CS 224S / Linguist 285 Spoken Language Processing

Andrew Maas | Stanford University | Spring 2024

Lecture 2: Phonetics

CS 224S / LINGUIST 285 Spoken Language Processing

Announcements

- Homework 1 Available on the website
 - Due on Monday April 15 at 11:59pm Pacific
- Homework is Colab and written section
 - Today's lecture will help with phonetic transcription!
 - Phonetic transcription can be ambiguous
 - In Homework 1 we give points for multiple correct answers when there is ambiguity
 - Use only the restricted set of phonemes in Arpabet (not full IPA)
- Office hours:
 - Andrew's on Wednesdays after class on the patio outside (including today)
 - TA office hours start next week

Outline

- Phonetics Overview
- ARPAbet Phonetic Transcription
- Articulatory Phonetics: How we produce sounds
- Acoustic Phonetics: How we produce and visualize sound waves
- Overview of Prosody: Conveying meaning beyond just the words we say

Phonetics Overview

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing Lecture 2: Phonetics Overview

Phonetics Overview

- ARPAbet
 - An alphabet for transcribing American English phonetic sounds

Articulatory Phonetics

• How speech sounds are made by articulators (moving organs) in mouth

Acoustic Phonetics

• Acoustic properties of speech sounds

• Some vocabulary:

- Phone: Any distinct speech sound or gesture
- Phoneme: A speech sound that conveys meaning (a syllable or word would change if the phoneme were swapped)
- Allophone: A distinct speech sound that does not affect word meaning (i.e. variations of sounds within the same phoneme category)

Do we need phonetics to build systems that accurately process spoken language?

- Modern systems (based on deep learning) are far less reliant on encoding phonetic domain knowledge directly than previous approaches
 - Allowing deep learning models to learn letter-sound mappings from data can perform much better than hand engineering phonetic structure into a recognition or synthesis system
- However ...
- Basic understanding of phonetics and speech production helps with describing and debugging spoken language systems
 - E.g. how does an accent change the sound of pronunciations?
- Phonetic categories are not arbitrary. They model the biology of *how* humans produce speech
 - Understanding the space of possible speech sounds gives a nice perspective on comparing spoken languages across the world, and how they evolve

ARPAbet Transcription

- An alphabet for transcribing American English phonetic sounds
- Prominent because a lot of early speech recognition research focused on English
- ARPAbet does not contain many sounds that occur in languages other than English

English Vowels

In ARPAbet

	b_d	ARPA		b_d	ARPA
1	bead	iy	9	bode	ow
2	bid	ih	10	booed	uw
3	bayed	ey	11	bud	ah
4	bed	eh	12	bird	er
5	bad	ae	13	bide	ay
6	bod(y)	аа	14	bowed	aw
7	bawd	ao	15	Boyd	оу
8	Budd(hist)	uh			

Note: Many speakers pronounce Buddhist with the vowel [uw] as in booed.

So for them [uh] is instead the vowel in "put" or "book"

https://corpus.linguistics.berkeley.e du/acip/

Articulatory Parameters for English Consonants

In ARPAbet

	Place of articulation															
u		bilabial		labiodental int		inter-o	inter-dental		alveolar		palatal		velar		glottal	
Manner of articulatio	stop	р	b					t	d			k	g	q		
	fric.			f	V	th	dh	S	Z	sh	zh			h		
	affric.									ch	jh					
	nasal		m						n				ng			
	approx		W						l/r		у					
	flap							dx								

Table 1: Jennifer Venditti

Stanford University Lecture 2: ARPAbet Transcription Voiceless Voiced

International Phonetic Alphabet (IPA)

Wikipedia IPA (with sounds)

CONSONANTS (PULMONIC)

@ • ● ● 2020 IPA

	Bilabial	Labiodental	Dental	Alveolar	Postalveolar	Retroflex	Palatal	Velar	Uvular	Pharyngeal	Glottal
Plosive	рb			t d		t d	с э	k g	qG		2
Nasal	m	ŋ		n		η	n	ŋ	N		
Trill	В			r					R		
Tap or Flap		V		ſ		t					
Fricative	φβ	f v	θð	s z	∫ 3	şz	çj	хγ	Хк	ħΥ	h fi
Lateral fricative				łβ							
Approximant		υ		I		ન	j	щ			
Lateral approximant				1		l	λ	L			

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

Clicks	Voiced implosives	Ejectives
🛈 Bilabial	6 Bilabial	? Examples:
Dental	d Dental/alveolar	p' Bilabial
! (Post)alveolar	f Palatal	t' Dental/alveolar
+ Palatoalveolar	g _{Velar}	\mathbf{k}' Velar
Alveolar lateral	\mathbf{G} Uvular	S' Alveolar fricative

CS 224S / LINGUIST 285 Spoken Language Processing Lecture 2: ARPAbet Transcription

Articulatory Phonetics

• How speech sounds are made by articulators (moving organs)

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing

Speech Production

- Flow: we (normally) speak while breathing out. Respiration provides airflow. "Pulmonic egressive airstream"
 - Airstream sets vocal folds in motion. Vibration of vocal folds produces sounds. Sound is then modulated by:
- **Resonance:** shape of vocal tract causing harmonics
- Articulation: manipulation of airflow
 - Oral tract: uvula, soft palate (velum), hard palate, tongue, lips, teeth
 - Nasal tract

Sagittal section of the vocal tract

CS 224S / LINGUIST 285

Spoken Language Processing

Sagittal section of the vocal tract

CS 224S / LINGUIST 285 Spoken Language Processing

USC's SAIL Lab Shri Narayanan

Stanford University

CS 224S / LINGUIST 285 Spoken Language Processing

Tamil

Stanford University

CS 224S / LINGUIST 285 Spoken Language Processing

Larynx and Vocal Folds

- The Larynx (voice box)
 - A structure made of cartilage and muscle
 - Located above the trachea (windpipe) and below the pharynx (throat)
 - Contains the vocal folds
 - Adjective for larynx: laryngeal)
- Vocal Folds (older term: vocal cords)
 - Two bands of muscle and tissue in the larynx
 - Can be set in motion to produce sound (voicing)

Voicing

Stanford

University

- Air comes up from lungs
- Forces its way through vocal cords, pushing open (2,3,4)
- This causes air pressure in glottis to fall, since:
 - when gas runs through constricted passage, its velocity increases (Venturi tube effect)
 - this increase in velocity results in a drop in pressure (Bernoulli principle)
- Because of drop in pressure, vocal cords snap together again (6-10)
- Single cycle: ~1/100 of a second

Vocal Fold Vibration

- Air comes up from lungs
- Forces its way through vocal cords, pushing open (2,3,4)
- This causes air pressure in glottis to fall, since:
 - when gas runs through constricted passage, its velocity increases (Venturi tube effect)
 - this increase in velocity results in a drop in pressure (Bernoulli principle)
- Because of drop in pressure, vocal cords snap together again (6-10)
- Single cycle: ~1/100 of a second

Stanford

University

Voicelessness

- When vocal cords are open, air passes through unobstructed
- Voiceless sounds:
 - f р 0 0 t 0 sh 0 k th 0 0 ch 0 0 S
- If the air moves very quickly, the turbulence causes a different kind of phonation: whisper

Consonants and Vowels

(it's more complicated than this, since we have to consider syllabic function, but this will do for now)

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing

USC: Soprano Singing

Stanford University **CS 224S / LINGUIST 285** Spoken Language Processing

Place of Articulation

- Consonants are classified according to the location where the airflow is most constricted
- This is called place of articulation
- Three major kinds of place articulation:
 - Labial (with lips)
 - Coronal (using tip or blade of tongue)
 - Dorsal (using back of tongue)

Stanford

University

Manner of Articulation

- **Stop:** complete closure of articulators, so no air escapes through mouth
- Oral stop: palate is raised, no air escapes through nose. Air pressure builds up behind closure, explodes when released
 - o p, t, k, b, d, g
- Nasal stop: oral closure, but palate is lowered, air escapes through nose
 - o m, n, ng

Stop

Oral Stop

Nasal Stop

Oral vs Nasal Sounds

Stanford University **CS 224S / LINGUIST 285** Spoken Language Processing

More on Manner of Articulation of Consonants

- Fricatives: close approximation of two articulators, resulting in turbulent airflow between them, producing a hissing sound
 f, v, s, z, th, dh
- Approximant: not quite-so-close approximation of two articulators, so no turbulence
 - o y, r
- Lateral approximant: obstruction of airstream along center of oral tract, with opening around sides of tongue
 - 0

Tongue Position for Vowels

Stanford University **CS 224S / LINGUIST 285** Spoken Language Processing

Articulatory Parameters for English Consonants

In ARPAbet

	Place of articulation															
u		bilabial		labiodental int		inter-o	inter-dental		alveolar		palatal		velar		glottal	
Manner of articulatio	stop	р	b					t	d			k	g	q		
	fric.			f	V	th	dh	S	Z	sh	zh			h		
	affric.									ch	jh					
	nasal		m						n				ng			
	approx		W						l/r		у					
	flap							dx								

Table 1: Jennifer Venditti

Voiceless Voiced

The Art of Language Invention

- Fun, informative book on phonetics and phonotactics across languages.
- Great audio book!
- Talk Video

the 'art The From Horse-Lords to Worms, the Words Behind World-Building David J. Peterson Invention nən

Acoustic Phonetics

• Acoustic properties of speech sounds

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing

Sound Waves are Longitudinal Waves

Image: Dan Russell (2011)

CS 224S / LINGUIST 285 Spoken Language Processing

Sound Waves are Longitudinal Waves

CS 224S / LINGUIST 285 Spoken Language Processing

Stanford

University

Back to Waves: Fundamental Frequency

• Waveform of the vowel [iy]

- Frequency: 10 repetitions / .03875 seconds = 258 Hz
- This is speed that vocal folds move, hence voicing
- Each peak corresponds to an opening of the vocal folds
- The low frequency of the complex wave is called the fundamental frequency of the wave or F0

She Just Had a Baby

- Note that vowels all have regular amplitude peaks
- Stop consonant
- Closure followed by release
- Notice the silence followed by slight bursts of emphasis: very clear for [b] of "baby"
- Fricative: noisy. [sh] of "she" at beginning

Spectrogram: Spectrum + Time Dimension

Stanford University

Source Filter Model of Vowels

- Any body of air will vibrate in a way that depends on its size and shape
- Vocal tract as "amplifier"; amplifies certain harmonics
- Formants are result of different shapes of vocal tract

Source Filter Model of Vowels

• Source and filter are independent, so:

- Different vowels can have same pitch
- The same vowel can have different pitch

Figures: Ratree Wayland

Stanford University

CS 224S / LINGUIST 285 Spoken Language Processing

Resonances of the Vocal Tract

The human vocal tract as an open tube

Figure: Ladefoged (1996) p.117

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing

Resonances of the Vocal Tract

Figure: Mark Liberman

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing

Prosody Overview

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing

Defining Intonation

- Ladd (1996) "Intonational phonology"
- "The use of suprasegmental phonetic features [...]
 - Suprasegmental = above & beyond the segment/phone
 - F0 (pitch)
 - Intensity (energy)
 - Duration
- to convey sentence-level pragmatic meanings"
 - i.e. meanings that apply to phrases or utterances as a whole, not lexical stress, not lexical tone.

Pitch Track

Stanford University

Pitch is not Frequency

- Pitch is the mental sensation or perceptual correlate of F0
- Relationship between pitch and F0 is not linear;
 - human pitch perception is most accurate between 100Hz and 1000Hz.
 - Linear in this range
 - Logarithmic above 1000Hz
- Mel scale is one model of this F0-pitch mapping
 - A mel is a unit of pitch defined so that pairs of sounds which are perceptually equidistant in pitch are separated by an equal number of mels
 - Frequency in mels = 1127 ln (1 + f/700)

Plot of Intensity

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing

Three Aspects of Prosody

- **Prominence:** some syllables/words are more prominent than others
- Structure/boundaries: sentences have prosodic structure
 - Some words group naturally together
 - Others have a noticeable break or disjuncture between them
- **Tune:** the intonational melody of an utterance.

Prosodic Boundaries

I met Mary and Elena's mother at the mall yesterday.

I met Mary, and Elena's mother at the mall yesterday.

 French [bread and cheese]
 [French bread] and [cheese]

 Image: Comparison of the set of

CS 224S / LINGUIST 285 Spoken Language Processing

Thank You

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing Lecture 2: Phonetics

Appendix

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing Lecture 2: Appendix

Useful Links

- The ARPAbet
 - http://www.stanford.edu/class/cs224s/arpabet.html
- The CMU Pronouncing Dictionary
 - http://www.speech.cs.cmu.edu/cgi-bin/cmudict
- International Phonetic Alphabet:
 - <u>http://en.wikipedia.org/wiki/International_Phonetic_Alphabet</u>

How to Read Spectrograms

- bab: closure of lips lowers all formants: so rapid increase in all formants at beginning of "bab"
- dad: first formant increases, but F2 and F3 slight fall
- gag: F2 and F3 come together: this is a characteristic of velars. Formant transitions take longer in velars than in alveolars or labials

She Came Back and Started Again

- Lots of high-freq energy
- Closure for k
- Burst of aspiration for k
- [ey] faint 1100 Hz formant is nasalization
- Bilabial nasal
- Short b closure, voicing barely visible.
- [ae] note upward transitions after bilabial stop at beginning
- Note F2 and F3 coming together for "k

Vowels

Stanford University **CS 224S / LINGUIST 285** Spoken Language Processing Lecture 2: Appendix

The Oral Cavity Amplifies Some Harmonics

Stanford University CS 224S / LINGUIST 285 Spoken Language Processing

The Speech Chain (Denes and Pinson)

More on Manner of Articulation of Consonants

- Tap or flap: tongue makes a single tap against the alveolar ridge
 - dx in "butter"
- Affricate: stop immediately followed by a fricative
 - o ch, jh

