
1

CS 224S / LINGUIST 285
Spoken Language Processing

CS 224S / Linguist 285
Spoken Language Processing

Lecture 6: Deep Learning for TTS

Andrew Maas | Stanford University | Spring 2024

Slide contributions by Alex Barron & Mike Wu



2

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Rapid Progress in TTS Over the Last Few Years

2

2016 2017 2018 2019 2020 2021 2022 2023

WaveNet

DeepVoice

Tacotron

Tacotron2

GST 
Tacotron

WaveGlow

FastSpeech

MelGAN

HiFiGAN

Wave-Tacotron

VITS

dGLSM

Natural Speech

2024

CS224S CS224S CS224S CS224S

BASE TTSFastSpeech2

TorToise

VALL-E

Bark

https://arxiv.org/abs/1609.03499
https://arxiv.org/pdf/1702.07825.pdf
https://arxiv.org/abs/1703.10135
https://arxiv.org/abs/1712.05884
https://arxiv.org/abs/1803.09017
https://arxiv.org/abs/1803.09017
https://arxiv.org/abs/1811.00002
https://arxiv.org/abs/1905.09263
https://arxiv.org/abs/1910.06711
https://arxiv.org/abs/2010.05646
https://arxiv.org/abs/2011.03568
https://arxiv.org/abs/2106.06103
https://arxiv.org/abs/2203.16502
https://arxiv.org/pdf/2205.04421.pdf
https://arxiv.org/pdf/2402.08093.pdf
https://arxiv.org/abs/2006.04558
https://arxiv.org/abs/2305.07243
https://arxiv.org/abs/2301.02111
https://github.com/suno-ai/bark?tab=readme-ov-file


3

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Outline
● Text to Spectrogram Models
● Speaker and Style Embeddings
● Spectrogram to Audio Models (Vocoders)

3



4

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Neural TTS Paradigm

4

Spectrogram 
Prediction

Waveform 
Synthesis“Hello”



5

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Neural TTS Paradigm

5

Spectrogram 
Prediction

Waveform 
Synthesis“Hello” HH|AH0|L|OW1Frontend

Text Normalization 
+

 Phonemization



6

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Why Neural TTS?
● Upper bound on quality is higher

● Works with a wider variety of datasets

●  Much more easily extended for speaker/style customization

●  Many fewer components to train than traditional TTS

● Single speaker datasets are 1-10Gb e.g. LJSpeech

● You can get decent results in a night on a solid GPU with most models

6

https://keithito.com/LJ-Speech-Dataset/


7

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Why Use Intermediate Spectrograms?
● Prosodic/phonemic aspects of speech can be modelled without phase information

● Allows focus on human speech frequency bands with mel filters

● STFT chunks speech into frames of a useful duration for phoneme and prosody modeling

● Fast to generate thanks to FFT

● Separate model can be used to fill in the phase

7



8

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Text to Spectrogram Models

8



9

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Neural TTS Paradigm

9

Spectrogram 
Prediction

Waveform 
Synthesis“Hello”



10

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Sequence to Sequence Problem

10

“h” “e” “l” “l” “o”



11

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Tacotron
● Encoder decoder model 

with attention

● Predicts mel 
spectrograms from 
character inputs

● “Information bottleneck” 
in 
pre-net crucial for 
regularization

11

Griffin-Lim reconstruction

CBHGCBHG

Pre-net

Attention

Decoder 
RNN

Attention 
RNN

Pre-net

Decoder 
RNN

Attention 
RNN

Pre-net

Decoder 
RNN

Attention 
RNN

Pre-net
Character embeddings Attention is applied 

to all decoder steps

Linear-scale 
spectrogram

Seq2seq target 
with r=3

<GO> frame



12

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Maps characters into a 
continuous vector

12

Pre-Net
Characters

One-hot vectors

Embedding layer

Embedding vectors

Bottleneck layer & dropout



13

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

This is a special multi-layer 
RNN that includes a 
convolutional layer.

Mixes information 2 ways:

1. With neighboring 
characters via conv1d

2. Throughout entire 
sequence with GRU

13

CBHG Encoder



14

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Tacotron Decoder

14

Wang et al 2017 

Attention

Decoder 
RNN

Attention 
RNN

Pre-net

Decoder 
RNN

Attention 
RNN

Pre-net

Decoder 
RNN

Attention 
RNN

Pre-net
Attention is applied 
to all decoder steps

<GO> frame

https://arxiv.org/abs/1703.10135


15

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 15

“g” “r” “a” “c” “e”

Pre-Net RNNatt

Attention

RNNdec Post-net

yi-1 yi

αi= Attention (si , ...)
ci= Σαi, jhjj

si = RNNAtt( si-1, ci-1, yi-1 ) di = RNNDec( di-1, ci , si )

si-1 ci-1 ci

si

di-1

{ hj }j=1 = Encoder ({xj })j=1
LL

Can be 1-5 mel frames (reduction factor)

Optionally takes previous 
alignment, encoder states



16

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 16

“g” “r” “a” “c” “e”

Pre-Net RNNatt

Attention

RNNdec Post-net

yi-1 yi

αi= Attention (si , ...)
ci= Σαi, jhjj

si = RNNAtt( si-1, ci-1, yi-1 ) di = RNNDec( di-1, ci , si )

si-1 ci-1 ci

si

di-1

{ hj }j=1 = Encoder ({xj })j=1
LL

j = 0



17

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 17

“g” “r” “a” “c” “e”

Pre-Net RNNatt

Attention

RNNdec Post-net

yi-1 yi

αi= Attention (si , ...)
ci= Σαi, jhjj

si = RNNAtt( si-1, ci-1, yi-1 ) di = RNNDec( di-1, ci , si )

si-1 ci-1 ci

si

di-1

{ hj }j=1 = Encoder ({xj })j=1
LL

j = 1



18

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 18

“g” “r” “a” “c” “e”

Pre-Net RNNatt

Attention

RNNdec Post-net

yi-1 yi

αi= Attention (si , ...)
ci= Σαi, jhjj

si = RNNAtt( si-1, ci-1, yi-1 ) di = RNNDec( di-1, ci , si )

si-1 ci-1 ci

si

di-1

{ hj }j=1 = Encoder ({xj })j=1
LL

j = 2



19

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 19

“g” “r” “a” “c” “e”

Pre-Net RNNatt

Attention

RNNdec Post-net

yi-1 yi

αi= Attention (si , ...)
ci= Σαi, jhjj

si = RNNAtt( si-1, ci-1, yi-1 ) di = RNNDec( di-1, ci , si )

si-1 ci-1 ci

si

di-1

{ hj }j=1 = Encoder ({xj })j=1
LL

j = 3



20

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 20

“g” “r” “a” “c” “e”

Pre-Net RNNatt

Attention

RNNdec Post-net

yi-1 yi

αi= Attention (si , ...)
ci= Σαi, jhjj

si = RNNAtt( si-1, ci-1, yi-1 ) di = RNNDec( di-1, ci , si )

si-1 ci-1 ci

si

di-1

{ hj }j=1 = Encoder ({xj })j=1
LL

j = 4



21

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Attention Reveals 
Alignment

21

Wang et al 2017 

https://arxiv.org/abs/1703.10135


22

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 22

Tacotron samples

https://google.github.io/tacotron/publications/tacotron/index.html


23

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Many Forms of Attention

23

Wang et al 2017 

● Content Based (Bahdanau)

● Location Sensitive

● Location Relative (GMM, DCA)

https://theaisummer.com/attention

https://arxiv.org/abs/1703.10135


24

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Deep dive: FastSpeech 1 & 2

24



25

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Motivation

25

Disadvantages of auto-regressive generation:

● Slow: It is by definition step by step. 
Spectrogram sequences can be 1000s of 
steps long.

● Error prone: If an error happens on step 5, 
then it affects steps 6 to 1000.

Decoder 
RNN

Decoder 
RNN

Decoder 
RNN



26

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Motivation

26

Decoder 
RNN

Decoder 
RNN

Decoder 
RNN Non-autoregressive Decoder

What if we could do this?

● Fast: everything happens at once.
● Less error prone: no forward propagation.



27

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Feed forward 
Transformers

27

Borrow recent NLP breakthroughs 
for non-autoregressive modeling: 
transformers. 

● Same architecture as LLMs 
e.g. GPT-4, Llama, etc.

● Stacked attention layers to 
mix information in the input 
phonemes

● Each phoneme input is 
mapped to a predicted 
mel-spectrogram

transformer block

… (repeat) …

phoneme sequence

intermediate embeddings

spectrogram sequence

phoneme embeddings

transformer block

embedding 
model

+positional embeddings

multi-headed self-attention

add & layer norm

1-D convolution

add & layer norm



28

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Self attention

28

A self attention layer mixes 
information between a 
sequence of embeddings.

input vectors

query key value
Each of these 
obtained by out of a 
linear layer

compute wij = qi x kj

zi = sumj wij x vj

this is just content 
based (Bahdanau) 
attention

Multi-headed 
attention

repeat self attention 
separately for K heads

Goal is to provide diversity 
in what is being focused on



29

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Length Regulator

29

One of the properties of a 
transformer is that a sequence 
of N input tokens produces N 
output tokens.

But this doesn’t work for us! 
Spectrogram sequences are 
often much longer than 
phoneme sequences. 

The trick is that we will duplicate the phonemes based on their 
duration. This way, a longer lasting phoneme will produce a 
longer sequence of spectrograms. 

assume we know the durations for 
each phoneme

duplicated input sequence 

raw input sequence 



30

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Duration 
Predictor

30

To do the length correction, 
we need to know the duration 
from phonemes alone. 

How do we do this?

Train a separate model jointly to predict the length of the 
mel-spectrograms for each phoneme. 

phoneme

1D convolution + norm

1D convolution + norm

linear layer

predicted duration duration label

minimize MSE loss

How do we get the duration label?

HACK: take a pretrained autoregressive TTS model, and estimate duration using 
attention from phonemes to spectrograms. Use that as label for this model. 



31

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

FastSpeech

31

Put together all the 
components and stack 
transformer layers.

N x Transformer Blocks

embedding 
model

+positional embeddings

Length Regulator (duplicate by duration)

+positional embeddings

N x Transformer Blocks

linear layer to map to spectrogram size

spectrogram sequences



32

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 32

Fastspeech2 samples

https://speechresearch.github.io/fastspeech2/


33

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Wait… One-to-Many? 

33

There are lots of ways to say the same phonemes, depending on the speed, pitch, energy of the speaker. 
All of these possible answers are “right”, and having multiple right answers is bad for training.

Which one should the transformer model generate?



34

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Hack: Pretrained TTS Model

34

Like getting durations, we again rely on a pretrained autoregressive TTS model. Mel spectrograms are 
generated from the autoregressive model and use as ground truth for training FastSpeech. 

We basically ask the model to favor whatever spectrogram the autoregressive model chose. This is 
equivalent to knowledge distillation.

Why does this solve the one-to-many problem?



35

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

FastSpeech2 

35

FastSpeech used a few hacks that rely on a pretrained autoregressive model. FastSpeech2 makes a 
few small changes to replace that dependency and some extra bells and whistles. 



36

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Variance 
Adaptors

36

Decide “variance  information”

● Duration

● Pitch

● Energy

using the phoneme so that the 
one-to-many problem 
becomes one-to-one.

Duration / Energy / Pitch Predictor

phoneme

1D convolution + norm

1D convolution + norm

linear layer

predicted duration
For each of three, we train a separate 
small model to predict them from the 
phoneme sequence. The labels are 
extracted using deterministic tools. 

● Duration  Use the Montreal forced 
alignment tool rather than a 
pretrained autoregressive model.

● Energy  Treat L2 norm of amplitude 
of the STFT of the frame as label.

● Pitch  Use continuous wavelet 
transforms (CWT) to produce pitch 
spectrograms. 



37

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

FastSpeech2

37

Add extra variance 
information to the phoneme 
embeddings by 
concatenating them. 

● No more reliance on a 
pretrained model. 

● Extracts auxiliary labels 
from phoneme itself.

N x Transformer Blocks

embedding 
model

+positional embeddings

Variance adaptor (this will duplicate by duration)

+positional embeddings

N x Transformer Blocks

linear layer to map to spectrogram size

spectrogram sequences

= predicted pitch

= predicted energy



38

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Attention vs Duration Based Models

38

Attention-based

● No alignments needed

● Adaptable to diverse, noisy datasets

● Capable of more natural prosody

Duration-based

● Fast parallel inference

● Less chance of alignment problems

● Easier to train 

● More robust to silence in training 
data



39

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

A Compromise: FastSpeech with Soft Attention

39

● Add a soft attention module to FastSpeech style TTS

● Compute a softmax across all pairs of text and spectrogram frames

● Use forward sum algorithm to compute the optimal alignment

● Can reuse CTC loss from ASR

● Examples: JETS

https://arxiv.org/pdf/2203.16852.pdf


40

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

An Alternative: Flow-based Models

40

● Flow-based models combine transformer backbones with learned duration/attention

● All the benefits of FastSpeech – fast parallel inference, high quality

● All the benefits of Tacotron – no alignments needed, more flexible

● Examples included Glow-TTS, VITS, NaturalSpeech

https://arxiv.org/abs/2005.11129
https://arxiv.org/pdf/2106.06103.pdf
https://arxiv.org/pdf/2205.04421.pdf


41

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Speaker and Style Embeddings

41



42

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

generated waveform

Multispeaker 
TTS

42

Encoder concat Attention

speaker encoder

vocoder

Low dimensional projections 
of speaker embeddings

Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis

Decoder

separate reference 
waveform

phonemes

generated mel 
spectrogram

synthesizer

Edit Synthesizer architecture to take as 
input a “speaker embedding”. 

The speaker embedding is trained to 
maximize cosine similarity of embeddings 
of utterances from the same speaker.

https://arxiv.org/pdf/1806.04558.pdf


43

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Multispeaker 
TTS

43

Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis

The same sentence produces 
different spectrograms based 
on the reference utterance. 

Shape of the generated 
spectrograms are similar but 
some are stretched out more, 
representing slower speakers.

https://arxiv.org/pdf/1806.04558.pdf


44

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 44

Speaker samples

https://google.github.io/tacotron/publications/speaker_adaptation/index.html


45

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Vocoders

45



46

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Neural TTS Paradigm

46

Spectrogram 
Prediction

Waveform 
Synthesis“Hello”



47

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Spectrogram to Waveform Conversion

47



48

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Phase Prediction

48

● We have a magnitude log mel spectrogram from Tacotron/FastSpeech etc.

● We need to fill in the phase to get clear audio, the spectrogram does not represent phase



49

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Griffin-Lim Wave Reconstruction

49

● Pure signal processing approach to phase reconstruction

● No learned parameters

● Iteratively reconstructs phase information from just the magnitude spectrogram

● Used in the original Tacotron paper

● How it works:

○ Start with a random prediction for the phase

○ Iteratively apply istft and stft to generate more “consistent” spectrograms

● These sound much clearer than random/zero phase in practice

● Limitations:

○ Since it has no parameters, Griffin-Lim can only provide a coarse reconstruction of the phase

○ Neural models trained on spectrogram/audio pairs are needed for higher quality outputs



50

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

WaveNet

50

DeepMind Post

● One of the initial modern 
deep learning methods for 
neural net waveform synth

● Generating 16k audio 
samples per second is a 
challenge – specialized 
architectures often used

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio


51

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

WaveNet

51

DeepMind Post

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio


52

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

HiFiGAN

52

● GAN based vocoders have some of the best quality/latency trade offs currently

○ Active development in this area as hardware and compute-efficient neural architectures improve

○ Ideally vocoders can run much faster than realtime, and on-device



53

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Conclusion

53



54

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Ethical TTS

54

● Modern TTS is a powerful tool

● People have and will continue to be fooled by great TTS

● Only synthesize someone’s voice with permission

● Disclose that your dialog system is a bot



55

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Appendix

55



56

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

End-to-end: VITS

56



57

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS

57

● Glow-TTS style flow model with monotonic alignment search

● Reference encoder with VAE latent space

● Flow model to produce varied duration modeling

● HifiGAN inspired waveform decoder

● Fully end to end training

Kim et al. 2021

https://arxiv.org/pdf/2106.06103.pdf


58

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS

58

Kim et al. 2021

Training Inference

https://arxiv.org/pdf/2106.06103.pdf


59

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS Loss

59

Kim et al. 2021

https://arxiv.org/pdf/2106.06103.pdf


60

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Motivation

60

Parallel TTS systems are two-staged: (1) first 
learn to generate spectrograms, and then (2) 
generate waveforms. 

There should be a technique leveraging recent 
generative techniques to be end-to-end.

The VITS model. Next we will discuss each 
component in this system.



61

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Background:
VAEs

61

A variational autoencoder is a latent variable model of the form
pθ(x,z) = pθ(x|z)p(z) 

where x is our observed data (phoneme), and z is a high dimensional  
latent variable. Pick θ to maximize log pθ(x) , called “evidence”.

This is hard but we can derive a lower bound. We introduce a 
inference network qφ(z|x), mapping x to a Gaussian. Then:

log pθ(x) = log ∫z pθ(x,z) dz = log ∫z pθ(x|z)p(z) dz  
                = log ∫z pθ(x|z)p(z) qφ(z|x) / qφ(z|x) dz  
                = log Eq(z|x)[ pθ(x|z)p(z) / qφ(z|x) ] 
                ≥ Eq(z|x)[ log p(x | z) + log p(z) - log qφ(z|x) ]       (Jensen’s Inequality)

                      = Eq(z|x)[ log p(x | z) ] - KL[ qφ(z|x), p(z) ]
  

This is called the “evidence lower bound” or ELBO. We want to 
maximize it w.r.t parameters θ and φ. qφ(z|x) and  pθ(x,z) are 
parameterized by neural networks.



62

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

We want to condition the 
latent variable on another 
variable c

62

Background: 
CVAEs

A conditional variational autoencoder looks similar but with an 
additional variable: 

where pθ(x|z,c) = pθ(x|z). In this case, the ELBO becomes:

log pθ(x|c) ≥ Eq(z|x)[ log p(x|z) ] - KL[ qφ(z|x), p(z|c) ]

Again, we want to maximize it w.r.t parameters θ and φ. qφ(z|x) and  
pθ(x|z) are neural networks.

We may sometimes parameterize pθ(z|c) as a third neural network. 

pθ(x,z|c) = pθ(x|z)p(z|c) 



63

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS: Model

63

In the VITS context

x = waveform

xmel = mel spectrogram

z = high dimensional vector

Take the ELBO one term at a time.

1 Reconstruction loss, or Eq(z|x)[ log p(x|z) ]  

1. Fix an audio sample x from dataset. Compute xmel from x. 

2. Sample z’~qφ(z|x). Sample x’~pθ(x|z’). Compute x’mel from x’.

3. Compute ||xmel - x’mel||1. This is proportional to Eq(z|x)[ log p(x|z) 
]. 



64

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS: Model

64

In the VITS context

x = waveform

xmel = mel spectrogram

z = high dimensional vector

c = { ctext, A }

ctext = phonemes fron text

A = alignment matrix 
(shape: |ctext| x |z|)

Take the ELBO one term at a time.

1 Reconstruction loss, or Eq(z|x)[ log p(x|z) ]  

1. Fix an audio sample x from dataset. Compute xmel from x 

2. Sample z’~qφ(z|x). Sample x’~pθ(x|z’). Compute x’mel from x’

3. Compute ||xmel - x’mel||1. This is proportional to Eq(z|x)[ log pθ(x|z) ] 

2 KL divergence, or Eq(z|x)[ log  qφ(z|x) - log pθ(z|c) ]

1. Fix an audio sample x from dataset. Fetch context c for x. 

2. Sample z’~qφ(z|x) 

3. Evaluate log qφ(z|x) and log pθ(z|ctext, A)



65

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS: Model

65

The VITS graphical model:

x = waveform

xmel = mel spectrogram

z = high dimensional vector

c = { ctext, A }

ctext = phonemes fron text

A = alignment matrix 
(shape: |ctext| x |z|)

Take the ELBO one term at a time.

1 Reconstruction loss, or Eq(z|x)[ log p(x|z) ]  

1. Fix an audio sample x from dataset. Compute xmel from x 

2. Sample z’~qφ(z|x). Sample x’~pθ(x|z’). Compute x’mel from x’

3. Compute ||xmel - x’mel||1. This is proportional to Eq(z|x)[ log pθ(x|z) ] 

2 KL divergence, or Eq(z|x)[ log  qφ(z|x) - log pθ(z|c) ]

1. Fix an audio sample x from dataset. Fetch context c for x. 

2. Sample z’~qφ(z|x). (Use same sample as in Step 1). 

3. Evaluate log qφ(z|x) and log pθ(z|ctext, A)

3 Add the two. 



66

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Background:
Invertible Flows

66

A method to build a 
complex distribution from a 
simple one using invertible 
functions. 

Define an invertible function f. Assume a simple distribution p(z). 
Given a sample z~p(z). Now, compute z’= f(z). 

Normalizing flows guarantee that distribution 

log p(z’) = log p(z) - log | det ∂f/∂z |

In other words, there’s a closed form expression for the resulting 
distribution! You can then stack multiple flows together.

If zK = fK … f1(z0) and z0~p(z0). Then

log pK(zK) = log q0(z0) - sumk ( log | det ∂fk/∂zk-1 | )

We often parameterize the function fθ with a neural network.

Example of image flow samples



67

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Start with a simple distribution p0(z|c) as a Gaussian distribution 

where the mean/stdev are outputs from a neural network. If we 
want a more expressive distribution, we can define an invertible 
mapping fθ where fθ(z) ~ pθ(z|c). Then, by rules of normalizing flows

pθ(fθ(z)|c) = p0(z|c) | det ∂fθ(z)/∂z |

VITS: Priors

67

In VITS, the prior pθ(z|c) is 
parameterized to be more 
expressive. This is done 
using normalizing flows.

N(μθ(c), σ(c))

Using a strong prior turns out to be important for sample quality.



68

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Background:
GANs

68

In image generation, 
adversarial losses typically 
improve sample quality. 

Define a discriminator D and a generator G as two neural networks. 
The generator maps a latent variable z to a waveform x. The 
discriminator classifies an input x as real or generated.

The loss function is:

minθ maxφ Ex [ log Dφ(x) ] + Ez [ log(1 - D(Gθ(z))) ]

This is a minimax game. 

● A perfect discriminator would separate generated examples 
from real ones in the dataset.

● A perfect generator would produce samples indistinguishable 
by the discriminator.

Over time, both push each other to be better. You end up with a 
powerful generator. 

Example of image GAN samples



69

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS: Adversarial 
training

69

● Let the decoder pθ(x|z) be the generator G. 

● Introduce a discriminator D. 

● Optimize a variation of the GAN objective

x = waveform, z = latent 

Ladv = E(x,z) [ (Dφ(x)-1)2 + (D(G(z)))2 ] + Ez [ (D(G(z))-1)2 ]

● Add an additional feature matching loss

 Lfm= E(y,z)[ suml 1/Nl || D
l(x) - Dl(G(z)) ||1  ]

T = # of layers in discriminator
Dl = feature map of l-th layer with Nl features
This is like a reconstruction loss for intermediate layers

Visualization of feature matching



70

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS: Alignment

70

In the VITS model, we assume 
access to an alignment matrix 
A (shape: |ctext| x |z|).

How do we get this?

Alignment is between input text and target speech audio. We 
want to find the best matrix A such that we

maxA ELBO = maxA log pθ(xmel|z) + log p(z|ctext, A) - log q(z|x)

                    = maxA log pθ(z|ctext, A)

                    = log N(fθ(x) | μθ(ctext, A), σθ(ctext, A))

This is a search problem over all possible alignments. We don’t 
have any labels for this so it’s generally hard,

● To make this problem simpler, limit candidate alignments 
to be monotonic and non-skipping. 

● This makes it possible to do dynamic programming to 
find the best alignment. 

Glow-TTS

https://arxiv.org/abs/2005.11129


71

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS: Duration 
Prediction

71

Use alignment to compute 
duration prediction. 

Add some randomness to 
make it sound realistic.

Simple approach

Given an alignment A, duration for the i-th token di = sumj Aij. 
Can compute all durations summing across columns in A. 

But, this doesn’t capture variability of speaking rates. For more 
realistic rhythm, VITS adds a model to introduce stochasticity. 

VITS approach

Generative model to output duration d~pθ(d|ctext) from the input 
text. Use variational dequantization since d is discrete.
Optimize a lower bound on log pθ(d|ctext)

flow++

https://proceedings.mlr.press/v97/ho19a/ho19a.pdf


72

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS: Objective

72

VITS objective= (1) VAE reconstruction loss + 
  (2) VAE KL divergence + 

(3) Duration prediction loss + 
(4) Adversarial loss + 
(5) Feature matching loss 

VITS Architectures
● WaveNet residual blocks for encoder qφ(z|x)
● ctext is ingested using a hidden layer from a  transformer
● normalizing flow fθ is a stack of affine coupling layers 

where the Jacobian determinant is 1.
● Decoder pθ(x|z) is a HiFi-GAN. The discriminator is also 

the one used in HiFi-GAN.
● The duration predictor is a network of stacked residual 

blocks and convolutional layers.



73

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VITS: Summary

73

● Combines the best features of flows, VAEs and GANs

● End to end training

● No alignments required

● Controllable prosody through VAE

● Fast parallel inference: 67 RTF on 1 V100

● Very high MOS scores



74

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

NaturalSpeech

74

● Similar structure to VITS with prior/posterior flow model

● Adds phoneme pretraining, differential duration modeling and a memory VAE

● Matches MOS of human speaker on LJSpeech dataset

● Samples

Tan et al. 2022

https://speechresearch.github.io/naturalspeech/
https://arxiv.org/abs/2205.04421


75

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Recent Methods

75



76

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Tortoise

76

Better speech synthesis through scaling

https://arxiv.org/abs/2305.07243


77

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VALL-E / VALL-E-X

77

Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers

https://arxiv.org/abs/2301.02111


78

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Bark

78

https://github.com/suno-ai/bark

https://github.com/suno-ai/bark


79

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

More Examples of Neural Networks on Raw Audio

79

● Generative model of audio

● Autoregressive: generates one sample of audio at a time

● Many layers of dilated convolutions for a high receptive field

● Very high output quality

● Extremely Slow

● Can be conditioned on linguistic features or spectrograms to generate speech for specific 
utterances

Oord et al. 2016

https://arxiv.org/abs/1609.03499


80

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

WaveRNN

80

● Hyper-optimize a simple, autoregressive GRU model instead of WaveNet

● Up to 96% (!) weight sparsification and subsampling

● Runs ~4x real time even on smartphone CPUs

● Diverse applications in audio (see LPCNet, Lyra codec / WaveNetEQ packet loss smoothing)

Kalchbrenner et al. 2018

https://jmvalin.ca/demo/lpcnet/
https://ai.googleblog.com/2021/02/lyra-new-very-low-bitrate-codec-for.html
https://ai.googleblog.com/2020/04/improving-audio-quality-in-duo-with.html
https://arxiv.org/pdf/1802.08435.pdf


81

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

WaveRNN

81

● Hyper-optimize a simple, autoregressive GRU model instead of WaveNet

● Up to 96% (!) weight sparsification and subsampling

● Runs ~4x real time even on smartphone CPUs

● Diverse applications in audio (see LPCNet, Lyra codec / WaveNetEQ packet loss smoothing)

Kalchbrenner et al. 2018

https://jmvalin.ca/demo/lpcnet/
https://ai.googleblog.com/2021/02/lyra-new-very-low-bitrate-codec-for.html
https://ai.googleblog.com/2020/04/improving-audio-quality-in-duo-with.html
https://arxiv.org/pdf/1802.08435.pdf


82

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Parallelizing WaveNet

82

Slow
Autoregressive

 High Quality

Fast
 Parallel

 High Quality

WaveNet ???



83

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Parallelizing WaveNet

83

Slow
Autoregressive

 High Quality

Sequential 
Training Parallel

 Inference

WaveNet ???



84

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Inverse Autoregressive Flows

84

● Sample the number of audio samples we want to generate from a unit gaussian distribution

● Transform those samples by a mean and variance predicted by a neural net

● This produces the full waveform in parallel

● Each step is as follows:

where s and μ are produced by running a WaveNet on z



85

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Inverse Autoregressive Flows

85



86

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Inverse Autoregressive Flows

86

● Fast, parallel sampling

● Closed form for gradient update requires an autoregressive calculation

● This makes directly training the flow intractable

● In a sense, the inverse of WaveNet



87

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Parallel WaveNet: Student and Teacher

87

● Use a trained normal WaveNet model as a “teacher” for an IAF

● Minimize the KL divergence between the output distribution of the IAF and teacher wavenet

● This can be done in parallel, so training is fast

● Once trained, the student IAF can then perform inference in parallel on its own



88

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Parallel WaveNet: 
Student and 
Teacher

88

Oord et al. 2016

https://arxiv.org/abs/1609.03499


89

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Parallel WaveNet Issues

89

● Have to train two separate models

● Even with Clarinet, training the student distribution to match the teacher is extremely finicky

● Perceptual losses required which are hand tuned

● In practice, very hard to replicate the quality of the original WaveNet



90

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Parallelizing WaveNet

90

Slow
Autoregressive

 High Quality
Parallel Training 

Inference

WaveNet IAF



91

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Parallelizing WaveNet

91

Slow
Autoregressive

 High Quality
Parallel Training 

Inference

WaveNet IAF

Parallel Training 
Parallel Inference

???



92

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Inverse Autoregressive Flows

92



93

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Inverse Autoregressive Flows

93

Autoregressive WaveNet 
=> intractable log 

likelihood

Flow Training ⇔ 
WaveNet Inference => 

SLOW



94

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Inverse Autoregressive Flows

94

What if this was 
invertible?



95

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Inverse Autoregressive Flows

95

What if this was 
invertible?

Inference: 
sample z and

 transform to x

Training: transform x to z 
and enforce a normal 

distribution on z



96

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Glow

96

● Invertible flow based model

● Originally applied to image generation by OpenAI

● Quickly repurposed for audio generation with WaveGlow

Kingma, Dhariwal 2018, Prenger et al. 2018

https://arxiv.org/abs/1811.00002
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1811.00002


97

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Affine Coupling Layer - Forward

97

xa

xb

xa

xb*NN Affine

In the forward pass, xa is unchanged and used to transform xb into 
xb*

InvertibleNon-Invertible



98

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Affine Coupling Layer - Backward

98

xa

xb

xa

xb*NN Affine

In the backwards pass, WN produces the same scale and bias for the affine transformation since 
xa is the same. This means we can just invert the affine transformation to transform xb* to xb

InvertibleNon-Invertible



99

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Affine Coupling Layers

99

Prenger et al. 2018

https://arxiv.org/abs/1811.00002


100

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Mixing Channels

100

● Affine Coupling Layers can only transform half the input at a time

● Need a way to mix the channels between coupling layers



101

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Invertible 1x1 Convolution

101

● 1x1 Convolution with a square kernel

● Initialize the kernel to be an invertible, orthonormal matrix

● Add a term to the loss to ensure it stays invertible in training

● For the backwards pass we just invert the kernel

● Now the channels are mixed between coupling layers



102

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

WaveGlow 
Architecture

102

Prenger et al. 2018

https://arxiv.org/abs/1811.00002


103

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

WaveGlow Loss Function

103

Prenger et al. 2018

Fit z to a unit Gaussian 
Distribution

Change of variables from 
coupling

Ensure 1x1 conv kernels 
remain invertible

https://arxiv.org/abs/1811.00002


104

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

WaveGlow

104

●  Directly maximising likelihood makes training much more stable

● Eliminates the needs for perceptual losses

● Only have to train one model

● Quality equal to WaveNet

● Synthesize audio in parallel



105

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Parallelizing WaveNet

105

Slow
Autoregressive

 High Quality
Parallel Training 

Inference

WaveNet IAF

Parallel Training 
Parallel Inference

WaveGlow



106

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Can we Go faster?

106

● WaveGlow requires a powerful GPU for fast inference

● WaveRNN requires heavy optimization to run real time on CPUs

● Is there an alternative?



107

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

GAN-based Vocoders

107

● Generative adversarial networks applied to audio generation

● Simultaneously train two networks: a generator and a discriminator

● Generator produces audio from the spectrograms to be as close as possible
 to the ground truth audio

● Discriminator trained to distinguish generator outputs from real audio

● Examples include MelGAN, Parallel WaveGAN, HiFiGAN

https://arxiv.org/abs/1910.06711
https://arxiv.org/abs/1910.11480
https://arxiv.org/abs/2010.05646


108

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

LSGAN Architecture

108

Mao et al. 2016

https://arxiv.org/abs/1611.04076


109

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Additional Losses for Audio GANs

109

● Direct reconstruction loss on mel spectrograms

● Discriminator feature map L1 loss

Kumar et al 2019, Kong et al. 2020

https://arxiv.org/abs/1910.06711
https://arxiv.org/abs/2010.05646


110

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Multi-scale/multi-period Discriminators

110

● Multiple discriminators at different scales/periods are helpful

● Capture long term dependencies

Kumar et al 2019, Kong et al. 2020

https://arxiv.org/abs/1910.06711
https://arxiv.org/abs/2010.05646


111

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

GANs

111

● Very fast parallel GPU and CPU synthesis

● Quality approaching or matching WaveNet/WaveGlow/WaveRNN

● Require carefully designed additional losses to perform well

● Good open source implementations



112

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Summary

112

● GAN based vocoders have the best quality/latency trade offs currently

● HiFiGAN is a great choice – high performance and high quality

https://arxiv.org/abs/2010.05646


113

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

End to End Glow TTS Model

113



114

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

The Ideal TTS Model

114

● Expressive, flexible duration modeling like Tacotron

● Fast parallel inference like FastSpeech

● Reference encoder to account for one-to-many mapping

● Trained end to end – no separate vocoder



115

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Glow-TTS

115

● Use a flow model for posterior from mel spectrograms to text

● Use a transformer text encoder to parametrize the prior

● Train using maximum likelihood to match prior and posterior distributions

● Since we have maximum likelihood, use dynamic programming to find the 
most likely alignment during training

● For inference, train a separate duration predictor to match the most likely alignment



116

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Glow-TTS

116

Kim et al. 2020

https://arxiv.org/pdf/2005.11129.pdf


117

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Glow-TTS – Monotonic Alignment Search

117

Figure: Illustration of monotonic alignment. 
Kim et al. 2020

https://arxiv.org/pdf/2005.11129.pdf


118

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Glow-TTS Shortcomings

118

● Not trained end to end – still uses a mel spectrogram output

● No reference encoder – less prosodic variation/controllability

● Direct duration prediction – less natural prosody



119

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

TacoTron Attention Variations

119



120

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Content Based Attention

120

Bahdanau et al. 2014

RNN_att Query Encoder Keys

https://arxiv.org/abs/1409.0473


121

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Location Sensitive Attention

121

Shen et al. 2018

Convolution with previous 
alignment

https://arxiv.org/abs/1712.05884


122

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Location Sensitive Attention

122

● Allows the model to explicitly use previous alignments for computing the next attention state

● Achieves much stronger alignments in practice than plain Bahdanau attention

● Enough model flexibility to learn a high quality text to spectrogram mapping



123

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Dynamic Convolutional Attention

123

Battenberg et al. 2019

Dynamic filters 
computed from attention 

state

Prior bias to encourage 
monotonicity

https://arxiv.org/abs/1910.10288


124

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Dynamic Convolutional Attention

124

Battenberg et al. 2019

https://arxiv.org/abs/1910.10288


125

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Dynamic Convolutional Attention

125

● Dynamic filters on previous alignment instead of directly using the encoder outputs and query

● Add a prior bias which softly encourages monotonicity

● Learns even more consistent alignments than location sensitive attention

● Better generalization to long utterances

● Tends to reach an alignment faster



126

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Tips for Training Attention TTS Models

126

● Alignments are everything, a good alignment in training almost certainly means good 
generalization

● Make sure your examples are well trimmed, consider normalizing volume and 
removing especially noisy samples

● Use a location based attention. LSA is simple and works well. DCA/GMM can be even better

● Make sure your log mel spectrograms are well normalized

● Fine tuning from existing models can be useful for small/noisy datasets

● Reduction factor is your friend if you’re struggling to get an alignment



127

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Attention Model Drawbacks

127

● Autoregressive => Slow

● Occasionally prone to skipping, repeating etc even with LSA, DCA



128

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

An Alternative: Explicit Duration Modelling

128

Ren et al 2019

https://arxiv.org/abs/1905.09263


129

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

FastSpeech 1/2

129

● Similar to earlier DNN TTS systems

● Explicitly predict phoneme durations, f0 and pitch

● Durations for training come from an autoregressive model (e.g. tacotron) or 
from traditional HMM forced alignments

● To match the input and output lengths, repeat input states according 
to phoneme durations

● Use a transformer to predict in parallel rather than frame by frame

Ren et al 2019, Ren et al. 2020

https://arxiv.org/abs/1905.09263
https://arxiv.org/abs/2006.04558


130

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

FastSpeech 2 Variance Predictors

130

Ren et al. 2020

At training time use 
the ground truth 
duration, energy, f0 
and pitch for synthesis 
and train predictors 
with MSE

(FFT = Feed Forward 
Transformer not Fast 
Fourier Transform)

Variance 
Predictor 
Structure:

https://arxiv.org/abs/2006.04558


131

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Generative Spoken Language Modeling

131



132

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

The Future of TTS

132

● On high quality datasets, TTS has reached parity with humans in MOS

● These systems operate on a single utterance at a time

● Systems that handle long form context and dynamically adjust their tone are the future



133

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Generative Spoken Language Modeling

133

● Obtain discrete audio codes from Wav2Vec-2, HUBERT etc.

● Train a GPT style transformer LM on the codes

● Train a speech synthesis model to convert codes to speech

● Can simulate turn-taking and backchannels when training on two channels

● Samples

https://speechbot.github.io/dgslm/


134

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Generative Spoken Language Modeling

134

Nguyen et al 2022

https://arxiv.org/pdf/2203.16502.pdf


135

CS 224S / LINGUIST 285
Spoken Language Processing
CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

More on style and speaker embeddings

135



136

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Expanding the “text” in TTS

136

● TTS is fundamentally a one-to-many mapping

● The same text has infinitely many voicings

● Controllable speaker and prosody is very useful in dialog systems and elsewhere



137

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Speaker/Style with One Hot Labels

137

● Enumerate your speakers and/or styles and label the training data with them

● During training, learn an embedding for each speaker/style by passing a one 
hot encoding to the encoder

● At inference, pass in the corresponding speaker/style embedding

● Simple and easy to train but constrained by the breadth of your labels



138

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Sequence to Sequence Problem

138

“g”

RNN RNN RNN RNN

“r” “a” “c” “e”

CNN/RNN

37 3

Learned
One-hot Embedding

Speaker ID Prosodic Style



139

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Learned Speaker Embeddings

139

● Train with large datasets of speaker-labelled audio

● Feed frozen embeddings to TTS model at training and inference time

● If the training dataset is sufficiently diverse, zero shot synthesis is possible for
new speakers with a single utterance

● Audio Samples

Jia et al. 2018

https://google.github.io/tacotron/publications/speaker_adaptation/index.html
https://arxiv.org/abs/1806.04558


140

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 140

Learned Speaker Embeddings



141

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS 141

Learned Speaker Embeddings

Figure 1: System overview. Different colors indicate utterances / 
embeddings from different speakers.

Figure 2: GEE loss pushes the embedding towards the centroid of 
the true speaker, and away from the centroid of the most similar 
different speaker. Wang et al 2017 

https://arxiv.org/abs/1703.10135


142

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Learned Speaker Embeddings

142

“g”

RNN RNN RNN RNN

“r” “a” “c” “e”

CNN/RNN

Speaker Spectrogram

CNN/RNN (frozen)



143

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Learned Style Embeddings

143

● Instead of explicitly labelling style, can we get the model to learn structure in the audio data 
organically?

● Feed in the mel spectrogram as an input to a style module at training time

● Compress with conv/lstm to prevent trivial reconstruction

● At inference time feed in a reference mel spectrogram or sample from the latent space

● Can be achieved with token embeddings or a VAE

● Known as a “reference encoder” in the literature



144

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

GST Tacotron

144

Figure: Model diagram. During training, the log-mel spectrogram of the training target is fed to the reference encoder followed by a style token layer. The 
resulting style embedding is used to condition the Tacotron text encoder states. During inference, we can feed an arbitrary reference signal to synthesize text 

with its speaking style. Alternatively, we can remove the reference encoder and directly control synthesis using the learned interpretable tokens.
 Wang et al 2017 | Samples

https://arxiv.org/abs/1703.10135
https://google.github.io/tacotron/publications/global_style_tokens/


145

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

VAE Tacotron

145

● Use variational auto encoder for style latent space

● Latent space then encouraged to follow a gaussian distribution

● Sample prosodies from latent space at inference time

● GMVAE Tacotron uses a hierarchical mixture of gaussians so each
component learns a different prosodic component of the data

● Fine-grained VAEs learn the variability in the model’s prosody. This can be
useful when generating data for semi-supervised ASR

Hsu et al. 2018, Sun et al. 2020

https://arxiv.org/abs/1810.07217
https://arxiv.org/abs/2002.03788


146

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Training

146

“g”

RNN RNN RNN RNN

“r” “a” “c” “e”

CNN/RNN

VAE Latent Space

CNN/RNN

zt ~ N(0,1)



147

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 6: 
Deep Learning for TTS

Inference

147

“g”

RNN RNN RNN RNN

“r” “a” “c” “e”

CNN/RNN

VAE Latent Space

zt ~ N(0,1)Sample


