% compared to the best known results. On BABEL, our
approach improves word error rate by 16% relative compared to a comparable
system. Our approach enables a single multilingual speech recognition model
which is competitive to strong individual models. Analysis shows that the latent
discrete speech representations are shared across languages with increased shar-
ing for related languages. We hope to catalyze research in low-resource speech
understanding by releasing XLSR-53, a large model pretrained in 53 languages.1

1 INTRODUCTION

Cross-lingual learning aims to build models which leverage data from other languages to improve
performance. This has been a long standing interest in the speech community (Byrne et al., 2000;
Le & Besacier, 2009; Ghoshal et al., 2013; Huang et al., 2013; Gales et al., 2017; Cho et al., 2018;
Seki et al., 2018) which includes systems able to transcribe multiple languages (Burget et al., 2010;
Bourlard et al., 2011; Heigold et al., 2013; Toshniwal et al., 2018; Kannan et al., 2019). However, the
vast majority of work in speech processing has focused on supervised cross-lingual training which
requires labeled data in multiple languages. Transcribed speech is often much scarcer than unlabeled
speech and requires non-trivial human annotation.

Unsupervised representation learning, or pretraining, does not require labeled data and has received
a lot of recent attention in computer vision (Tian et al., 2019; He et al., 2019; Chen et al., 2020)
after much success in natural language processing (Peters et al., 2018; Devlin et al., 2018). For the
latter, cross-lingual pretraining has been shown to be very effective, particularly, for low resource
languages (Lample & Conneau, 2019; Conneau et al., 2019). In speech processing, most work in this
area has focused on monolingual unsupervised representation learning (van den Oord et al., 2018;
Chung & Glass, 2018; Schneider et al., 2019; Chung et al., 2019; Baevski et al., 2020b; Harwath
et al., 2020; Jiang et al., 2019; Tjandra et al., 2019; Eloff et al., 2019; Baevski et al., 2020a).

In this paper, we focus on the cross-lingual setting by learning representations on unlabeled data that
generalize across languages. We build on the pretraining approach of Baevski et al. (2020c) which
jointly learns contextualized speech representations as well as a discrete vocabulary of latent speech
representations. The latter serves to effectively train the model with a contrastive loss (§ 2) and the
discrete speech representations are shared across languages (Figure 1). Different to recent work on
unsupervised cross-lingual pretraining, we fine-tune the Transformer part of the model instead of
freezing all pretrained representations (Rivière et al., 2020) or feeding them to a separate downstream
model (Kawakami et al., 2020). We extend the work of Rivière et al. (2020) by pretraining on multiple
languages instead of just English and we experiment on top of a stronger baseline.

1https://github.com/pytorch/fairseq/tree/master/examples/wav2vec

1

ar
X

iv
:2

00
6.

13
97

9v
2 

 [c
s.C

L]
  1

5 
D

ec
 2

02
0



Understanding how limited training data affects 
model performance paves the way for creating 

more inclusive speech technology



Can standard data augmentation approaches 
improve low-resource speech recognition 

performance using real-world data?



Can standard data augmentation approaches  
improve low-resource speech recognition 

performance using real-world data?

Self-training and TTS-generated speech



1

XLST: Cross-lingual Self-training to Learn
Multilingual Representation for Low Resource

Speech Recognition
Zi-Qiang Zhang, Yan Song, Ming-Hui Wu, Xin Fang, Li-Rong Dai

Abstract—In this paper, we propose a weakly supervised mul-
tilingual representation learning framework, called cross-lingual
self-training (XLST). XLST is able to utilize a small amount
of annotated data from high-resource languages to improve
the representation learning on multilingual un-annotated data.
Specifically, XLST uses a supervised trained model to produce
initial representations and another model to learn from them,
by maximizing the similarity between output embeddings of
these two models. Furthermore, the moving average mechanism
and multi-view data augmentation are employed, which are
experimentally shown to be crucial to XLST. Comprehensive
experiments have been conducted on the CommonVoice corpus
to evaluate the effectiveness of XLST. Results on 5 downstream
low-resource ASR tasks shows that our multilingual pretrained
model achieves relatively 18.6% PER reduction over the state-
of-the-art self-supervised method, with leveraging additional 100
hours of annotated English data.

Index Terms—Multilingual representation learning, cross-
lingual self-training, low-resource speech recognition.

I. INTRODUCTION

Modern automatic speech recognition (ASR) systems are
usually trained on hundreds of hours of annotated data [1], [2],
which is not available for most of low-resource languages [3].
To tackle the low-resource ASR problem, pretraining tech-
niques have shown to be promising, where effective speech
representations are first learned from other available materials
(e.g. out-of-language data or un-annotated speech data), then
transferring to the target low-resource language.

Existing pretraining methods can be conducted in either
supervised or unsupervised manners. Early researches focus on
supervised pretraining with annotated data of one or multiple
high-resource languages [4]–[17]. The pretrained model is
used either as the feature extractor [4]–[9], or to initialize the
target acoustic model in hybrid [10]–[13] and end-to-end [14]–
[17] systems.

Compared with supervised methods, unsupervised pretrain-
ing has the advantage of employing large amount of un-
annotated speech data. In this scenario, an unsupervised model
is expected to learn meaningful representations from speech,
ideally carrying phonetic structures like a supervised model.
For example, it could be trained by reconstructing input

Z.-Q. Zhang, Y. Song, X. Fang and L.-R. Dai are with the National
Engineering Laboratory for Speech and Language Information Processing,
University of Science and Technology of China, Hefei 230027, China, (e-
mail: zz12375@mail.ustc.edu.cn; songy@ustc.edu.cn; klg@mail.ustc.edu.cn;
lrdai@ustc.edu.cn).

frames [18]–[23] in a masked or auto-regressive manner. Re-
cently, self-supervised methods catch much interests in speech
community [24]. Contrastive loss implemented by distinguish-
ing between positive and negative samples is proposed there to
learn more discriminative representations as well as preventing
model collapse [25]–[27]. Among them, Wav2vec 2.0 [27] is
one of the state-of-the-art methods both on in-language and
cross-lingual pretraining [28]. Despite its promising results,
Wav2vec 2.0 framework is computationally expensive [27].

For a specific language, there is another way to utilize both
annotated and un-annotated data called self-training [29], [30]
or teacher-student learning [31]–[33]. A teacher model is first
trained on an annotated speech dataset of the target language to
produce initial pseudo labels for a larger un-annotated speech
dataset of the same language, and then a student model is
trained with such pseudo-annotated data. Though self-training
is capable of making full use of both annotated and un-
annotated data, it is not designed specifically for representation
learning, and is a kind of training within one language where
both annotated and un-annotated data comes from the same
language.

In this work we consider improving multilingual represen-
tation learning by leveraging a certain amount of annotated
data from high-resource languages. Inspired by self-training,
we propose the Cross-lingual Self-training (XLST) as a new
kind of multilingual pretraining framework. XLST supposes
that frame-level acoustic representations could be shared in
some degree across different languages. Its training procedure
is similar to the usual self-training with the main difference
that the annotated and un-annotated data comes from different
languages, i.e. annotated data from high-resource languages
and un-annotated data from low-resource languages. Further-
more, instead of producing pseudo labels, XLST generates
frame embeddings as training targets. Inspired by [34], [35],
we implement XLST with parallel networks, one for producing
targets and another for acoustic modeling. They are tied in a
moving average (MA) way [34] so that the produced targets
could be refined online. These two networks take different
augmented views of a same input and the loss is computed as
their output dissimilarity.

Our work is also related to a very recent method, Unis-
peech [36], which also utilized annotated data of high-resource
languages to improve multilingual representations. While they
used all data simultaneously by multi-task learning under
Wav2vec 2.0 [27] framework and here we employ the pro-
posed XLST.
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ABSTRACT

Self-training (ST), or pseudo-labeling has sparked significant interest in the au-
tomatic speech recognition (ASR) community recently because of its success in
harnessing unlabeled data. Unlike prior semi-supervised learning approaches that
relied on iteratively regenerating pseudo-labels (PLs) from a trained model and us-
ing them to train a new model, recent state-of-the-art methods perform ‘continuous
training’ where PLs are generated using a very recent version of the model being
trained. Nevertheless, these approaches still rely on bootstrapping the ST using
an initial supervised learning phase where the model is trained on labeled data
alone. We believe this has the potential for over-fitting to the labeled dataset in low
resource settings and that ST from the start of training should reduce over-fitting.
In this paper we show how we can do this by dynamically controlling the evolution
of PLs during the training process in ASR. To the best of our knowledge, this is the
first study that shows the feasibility of generating PLs from the very start of the
training. We are able to achieve this using two techniques that avoid instabilities
which lead to degenerate models that do not generalize. Firstly, we control the
evolution of PLs through a curriculum that uses the online changes in PLs to control
the membership of the cache of PLs and improve generalization. Secondly, we find
that by sampling transcriptions from the predictive distribution, rather than only
using the best transcription, we can stabilize training further. With these techniques,
our ST models match prior works without an external language model.

1 INTRODUCTION

The past few years have witnessed a growth in methods that leverage large amount of unlabeled
data in domains such as speech, vision and language to produce state-of-the-art results, e.g. Baevski
et al. (2020; 2022); Chen et al. (2020a); Caron et al. (2021); He et al. (2022); Cai et al. (2022);
Brown et al. (2020); Ramesh et al. (2021). Amongst the techniques that have made this possible
are self-supervised learning (SSL) and self-training (ST) (Scudder, 1965; Lee, 2013). While SSL is
typically used in unsupervised settings, ST is applied in supervised settings where labeled data can be
extended with unlabeled data that is labeled using a prior model, a process known as pseudo-labeling
(PL). These techniques can reduce the burden of expensive labeling processes while successfully
train data hungry models such as transformers using large quantities of unlabeled data.

Current state-of-the-art SSL methods in speech (Baevski et al., 2020; Hsu et al., 2021; Baevski et al.,
2022; Chung et al., 2021) are typically trained in two phases. First, the models are pre-trained on
thousands of hours of unlabeled speech, and then they are further adapted by fine-tuning on the actual
task of automatic speech recognition (ASR) using a smaller supervised set. However, because the
pre-training (PT) phase is task agnostic, self-supervision can under-perform on a specific downstream
task (Talnikar et al., 2021; Dery et al., 2022). Further, SSL pre-training leads to a more complicated
pipeline involving multiple phases. By contrast, ST algorithms also use unlabeled data but do not
require phases of training with different objectives that makes the training pipeline simpler.

In this paper, we focus on recent ST algorithms that perform ‘continuous training’ of a single model.
In contrast to earlier ST training methods that iterate between generating PLs over the entire unlabeled
dataset and training a model (teacher-student) (Synnaeve et al., 2020; Kahn et al., 2020a; Zhang

⇤Work done during internship at Apple.
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GENERATING SYNTHETIC AUDIO DATA FOR ATTENTION-BASED
SPEECH RECOGNITION SYSTEMS
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RWTH Aachen University, 52074 Aachen, Germany
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ABSTRACT
Recent advances in text-to-speech (TTS) led to the develop-
ment of flexible multi-speaker end-to-end TTS systems. We
extend state-of-the-art attention-based automatic speech recog-
nition (ASR) systems with synthetic audio generated by a TTS
system trained only on the ASR corpora itself. ASR and TTS
systems are built separately to show that text-only data can
be used to enhance existing end-to-end ASR systems with-
out the necessity of parameter or architecture changes. We
compare our method with language model integration of the
same text data and with simple data augmentation methods
like SpecAugment and show that performance improvements
are mostly independent. We achieve improvements of up to
33% relative in word-error-rate (WER) over a strong base-
line with data-augmentation in a low-resource environment
(LibriSpeech-100h), closing the gap to a comparable oracle
experiment by more than 50%. We also show improvements
of up to 5% relative WER over our most recent ASR baseline
on LibriSpeech-960h.

Index Terms— Speech Recognition, End-to-End, Data
Augmentation, Speech Synthesis

1. INTRODUCTION & RELATED WORK

Recently published automatic speech recognition (ASR) sys-
tems are based on deep neural network approaches, either in
combination with hidden-markov-models (hybrid approach)
or as a standalone end-to-end system. While hybrid deep neu-
ral network architectures provide state-of-the-art performance,
recent results using end-to-end architectures show competing
performance on large resource tasks [1]. Improvements were
achieved by using new data augmentation methods such as
SpecAugment [2] or using advanced pre-training schemes [3].
For medium to low resource tasks, hybrid architectures are still
superior to end-to-end approaches [1]. To further increase the
performance of end-to-end systems in low resource conditions,
untranscribed speech or text can be used as additional training
data. A previously published approach is the text-to-encoder
(TTE) model which can integrate additional text [4] or untran-
scribed speech [5] into ASR training. Another method is the

joint training of ASR and text-to-speech (TTS) systems such as
the Speech Chain approach [6–8] or variants of it [9]. Training
TTS systems on external data to create audio features for ASR
has also been investigated in [10, 11]. The usage of TTS in the
context of ASR training was inspired by recent advances in
end-to-end TTS systems with multispeaker capabilities such
as Tacotron [12], Tacotron-2 [13] and Deep-Voice [14].

Most of the previously presented approaches require that
the ASR and TTS systems share at least a common feature pro-
cessing pipeline and operate on the same kind of audio features.
Especially for approaches where ASR and TTS are trained
jointly, this is a strict requirement. In contrast to that, our ap-
proach includes a completely separate end-to-end TTS system
with a Griffin & Lim (G&L) vocoder [15] for synthetic wave-
form generation instead of synthetic feature generation. While
related work covering independent TTS systems [10, 11] uses
additional data, our TTS system is only trained on the ASR cor-
pus itself. The synthetic data is stored as compressed audio and
can be used for any kind of speech recognition system, with no
relation to the TTS system. For adaptive speaker embeddings,
we compare global-style-tokens (GST) [16] and i-vector repre-
sentations [17]. To the best of our knowledge, previous work
on integrating synthesized data from TTS systems to ASR
did not include a comparison with other data-augmentation
techniques. Thus, we compare our TTS approach to SpecAug-
ment [2] and speed-perturbation [18]. We also include a direct
comparison with language-model integration of the same text
data as used to generate synthetic speech. The experiments
in this work were managed with Sisyphus [19] and the ASR
and TTS systems were implemented in RETURNN [20]. The
RETURNN configs will be made publicly available1.

2. ATTENTION-BASED SPEECH RECOGNITION

2.1. Model
Our baseline model for LibriSpeech-100h consists of 6 bi-
directional long-short-term-memory (LSTM) encoder layers,
and a single LSTM decoder layer, following [3]. The encoder

1https://github.com/rwth-i6/returnn-experiments/tree/
master/2019-asr-synthetic-data
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MAGIC DUST FOR CROSS-LINGUAL ADAPTATION OF MONOLINGUAL WAV2VEC-2.0
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ABSTRACT

We propose a simple and effective cross-lingual transfer learning
method to adapt monolingual wav2vec-2.0 models for Automatic
Speech Recognition (ASR) in resource-scarce languages. We show
that a monolingual wav2vec-2.0 is a good few-shot ASR learner in
several languages. We improve its performance further via several
iterations of Dropout Uncertainty-Driven Self-Training (DUST) by
using a moderate-sized unlabeled speech dataset in the target lan-
guage. A key finding of this work is that the adapted monolingual
wav2vec-2.0 achieves similar performance as the topline multilin-
gual XLSR model, which is trained on fifty-three languages, on the
target language ASR task.

Index Terms— Cross-lingual transfer learning, self training,
self-supervised Learning, ASR, adaptation

1. INTRODUCTION

Few-shot learning, the ability to train a machine to exhibit intelligent
behavior via a small amount of supervision has been a long-standing
research goal in Artificial Intelligence. To build few-shot learners we
turn to a class of transfer learning (TL) methods that extract knowl-
edge from vast quantities of unlabeled data to make the task of learn-
ing from a few labeled examples easier. Recently, Self-Supervised
Learning (SSL) has emerged as a promising TL approach of learning
from unlabeled data [1–3].

SSL [4, 5] refers to the process of Pre-Training (PT) a model on
unlabeled data using an SSL task, such as masked self-prediction [2].
The Pre-Trained model is then Fine-Tuned (FT) on the target task via
a few labeled examples. Hence, SSL forms the first stage of the PT
then FT (PT ! FT) sequential TL framework [6]. Recently, speech
neural net encoders Pre-Trained using the wav2vec2 SSL frame-
work have proven to be excellent few-shot learners for automatic
speech recognition (ASR) across multiple languages [7,8]. However,
wav2vec2 assumes access to massive amounts of unlabeled data for
PT, which diminishes their usefulness to resource-scarce languages,
where the massive unlabeled data assumption does not hold.

To remedy the above issue, [8] proposes xlsr, a cross-lingual
sequential TL framework of the form mPT ! FT, i.e., Multilingual
Pre-Training of wav2vec2 followed by target language ASR fine-
tuning on a few labeled examples. Indeed, Pre-Trained xlsr is an
excellent few-shot learner for ASR in multiple languages. However,
in this work we show that xlsr’s ASR performance is quite poor
if there is a domain mismatch between the target language speech
and the speech data used to Pre-Train xlsr. Thus, to make xlsr a
truly universal speech model, we would have to Pre-Train on speech
from all languages in all possible speech domains, which is clearly

This work uses HPC resources of IDRIS under the allocation
AD011012527 made by GENCI.

an unscalable strategy. Instead, in this work, we propose a TL frame-
work that could efficiently adapt any Pre-Trained wav2vec2 model,
monolingual or multilingual, to make it a good few-shot ASR learner
in any target language in any speech domain.

In this work, motivated by the SSL framework’s limitations
when developing ASR for a resource-scarce language, we propose a
simple yet effective cross-lingual TL framework (§2) for wav2vec2
model adaptation to a target language. Our adaptation framework
is a sequential TL framework consisting of three steps: First, we
Pre-Train a wav2vec2 model on a high-resource language. Second,
we perform supervised fine-tuning of the Pre-Trained wav2vec2
model on the target language ASR task using ten hours of labeled
data. Finally, we perform Dropout Uncertainty-Driven Self-Training
(DUST) [9] using a hundred hours of unlabeled speech data in the
target language for adaptation of the Fine-Tuned wav2vec2 model.

Through this work, we make the following contributions: 1)
We analyze the cross lingual transferability of several Pre-Trained
English wav2vec2 models (Table 1) across eight target languages.
We show that by simply fine-tuning English wav2vec2 on ten hours
of labeled data in target languages, we can recover on average up
to 86% of the performance of the fine-tuned multilingual xlsr
topline. Still, there is a considerable gap in performance between
wav2vec2 and xlsr on target languages that are considered in-
domain for xlsr, but the gap is much smaller on a more challenging
out-of-domain Arabic target language. Another interesting finding
is that ASR Fine-Tuning of the Pre-Trained wav2vec2 models on
labeled data in the source language (English) before Fine-Tuning
on the target languages hurts cross-lingual transfer. 2) We adapt
an English wav2vec2 model to two target languages, French and
Arabic, under the constraint that in each target language we have
ten hours of labeled data for ASR training and a hundred hours
of unlabeled data for adaptation. For French, we show that by
starting with a Pre-Trained English wav2vec2 model and applying
the proposed adaptation procedure (§2), we are able to reach sim-
ilar ASR performance as the xlsr topline. For Arabic, both the
xlsr and English wav2vec2 perform poorly and hence, we apply
the adaptation procedure to both the models and improve the ASR
performance considerably. A key finding of this study is that it is
possible to adapt a monolingual wav2vec2 model Pre-Trained on a
high-resource language using moderately-sized unlabeled data and
small-sized labeled data in the target language to achieve similar
performance as the multilingual wav2vec2 model Pre-Trained on
multiple languages. Although the amount of unlabeled data that we
use for adaptation is orders of magnitude smaller than the data used
to Pre-Train wav2vec2 models, a moderate-sized unlabeled dataset
might not be available for extremely resource-scarce and endangered
languages. This scenario is out of scope for this paper.

6647978-1-6654-0540-9/22/$31.00 ©2022 ���� ������ 2022
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PSEUDO-LABELING FOR MASSIVELY MULTILINGUAL SPEECH RECOGNITION

Loren Lugosch1⇤, Tatiana Likhomanenko2†, Gabriel Synnaeve2, Ronan Collobert2†

1McGill University / Mila, 2Facebook AI Research

ABSTRACT
Semi-supervised learning through pseudo-labeling has

become a staple of state-of-the-art monolingual speech recog-
nition systems. In this work, we extend pseudo-labeling to
massively multilingual speech recognition with 60 languages.
We propose a simple pseudo-labeling recipe that works well
even with low-resource languages: train a supervised multi-
lingual model, fine-tune it with semi-supervised learning on
a target language, generate pseudo-labels for that language,
and train a final model using pseudo-labels for all languages,
either from scratch or by fine-tuning. Experiments on the la-
beled Common Voice and unlabeled VoxPopuli datasets show
that our recipe can yield a model with better performance for
many languages that also transfers well to LibriSpeech.

Index Terms— speech recognition, massively multilin-
gual models, semi-supervised learning, pseudo-labeling

1. INTRODUCTION

One of the long-term goals of automatic speech recognition
(ASR) research is a single system that can transcribe speech
in any language [1, 2]. Such a multilingual system would be
simpler to maintain than a collection of monolingual mod-
els, enable users to comfortably speak any language without
needing to tell the system which language to expect in ad-
vance, and share knowledge between all languages for im-
proved performance.

A key ingredient of modern state-of-the-art monolingual
ASR missing from current multilingual models is pseudo-
labeling [3], a technique for harnessing unlabeled datasets
that has recently begun consistently yielding performance
gains even for ASR tasks with large labeled datasets like
LibriSpeech [4, 5, 6]. In pseudo-labeling, a model trained on
a labeled dataset is used to generate labels for an unlabeled
dataset, and those pseudo-labels (PLs) are then used to train a
model. Many variants of pseudo-labeling exist: for instance,
the same model used to generate PLs can also be trained on
those PLs [7, 8, 9], or PLs generated by a teacher model can
be used to train a new student model [4, 6, 10, 11].

In this work, we go beyond the monolingual setting and
demonstrate the use of pseudo-labeling to improve a mas-
sively multilingual speech recognizer trained on all 60 lan-

⇤Work done during an internship at FAIR. †Currently at Apple.
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Fig. 1. Illustration of our method: to produce better pseudo-
labels for a given language, we first fine-tune the multilingual
model on that language.

guages of the Common Voice dataset [12] simultaneously.
First, we show that self-training on all unlabeled data in the
multilingual VoxPopuli dataset [13] at once tends to produce
poor PLs for low-resource languages, and instead propose a
simple recipe (Fig. 1) in which the model is first fine-tuned
for a particular language before pseudo-labeling. Next, we
compare a number of methods for training with the generated
PLs, and find that training a larger model from scratch on all
labeled and pseudo-labeled data works best. Finally, we show
that the use of pseudo-labeled data improves out-of-domain
generalization through experiments on LibriSpeech [14]. Un-
like much previous work on this topic, our experiments use
only open-source data, and we release our code and models.1

2. MODEL

The model used in our experiments is identical to the neu-
ral network used for LibriSpeech in [9], except for the out-
put layer(s). The output of the encoder is fed to a CTC [15]
head and a language identification (LID) head. The CTC head

1https://github.com/flashlight/wav2letter/blob/
49087d575ddf77aa5a99a01fee980fc00e92c802/recipes/
mling_pl/README.md
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SELF-TRAINING FOR END-TO-END SPEECH RECOGNITION

Jacob Kahn, Ann Lee, Awni Hannun

Facebook AI Research

ABSTRACT

We revisit self-training in the context of end-to-end speech
recognition. We demonstrate that training with pseudo-labels
can substantially improve the accuracy of a baseline model.
Key to our approach are a strong baseline acoustic and lan-
guage model used to generate the pseudo-labels, filtering
mechanisms tailored to common errors from sequence-to-
sequence models, and a novel ensemble approach to increase
pseudo-label diversity. Experiments on the LibriSpeech cor-
pus show that with an ensemble of four models and label
filtering, self-training yields a 33.9% relative improvement
in WER compared with a baseline trained on 100 hours of
labelled data in the noisy speech setting. In the clean speech
setting, self-training recovers 59.3% of the gap between the
baseline and an oracle model, which is at least 93.8% rela-
tively higher than what previous approaches can achieve.

Index Terms— speech recognition, semi-supervised,
deep learning

1. INTRODUCTION

Building automatic speech recognition (ASR) systems re-
quires a large amount of transcribed data. Compared with
hybrid models, the performance of end-to-end models signif-
icantly degrades as the amount of available training data de-
creases [1]. Transcribing large quantities of audio is both ex-
pensive and time-consuming, and thus many semi-supervised
training approaches have been proposed to take advantage of
abundant unpaired audio and text data. One such approach,
self-training [2], uses noisy labels generated from a model
trained on a much smaller labelled data set.

We revisit self-training in the context of sequence-to-
sequence models. Self-training has not been carefully studied
in end-to-end speech recognition. We start from training a
strong baseline acoustic model on a small paired data set and
performing stable decoding [3] with a language model (LM)
trained on a large-scale text corpus to generate pseudo-labels.
We evaluate one heuristic and one confidence-based method
for pseudo-label filtering [4–7] tailored to the mistakes often
encountered with sequence-to-sequence models. In addition,
we propose an ensemble approach that combines multiple
models during training to improve label diversity and keep
the model from being overly confident to noisy pseudo-labels.

We demonstrate the effectiveness of self-training on Lib-
riSpeech [8], a publicly available corpus of read speech. In
particular, we study the trade-off between the amount of un-
paired audio data, the quality of the pseudo-labels, and the
model performance. We find that in the clean speech setting,
as the label quality is high, the model performance depends
heavily on the amount of data. In the noisy speech setting,
a proper filtering mechanism is essential for removing noisy
pseudo-labels. In addition, using an ensemble of models can
be complementary to filtering.

Compared with other semi-supervised methods with
sequence-to-sequence models [9, 10], we show that self-
training achieves a 93.8% relatively higher WER recovery
rate (WRR) [11] on the clean test set, a metric indicating
how much the gap between a supervised baseline and an
oracle can be bridged. One goal of this work is to provide
a publicly-available and reproducible benchmark to which
future semi-supervised approaches in ASR can compare.

2. MODEL

Our sequence-to-sequence model is an encoder-decoder ar-
chitecture with attention [12, 13]. Let X = [X1, . . . , XT ]
be the frames of speech with transcription Y = [y1, . . . , yU ].
The encoder maps X into a key-value hidden representation:


K
V

�
= encode(X) (1)

where K = [K1, . . . ,KT ] are the keys and V = [V1 . . . , VT ]
are the values. We use a fully convolutional encoder with
time-depth separable (TDS) blocks proposed in [3]. The de-
coder is given by

Qu = RNN(yu�1, Qu�1) (2)
Su = attend(Qu,K, V ) (3)

P (yu | X, y<u) = h(Su, Qu). (4)

The RNN encodes the previous token and query vector Qu�1

to produce the next query vector. The attention mechanism
produces a summary vector Su with a simple inner product:

attend(K,V,Q) = V · softmax
✓

1p
d
K>Q

◆
(5)

where d is the hidden dimension of K (as well as Q and V ).
h(·) computes a distribution over the output tokens.
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ABSTRACT
Text-to-speech synthesis (TTS) has been used as a data

augmentation approach for automatic speech recognition
(ASR), leveraging additional texts for ASR training. How-
ever, in low resource tasks, usually only a limited number of
speakers are available, leading to the lack of speaker varia-
tions in synthetic speech. In this paper, we propose a novel
speaker augmentation approach which can synthesize data
with sufficient speaker and text diversity. Here, an end-to-end
TTS system is trained with speaker representations from a
variational auto-encoder (VAE), which enables TTS to syn-
thesize speech from unseen new speakers via sampling from
the trained latent distribution. As a new type of data aug-
mentation approach, speaker augmentation can be combined
with traditional feature augmentation approaches, such as
SpecAugment. Experiments on a switchboard task show
that, given 50 hours of data, the proposed speaker augmenta-
tion with SpecAugment significantly reduces word error rate
(WER) by 30% relative compared to the system without any
data augmentation, and about 18% relative compared to the
system with SpecAugment.

Index Terms— Low resource, speech recognition, speech
synthesis, variational autoencoder

1. INTRODUCTION
Training data for automatic speech recognition(ASR) in cer-
tain speaking style or certain language is sometimes limited.
Though collecting additional data is a simple solution, it may
be difficult in many cases. Data augmentation is an alternative
that increases the quantity of training data.

The first type of data augmentation methods is producing
variations on acoustic features. Noise augmentation[1] and
speed perturbation[2] have been successfully applied to low
resource ASR[3]. Recently, SpecAugment[4] is proposed as
a powerful data augmentation approach using time warping
and frequency masking.

The second type of data augmentation approach is lever-
aging additional texts with text-to-speech synthesis(TTS).

This study was supported by the Major Program of Science and Tech-
nology Commission of Shanghai Municipality (STCSM) 17JC1404104 and
Major Program of National Social Science Foundation of China (No.
18ZDA293).

Speech chain training mechanism[5] develops a closed-loop
and utilizes unpaired data for ASR training. [6] applies one-
shot speaker adaptation to speech chain and extends TTS to
handle speech from unknown speakers. ASR domain adap-
tation is explored in [7] using a TTS system. It trains TTS
on source domain data and synthesizes speech with only tar-
get domain text for ASR training, thereby obtaining a better
ASR model on target domain. [8] conducts experiments on
Librispeech[9] augmented with synthetic data and achieves
better WER for character-level based ASR models.

However, in low resource tasks, dataset often contains
small number of speakers. Most prior works use only speak-
ers that appear in training dataset for speech synthesis. There-
fore, synthetic speech could provide only limited speaker di-
versity for data augmentation.

To address this problem, we propose a speaker augmen-
tation approach. We train a Tacotron2[10], an end-to-end
speech synthesis model, conditioned on speaker representa-
tions from a variational autoencoder(VAE)[11], similar to [12,
13]. Additionally, we jointly train a speaker classifier that
takes latent variables as input. This encourages audio en-
coder to produce latent variables containing speaker informa-
tion, assisting the model convergence. Applying the above
techniques, our TTS model is able to synthesize speech from
unseen new speakers via sampling from the trained latent dis-
tribution, providing sufficient speaker variations in synthetic
speech for data augmentation. In our experiments, the base-
line system uses only speakers that appear in the real data
for speech synthesis. Given 5 hours real data, the proposed
speaker augmentation approach reduces WER by 7% rela-
tive from the baseline. Our later experiments demonstrate that
ASR still benefits from our approach when SpecAugment is
combined, especially when more real data is available.

Then we investigate how our approach performs as the
texts for speech synthesis increase. Given 50 hours data, we
use additional text from Fisher corpus and try to find the con-
vergence of WER reduction. The results show that our ap-
proach with SpecAugment significantly reduces word error
rate(WER) by 30% relative compared to the system without
any data augmentation, and about 18% relative compared to
the system with SpecAugment.

In the rest of the paper, we first introduce our speaker aug-
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ABSTRACT

Recent success of the Tacotron speech synthesis architecture
and its variants in producing natural sounding multi-speaker
synthesized speech has raised the exciting possibility of re-
placing expensive, manually transcribed, domain-specific,
human speech that is used to train speech recognizers. The
multi-speaker speech synthesis architecture can learn latent
embedding spaces of prosody, speaker and style variations
derived from input acoustic representations thereby allowing
for manipulation of the synthesized speech. In this paper,
we evaluate the feasibility of enhancing speech recognition
performance using speech synthesis using two corpora from
different domains. We explore algorithms to provide the
necessary acoustic and lexical diversity needed for robust
speech recognition. Finally, we demonstrate the feasibility
of this approach as a data augmentation strategy for domain-
transfer. We find that improvements to speech recognition
performance is achievable by augmenting training data with
synthesized material. However, there remains a substantial
gap in performance between recognizers trained on human
speech those trained on synthesized speech.
Index Terms: speech synthesis, speech recognition, Tacotron,
LAS, sequence models

1. INTRODUCTION

Speech synthesis (text-to-speech or TTS) performance has
improved in recent years. These improvements have been
so dramatic that, in some cases, synthesized speech is in-
distinguishable from human speech [1]. One reliable way,
perhaps even the most reliable way, to improve automatic
speech recognition (ASR) performance is to add more tran-
scribed training data. If speech synthesis is equivalent to hu-
man speech, adding more transcribed training data generated
by speech synthesis should improve speech recognition per-
formance. In this paper, we test this hypothesis. We explore
this using data augmentation, where the human speech train-
ing data is combined with various amounts and types of syn-
thesized material.

Our experiments use two corpora. LIBRISPEECH is a
960 hour corpus of books read by non-professional speak-
ers [2] divided into a 460 hour “clean” portion and a 500

hour “other” partition. These partitions are created by speaker
splits with those speakers whose speech is easy to recognize
being put in the “clean” partition, and more difficult speakers
in “other”. We also use ISOLATED-SENTENCES, an internal
corpus of shorter utterances read in diverse recording condi-
tions. ISOLATED-SENTENCES contains 76 hours of material
across 201k utterances collected from 1,988 speakers. The
number of speakers in this corpus is similar to LIBRISPEECH,
but the total material is significantly less.

The connection with speech synthesis and speech recog-
nition has been explored previously (cf. Section 2). We draw
particular comparison with [3], prior work exploring speech
synthesis based data augmentation on LIBRISPEECH.

For speech synthesis, we use a Tacotron 2 [1] based multi-
speaker speech synthesis model with a WaveRNN vocoder
[4]. Specifics of the model are described in Section 3. We
train slightly different version of the synthesizer whether
training on LIBRISPEECH or ISOLATED-SENTENCES. For
speech recognition we use an end-to-end, encoder-decoder
with attention recognizer (cf. Section 4). We use the
same recognition model for LIBRISPEECH recognition and
ISOLATED-SENTENCES recognition.

We describe LIBRISPEECH data augmentation experi-
ments in Section 5. The synthesizer is capable of producing
speech from multiple speakers based on a fixed sized speaker
embedding. We describe different approaches to controlling
the speaker representation and report their impact on data
augmentation performance in Section 5.2. We also inves-
tigate how ASR performance is impacted as we reduce the
amount of human speech (cf. Section 5.3). This seeks to ad-
dress the question of whether training data can be replaced by
synthesized material and with what impact on performance.

Data augmentation is a well-established method to ap-
proximate noise and variability in training data to improve
robustness and generalizability at evaluation or inference time
[5]. Resynthesis of training utterances addresses speaker vari-
ability by generating multiple readings of the training utter-
ances from different (synthesized) speakers. However, this
speaker variability is only part of the variability that speech
recognition needs to be robust to; we expect a recognizer
to recognize lexically diverse utterances. To that end, we
demonstrate the use of speech synthesis to include unseen ut-
terances in the training data, resulting in a more robust recog-
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Map 1. Nasal language of southwest Sumatra 

 

1.1 Nasal in context 

1.1.1 Physical setting  
The Nasal language area is located in southern Bengkulu Province, about one hour’s drive down the 
coast from the nearest city, Bintuhan. The Nasal language group is composed of three villages just north 
of the Lampung Province border in the Kaur regency: Tanjung Betuah and Gedung Menung in Muara 
Nasal district, and Tanjung Baru in Maje district. As with nearly all groups in southern Sumatra, the 
Nasal people largely hold to the Islamic religion. Although close to the coast, the Nasal group seems 
primarily oriented culturally toward the Air Nasal,3 the river from which the group takes its name. The 
Nasal River is one of dozens of short rivers, their headwaters in the Bukit Barisan mountain range, 
                                                   
3 Air Nasal could also be translated ‘nasal fluid’, but we would not recommend it. 
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Map 1. Nasal language of southwest Sumatra 

 

1.1 Nasal in context 

1.1.1 Physical setting  
The Nasal language area is located in southern Bengkulu Province, about one hour’s drive down the 
coast from the nearest city, Bintuhan. The Nasal language group is composed of three villages just north 
of the Lampung Province border in the Kaur regency: Tanjung Betuah and Gedung Menung in Muara 
Nasal district, and Tanjung Baru in Maje district. As with nearly all groups in southern Sumatra, the 
Nasal people largely hold to the Islamic religion. Although close to the coast, the Nasal group seems 
primarily oriented culturally toward the Air Nasal,3 the river from which the group takes its name. The 
Nasal River is one of dozens of short rivers, their headwaters in the Bukit Barisan mountain range, 
                                                   
3 Air Nasal could also be translated ‘nasal fluid’, but we would not recommend it. 
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Figure 2: Visualization of the TTS-based approach, where synthetic speech is generated by an existing TTS model
(trained on a separate two-hour single-speaker dataset), and new models are subsequently trained on both manually
transcribed speech and synthetic speech.

(a) Results for the Gronings test set. (b) Results for the West-Frisian test set.

(c) Results for the Besemah test set. (d) Results for the Nasal test set.

Figure 3: WERs for the test sets of Gronings, West-Frisian, Besemah, and Nasal using varying amounts of training
data. Hatched bars indicate when additional training data generated by self-training (ST) was used.

fine-tune the model. Additionally, when a model
was fine-tuned on data obtained using self-training,
the performance gains were minimal (up to 1.7%
improvement).

5.2 Additional Generated Training Data

The effect of using additional augmented training
data on ASR model performance is visualized in
Figure 5a. To better evaluate these results, we also
added the self-training results shown in Figure 3a

to this figure. Our results for self-training show
that increasing the amount of automatically gener-
ated fine-tuning data is beneficial, albeit to a lesser
extent than the benefit of using the first set of 168
minutes of speech with automatically generated
transcriptions. Nevertheless, the performance of
the model fine-tuned using 24 minutes of manually
transcribed speech data plus 672 minutes of speech
data with automatically generated transcriptions
yields a relative WER reduction of 20.5% com-
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(a) Results for the regular Gronings test set. (b) Results for the out-of-domain Gronings test set.

Figure 5: WERs for the regular test set and out-of-domain test set of Gronings when additional training data
generated by self-training (ST) or a text-to-speech system (TTS) was used.

ditional data obtained through iterative self-training
performed almost as well as a model fine-tuned on
double the amount of manually transcribed speech
data. Importantly, self-training only requires col-
lecting additional unlabeled speech data, which is
typically much easier to obtain than transcribed
speech, making it a valuable approach for low-
resource languages.

Moreover, using an existing TTS system for gen-
erating additional synthetic training data was like-
wise shown to be beneficial. We observed that the
benefit of augmenting the training data via the TTS
system yielded larger performance gains (even on
par with a model fine-tuned on four times the mini-
mum amount of manually transcribed speech data
we considered) than using the iterative self-training
procedure. However, in contrast to self-training, no
beneficial effect was present when increasing the
amount of generated data. This pattern held true
irrespective of using the general test set for evalua-
tion or an out-of-domain test set instead. While not
many minority languages have a suitable TTS sys-
tem available, generating speech data using such a
system is very easy as it only requires written text.
Of course, our results also show that when the ma-
terial is available to train a TTS system (i.e. using
audio recordings and associated transcriptions) it
is likely better to use these resources directly for
training the ASR system.

While we showed the benefit of iterative self-
training when a very small amount of training data
is available, the benefit of supplying more and more
self-trained training data was diminishing. Our re-
sult extends the findings for English by Xu et al.

(2020) to a new set of languages variants. It is pos-
sible that the transcriptions generated by a specific
teacher model in the self-training approach con-
tain useful information, but that this is negated to a
large extent by the generated errors of the model.
As teacher models fine-tuned on larger amounts of
manually transcribed training data are expected to
yield higher quality transcriptions (as shown in e.g.,
San et al. 2022), the effect of generating more data
might be more beneficial in these cases. However,
this should be investigated in future work.

When using the TTS system for augmenting our
training data, we did not see a benefit of increas-
ing the amount of generated synthetic speech. As
the additional training data represents data from a
single speaker (as the TTS system was trained on
the basis of data from a single speaker), the model
might have been been overfitting to that specific
speaker. Future work, therefore, needs to inves-
tigate alternatives (or additions) to using a TTS
system for generating additional training data. For
example, by investigating whether model perfor-
mance can be improved using speaker adaptation
methods or cross-lingual voice conversion (e.g.,
Rossenbach et al. 2020b; Baas and Kamper 2022).

We found only minor performance gains when
we fine-tuned the XLS-R model that was further pre-
trained on Gronings (using all training and devel-
opment data). Specifically, self-training appeared
to have greater performance gains than continuing
pre-training (CPT), and combining CPT and self-
training only marginally improved results. Given
the large computational cost of CPT as opposed to
the two data augmentation methods, it is clear that
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lecting additional unlabeled speech data, which is
typically much easier to obtain than transcribed
speech, making it a valuable approach for low-
resource languages.

Moreover, using an existing TTS system for gen-
erating additional synthetic training data was like-
wise shown to be beneficial. We observed that the
benefit of augmenting the training data via the TTS
system yielded larger performance gains (even on
par with a model fine-tuned on four times the mini-
mum amount of manually transcribed speech data
we considered) than using the iterative self-training
procedure. However, in contrast to self-training, no
beneficial effect was present when increasing the
amount of generated data. This pattern held true
irrespective of using the general test set for evalua-
tion or an out-of-domain test set instead. While not
many minority languages have a suitable TTS sys-
tem available, generating speech data using such a
system is very easy as it only requires written text.
Of course, our results also show that when the ma-
terial is available to train a TTS system (i.e. using
audio recordings and associated transcriptions) it
is likely better to use these resources directly for
training the ASR system.

While we showed the benefit of iterative self-
training when a very small amount of training data
is available, the benefit of supplying more and more
self-trained training data was diminishing. Our re-
sult extends the findings for English by Xu et al.

(2020) to a new set of languages variants. It is pos-
sible that the transcriptions generated by a specific
teacher model in the self-training approach con-
tain useful information, but that this is negated to a
large extent by the generated errors of the model.
As teacher models fine-tuned on larger amounts of
manually transcribed training data are expected to
yield higher quality transcriptions (as shown in e.g.,
San et al. 2022), the effect of generating more data
might be more beneficial in these cases. However,
this should be investigated in future work.

When using the TTS system for augmenting our
training data, we did not see a benefit of increas-
ing the amount of generated synthetic speech. As
the additional training data represents data from a
single speaker (as the TTS system was trained on
the basis of data from a single speaker), the model
might have been been overfitting to that specific
speaker. Future work, therefore, needs to inves-
tigate alternatives (or additions) to using a TTS
system for generating additional training data. For
example, by investigating whether model perfor-
mance can be improved using speaker adaptation
methods or cross-lingual voice conversion (e.g.,
Rossenbach et al. 2020b; Baas and Kamper 2022).

We found only minor performance gains when
we fine-tuned the XLS-R model that was further pre-
trained on Gronings (using all training and devel-
opment data). Specifically, self-training appeared
to have greater performance gains than continuing
pre-training (CPT), and combining CPT and self-
training only marginally improved results. Given
the large computational cost of CPT as opposed to
the two data augmentation methods, it is clear that
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We found that:

Data augmentation techniques may serve as 
a cost-effective way to improve low-resource 
ASR performance in a real-world setting;

The largest performance gains were observed 
when increasing the amounts of manually 
transcribed data;

We hope our experiments help further the 
development of more inclusive speech 
technology.

Summary



To help researchers to include real-world data into their 
analysis and applications, we publicly release our 
datasets in addition to our code and models.
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