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Outline
● Course project introduction
● Project suggestions
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Course Project Goals
● A substantial piece of work related to topics specific to this course 

● A successful project result:
○ Most of a conference paper submission if academically oriented -or- 
○ Functioning system demo. A portfolio item for job interviews, or a system you put into 

production!

● Reflects deeper understanding of SLP technology than simply applying existing API’s for ASR, 
voice commands, etc.

● Build something you’re proud of
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Learning goals for this course
● You will develop expertise on working with spoken language using modern tools, and create a 

foundation for contributing to spoken language system development and research

● Questions you should be able to answer after this course
○ How are the data and use cases for spoken language different from written language NLP, computer 

vision, or robotics tasks?

○ What are modern tools you might use in industry or research to develop a fully capable spoken 
language application? (e.g. for speech recognition, synthesis, voice cloning, and dialog tasks)

○ What is the most recent research on deep learning models and approaches to spoken language tasks? 
How do they compare with deep learning architectures for other domains?

○ For a new product or research project, what process and tools would you pursue to effectively work 
with spoken language? Which tools might you need to modify vs use as-is?
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A Successful Project
● Course-relevant topic. Proposed experiments or system address a challenging, unsolved SLP 

problem

● Proposes and executes a sensible approach informed by previous related work

● Performs error analysis to understand what aspects of the system are good/bad

● Adapts system or introduces new hypotheses/components based on initial error analysis

● Goes beyond simply combining existing components / tools to solve a standard problem
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Complexity and Focus
● SLP systems are some of the most complex in AI

● Example: a simple voice command system contains:

○ Speech recognizer
 (Language model, pronunciation lexicon, acoustic model, decoder, lots of training options)

○ Intent/command slot filling (some combination of lexicon, rules, and ML to handle variation)

○ Response generation and speech synthesizer for spoken responses

● Get a complete baseline system working by milestone

● Focus on a subset of all areas to make a bigger contribution there. APIs/tools are a great 
choice for areas not directly relevant to your focus
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Balancing Scale and Depth
● Working on “real” scale datasets/problems is a plus…

● But don’t let scale distract from getting to the meat of your technical contribution

● Example:

○ Comparing some neural architectures for end-to-end speech recognition

■ Case 1: Use WSJ. Medium sized corpus, read speech. SOTA error rates ~3%

■ Case 2: Use Switchboard: Large, conversational corpus. SOTA error rates ~15%

● Case 2 stronger overall *if* you can run the same experiments / error analysis. Don’t let scale 
prevent “thoughtful loops”
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Thoughtful Loops
● A single loop:

○ Try something reasonable with a hypothesis
○ Perform error analysis to investigate your hypothesis
○ Propose a modification / new experiment based on what you find
○ Try it!
○ Repeat above

● A successful project does this at least once

● Scale introduces risk of overly slow loops

● Ablative analysis or oracle experiments are a great way to guide what system component to 
work on
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Oracle Experiments
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Figure: Andrew Ng’s CS229 
lecture on applying ML
Lecture
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Ablation Experiments
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● Error analysis tries to explain the difference between current performance and perfect 
performance

● Ablative analysis tries to explain the difference between some baseline (much poorer) 
performance and current performance

● E.g., Suppose that you've build a good anti-spam classifier by adding lots of clever features to 
logistic regression:

○ Spelling correction
○ Sender host features
○ Email header features
○ Email text parser features
○ Javascript parser
○ Features from embedded images

● Question: How much did each of these components really help?

From: Andrew Ng’s CS229 lecture on applying ML Lecture
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Ablation Experiments
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● Simple logistic regression without any clever features get 94% performance.

● Just what accounts for your improvement from 94 to 99.9%?

● Ablative analysis: Remove components from your system one at a time, to see how it breaks.

● Conclusion: The email text parser features account for most of the improvement.

From: Andrew Ng’s CS229 lecture on applying ML Lecture
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Pitfalls in Project Planning
● Data!

○ What dataset will you use for your task?
○ If you need to collect data, why? 
○ Understand that a project with a lot of required data collection creates 

high risk of not being able to execute enough loops
○ Do you really need to collect data? Really?

● Model size and model training

○ Large deep learning models are exciting! And require a lot of data + compute

○ Fine tuning or using foundation models can work well. 

○ Ensure there is a model available for fine tuning or direct use (as part of proposal ideally)

● Overly complex baseline system

● Relying on external tools to the point that connecting them becomes the entire effort and 
makes innovation hard

● Off-topic. Could this be a CS 229 project instead?
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Deliverables
● All projects

○ Proposal: What task, dataset, evaluation metrics and approach outline?
○ In-class check in: 2 minute update on progress, early learnings, and next steps 
○ Milestone: Have you gotten your data and built a baseline for your task? 
○ Final paper: Methods, results, related work, conclusions. Should read like a conference paper

● Audio/Visual material
○ We encourage you to include links to audio samples for TTS. Screen capture videos for dialog 

interactions as part of your final report

○ Much easier to understand your contribution this way than leave us to guess.
Even if it doesn’t quite work

○ Use laptop / phone to demo at poster session if you like
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Leveraging Existing Tools
● Free to use any tool, but realize using the Google speech API does not constitute 

‘building a recognizer’

● Ensure the tool does not prevent trying the algorithmic modifications of interest (e.g. can’t do 
acoustic model research on speech API’s)

● Projects that combine existing tools in a straightforward way should be avoided

● Conversely, almost every project can and should use some form of tool:
○ PyTorch, Tensorflow, speech recognition/synthesis APIs, LLMs, Alexa, Kaldi, Whisper, etc.

● Use tools to focus on your project hypotheses

● Cite all tools you use. Cite code generation / copilot tools if you use them
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Error Analysis with Tools
● Project write up / presentation should be able to explain:

○ What goal does this tool achieve for our system?

○ Is the tool a source of errors? (e.g. oracle error rate for a speech API)

○ How could this tool be modified / replaced to improve the system? (maybe it is perfect and 
that’s okay)

● As with any component, important to isolate sources of errors

● Work with tools in a way that reflects your deeper understanding of what they do internally 
(e.g. n-best lists)
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Research Trend: Foundation Model Features
● Large, pre-trained deep learning models provide useful features for many spoken tasks

● Lots to explore in this area in ASR, TTS, dialog, and multi-modal

● Pre-trained models great for rapid progress on projects and smaller training sets

● Popular models with available features:

○ Wav2Vec 2.0

○ HuBERT

○ HuggingFace has several more!
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Research Trend: Foundation Model Features
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Table: An overview of the recent audio self-supervised learning methods. The "speech" column distinguishes whether
 a method addresses speech tasks or for general purpose audio representations. (Liu et al, 2022)
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Dialog Systems
● Build a dialog system for a task that interests you (bartender, medical guidance, chess)

● Must be multi-turn. Not just voice commands or single slot intent recognizers

● Evaluation is difficult, likely will have to collect any training data yourself

● Don’t over-invest in knowledge engineering

● Lots of room to be creative and design interactions to hide system limitations

● More difficult to publish smaller scale systems, but make for great demos / portfolio items

● Great to explore LLMs, but try to focus on dialog systems that

○ Are task-oriented (actually take actions / require grounding in the world)

○ Use spoken language. Helps select a task and confront UX challenges in spoken vs written
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Speech Recognition
● Standard setup for experiments:

○ Benchmark corpus (WSJ, Switchboard, noisy ASR on CHIME, Librispeech)

○ Establish a baseline system (ok to use pre-trained)

○ Template very amenable to publication in speech or machine learning conferences

○ Can be very difficult to improve on state of the art. Systems can be cumbersome to train

● Lots of algorithmic variations to try. Explore foundation models + multilingual systems

● Successful projects do not need to improve on best existing results

● Adapting pre-trained neural approaches to new domains/tasks is great!

○ Homework 2 provides a whisper fine tuning recipe you can build upon
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Speech Synthesis
● New set of problems to solve now that synthesis is good!

○ Voice cloning and “designing” a voice

○ Controlling prosody and accent in fine-grained ways

○ Inferring correct prosody from text for more emotive voices

○ Managing multi-speaker TTS models and understanding their speaker embedding spaces

● Evaluation is difficult. No single metric

○ Blizzard challenge provides training data and systems for comparison

● Matching state of the art can be very tedious signal processing or data quality issues

● You can do meaningful research without having a perfect TTS system in all regards (e.g. okay 
to have lower voice quality if your main focus is prosody)
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Extracting Information From Speech
● Beyond transcription, understanding emotion, accent, or mental state (intoxication, 

depression, Parkinson’s etc.)

● Very dataset dependent. How will you access labeled data to train a system?

● Can’t be just a classifier. Need to use insights from this course or combine with speech 
recognition architectures

● Exploring foundation model features is acceptable

● Should be spoken rather than just written text

● Often most exciting when the dataset/task is meaningful
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Deep Learning Approaches
● Active area of research for every area of SLP 

● Beware:
○ Do you have enough training data compared to the most similar paper to your approach?
○ Do you have enough compute power / GPUs?
○ How long will a single model take to train? Think about your time to complete one ‘loop’

● Ensure you are doing SLP experiments not just tuning neural nets for a dataset

● Fine tuning whisper is a widely used recipe for ASR

● Many public models to use as a starting point. Your project should ask a research question or 
build a system that goes beyond simply “using a public model for its intended purpose”
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Summary
● Have fun

● Build something you’re proud of

● Post on Ed or use Andrew + Tolúlọpẹ́ office hours for early project feedback

● Proposals due April 24

● Reach out to project suggestors now/soon

● Post on Ed to find shared interests for project groups

25



26

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 5: 
Course Project Intro

Some Basic Ethics When Working on Speech Technologies

Don’t record someone 
without their consent

In California, all parties to any 
confidential conversation must 

give their consent to be recorded. 
For calls occurring over cellular or 
cordless phones, all parties must 

consent before a person can 
record, regardless of 

confidentiality. 

Don’t create a speech 
synthesizer / voice clone of 

someone without their 
consent

It might be fun, but it’s a little 
creepy. People get upset.

Okay to use existing speech 
datasets (we’ll provide some).

Do consider subgroup and 
language bias when building 

systems

Poor performance on subgroups 
e.g. non-native speakers

Many languages are under-served 
relative to English/Mandarin.
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More Sample Projects

Previous projects: https://web.stanford.edu/class/cs224s/semesters/2024-spring/project
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