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● Early speech recognition research
● Noisy channel model & ASR architecture
● ASR with Hidden Markov Models
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Arc of Recent History
● In 2013:

○ ASR, TTS, dialog all used specialized, hard-to-build modeling approaches
○ Industry application of SLU systems limited. ASR “didn’t quite work well enough” 

● Today:
○ ASR, TTS, dialog all use deep learning approaches. Less specialized and better performance
○ Spoken language systems are everywhere!
○ New tools enable building full systems

4
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History: Foundational Insights 1900s-1950s
● Automaton:

○ Markov 1911
○ Turing 1936
○ McCulloch-Pitts neuron (1943)

■ http://marr.bsee.swin.edu.au/~dtl/het704/lecture10/ann/node1.html
■ http://diwww.epfl.ch/mantra/tutorial/english/mcpits/html/

○ Shannon (1948) link between automata and Markov models

● Human speech processing
○ Fletcher at Bell Labs (1920’s)

● Probabilistic/Information-theoretic models
○ Shannon (1948)
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http://marr.bsee.swin.edu.au/~dtl/het704/lecture10/ann/node1.html
http://diwww.epfl.ch/mantra/tutorial/english/mcpits/html/
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Early Recognition

1920’s Radio Rex

● Celluloid dog with iron base held within house by electromagnet 
against force of spring

● Current to magnet flowed through bridge which was sensitive to 
energy at 500 Hz

● 500 Hz energy caused bridge to vibrate, interrupting current, 
making dog spring forward

● The sound “e” (ARPAbet [eh]) in Rex has 500 Hz component
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ASR: 1950’s - Early Speech Recognizers

 
● 1952: Bell Labs single-speaker digit recognizer 

○ Measured energy from two bands (formants)
○ Built with analog electrical components
○ 2% error rate for single speaker, isolated digits

● 1958: Dudley built classifier that used continuous spectrum rather than just formants

● 1959: Denes ASR combining grammar and acoustic probability

7
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ASR: 1970’s and 1980’s

 
● Hidden Markov Model 1972

○ Independent application of Baker (CMU) and Jelinek/Bahl/Mercer lab (IBM) following work of 
Baum and colleagues at IDA

● ARPA project 1971-1976
○ 5-year speech understanding project: 1000 word vocab, continuous speech, multi-speaker
○ SDC, CMU, BBN
○ Only 1 CMU system achieved goal

● 1980’s +
○ Annual ARPA “Bakeoffs”
○ Large corpus collection

■ TIMIT
■ Resource Management
■ Wall Street Journal

8
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NIST STT Benchmark Test History - May 2009

 

9



10

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 7: 
Speech Recognition

More recent ASR Improvements
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https://github.com/syhw/wer_are_we

https://github.com/syhw/wer_are_we
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Noisy Channel Model & ASR Architecture
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The Noisy Channel Model
● Search through space of all possible sentences.
● Pick the one that is most probable given the waveform

12

Noisy Channel

Every happy family

In a hole in the ground
…
If music be the food of love

Noisy Sentence

Noisy 1

Noisy 2

Noisy n

Source Sentence:

If music be the
 food of love…

Guess at Source

If music be the
 food of love…

Decoder
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● What is the most likely sentence out of all sentences in the language L that generated some given 
some acoustic input O?

● Treat acoustic input O as sequence of individual observations 
○ O = o1,o2,o3,…,ot

● Define a sentence as a sequence of words:
○ W = w1,w2,w3,…,wn

13

The Noisy Channel Model
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● Probabilistic implication: Pick the highest prob word sequence W:

● We can use Bayes rule to rewrite this:

● Since denominator is the same for each candidate sentence W,
 we can ignore it for the argmax:

14

The Noisy Channel Model
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The Noisy Channel Model
● Ignoring the denominator leaves us with two factors: P(Source) and P(Signal|Source)

15

Noisy Channel

Every happy family

In a hole in the ground
…
If music be the food of love

Noisy Sentence

Noisy 1

Noisy 2

Noisy n

Source Sentence:

If music be the
 food of love…

Guess at Source

If music be the
 food of love…

Decoder
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The Noisy Channel Model

Likelihood Prior
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Speech Recognition Architecture

Acoustic Feature 
Extraction

MFCC Features

Gaussian Mixture 
Acoustic Model

Phone Likelihoods

Viterbi Decoder

N-gram 
Language Model

HMM Lexicon

O

P(O|W)

P(W)

If music be the food of love…W

Likelihood

Prior
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Speech Architecture Meets Noisy Channel

Decoding 
Search

Acoustic Model 
+ Lexicon

Language 
Model

Feature 
ExtractionO

P(O|W)

P(W)

W
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Word error rate (WER)

Can be >100%. 
Doesn’t distinguish between function words (of, they, he, she) and more important content words

Compute best alignment of reference and hypothesis to count errors:

19
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Word error rate (WER)

Can be >100%. 
Doesn’t distinguish between function words (of, they, he, she) and more important content words

Comparing aligned systems
for deeper error analysis:

20
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ASR with Hidden Markov Models & 
Gaussian Mixture Models (HMM-GMM)

21
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● Feature Extraction: 
○ 39 MFCC features

● Acoustic Model: 
○ Gaussians for computing p(o|q)

● Lexicon/Pronunciation Model
○ HMM: what phones can follow each other

● Language Model
○ N-grams for computing p(wi|wi-1)

● Decoder
○ Viterbi algorithm: dynamic programming for combining

all these to get word sequence from speech

22

HMM-GMM Decoding Architecture: Main components
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HMM-GMM System

942 942 6

Features Features Features

GMM models:
P(o|q)
o: input features
q: HMM state

Acoustic Model:

Audio Input:

Hidden Markov 
Model (HMM):

Transcription:
Pronunciation:

Sub-phones:

Samson
S – AE – M – S –AH – N
942 – 6 – 37 – 8006 – 4422 …
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● Markov assumption:

● Output-independence assumption:

24

Hidden Markov Model (HMM) basics
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Feature Extraction (MFCCs)
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Mel-scale

Human hearing is not equally 
sensitive to all frequency 
bands

Less sensitive at higher 
frequencies, > 1000 Hz

I.e. human perception of 
frequency is non-linear:
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Mel Filter Bank Processing
● Mel Filter bank

○ Roughly uniformly spaced before 1 kHz
○ logarithmic scale after 1 kHz
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MFCC
● Mel-Frequency Cepstral Coefficient (MFCC)

● Most widely used spectral representation in ASR
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Delta and Double-delta
● Derivative: in order to obtain temporal information
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Typical MFCC Features
● Window size: 25ms

● Window shift: 10ms

● Pre-emphasis coefficient: 0.97

● MFCC:
○ 12 MFCC (mel frequency cepstral coefficients)
○ 1 energy feature
○ 12 delta MFCC features 
○ 12 double-delta MFCC features
○ 1 delta energy feature
○ 1 double-delta energy feature

● Total 39-dimensional features
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GMM Acoustic Models
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● P(o|q): A Gaussian parameterized by mean and variance:

32

Gaussians for Acoustic Modeling

Different Means

P(o|q)

P(o|q) is highest here at mean

P(o|q) is lowest here at mean
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Summary: each state has a likelihood function parameterized by:

● M Mixture weights

● M Mean Vectors of dimensionality D

● either:
○ M Covariance Matrices of DxD

● or more likely:
○ M Diagonal Covariance Matrices of DxD
○ which is equivalent to
○ M Variance Vectors of dimensionality D

33

GMMs
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Phonetic Context: Different “eh”s

Fr
eq

ue
nc

y 
(H

z)

Time (s)0

5,000
b   eh    n y     eh   l w   eh  d  

1.191
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● The strongest factor affecting phonetic variability is the neighboring phone

○ HMMs assume the opposite: per-state observation likelihoods are conditionally independent

● Idea: have phone models which are specific to context. Context-Dependent (CD) phones

○ Instead of Context-Independent (CI) phones

● Each triphone captures facts about preceding and following phone

● Monophone:
○ p, t, k

● Triphone:
○ Iy-p+aa

○ a-b+c means “phone b, preceding by phone a, followed by phone c”

● AND for each triphone, we use 3 separate sub-states (beginning, middle, end) to further split the 
categories and reduce within-state variance of observations

35

Context Dependent (CD) Phones: Triphones



36

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 7: 
Speech Recognition 36

“Need” with Triphone Models
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● Word-Internal Context-Dependent Models

● Cross-Word Context-Dependent Models

● Dealing with cross-words makes decoding harder! 

37

Word-Boundary Modeling

 ‘OUR LIST’:
SIL AA+R AA-R L+IH L-IH+S IH-S+T S-T

 ‘OUR LIST’:
SIL-AA+R AA-R+L R-L+IH L-IH+S IH-S+T S-T+SIL
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● Possible triphones: 50x50x50=125,000

● How many triphone types actually occur?

● 20K word WSJ Task, numbers from Young et al

● Cross-word models: need 55,000 triphones

● But in training data only 18,500 triphones occur!

● Need to generalize models

38

Implications of Cross-Word Triphones



39

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 7: 
Speech Recognition 39

Modeling Phonetic Context: Some Contexts Look Similar

0 Hz

5,000 Hz
 w   iy

820.08 Hz

 r   iy  m   iy  n   iy
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● Young, Odell, Woodland 1994

● Decision-Tree based clustering of triphone states

● States which are clustered together will share their Gaussians

● We call this “state tying”, since these states are “tied together” to the same Gaussian.

40

Solution: State Tying
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Triphone Decision Tree Clustering
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Triphone Decision Tree Clustering
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● We initially have no alignments between audio and transcripts

● General process. Iteratively improve alignments and train more complex models

○ Use current HMM-GMM system to produce a “forced alignment”. 
Given the transcripts (ground truth phoneme sequence) produce the phoneme-time alignments

○ Use aligned data as ground truth. 
Throw away old GMMs. Fit more complex GMMs or increase number of states for a more accurate model

○ Repeat the iterative process above to progress to GMM acoustic models with clustered CD states. 

● Progression towards GMMs for each state:
○ Gaussians
○ Multivariate Gaussians
○ Mixtures of Multivariate Gaussians

● Make more expressive states progressively:
○ CI Phone
○ CI Subphone (3ish per phone)
○ CD phone (=triphones)
○ State-tying of CD phone

● This results in a “training recipe” and there is some art in getting the right progression. 
A clunky optimization process for the full system

43

Iterative expectation maximization training
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HMM-GMM Embedded Training
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Training an HMM system (Viterbi)
● Given our lexicon + HMM structure, and some acoustic model, we can:

○ Generate the best alignment of HMM states to acoustic observations

● With an alignment of HMM states to observations:
○ Build a new acoustic model. Treat current state/obs mapping as training data+labels
○ This acoustic model is hopefully better than previous one

● Repeat the align -> rebuild acoustic model process until convergence
○ Add parameters / complexity to acoustic model each iteration
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Forced Alignment
● Computing the “Viterbi path” over the training data is called “forced alignment”

● Because we know which word string to assign to each observation sequence.

● We just don’t know the state sequence.

● So we use aij to constrain the path to go through the correct words

● And otherwise do normal Viterbi

● Result: state sequence!
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Initialization: “Flat start”
● Transition probabilities:

○ Set to zero any that you want to be “structurally zero” (lexicon/pronunciation)
○ Set the rest to identical values

● Likelihoods:
○ Initialize GMM  and  of each state to global mean and variance of all training data
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DNN Hybrid Acoustic Models

942 942

Use a DNN to approximate:
P(s|x)

Apply Bayes’ Rule:
P(x|s) = P(s|x) * P(x) / P(s)

DNN * Constant / State prior

Acoustic Model:

Audio Input:

Hidden Markov 
Model (HMM):

Transcription:
Pronunciation:

Sub-phones:

Samson
S – AE – M – S –AH – N
942 – 6 – 37 – 8006 – 4422 …

Features (X1) Features (X2) Features (X3)

6

P(s | X1) P(s | X2) P(s | X3)
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● Supervised learning, minimize our classification errors

● Standard choice: Cross entropy loss function
○ Straightforward extension of logistic loss for binary

● This is a frame-wise loss. We use a label for each frame from a forced alignment

● Other loss functions possible. Can get deeper integration with the HMM or word error rate

49

Objective Function for Learning
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Appendix: HMMs for Speech

50
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● A list of words
● Each one with a pronunciation in terms of phones
● We get these from an existing pronunciation dictionary

○ Default academic resource: CMU dictionary: 127K words

● We represent the lexicon as an HMM

51

Lexicon

https://en.wikipedia.org/wiki/CMU_Pronouncing_Dictionary
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Markov Chain for Weather

Start0

Hot1

Cold2

Warm3

End4

a03

a01

a02

a31

a13 a14

a34

a12
a21

a24

a32

a23

a11 a33

a22
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Markov Chain for Words

Start0

is1 white3

End4

a03

a01

a02

a31

a13 a14

a34

a12
a21

a24

a32

a23

a11 a33

a22

snow2
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● A set of states
○ �Q = q1, q2…qN;  the state at time t is qt

● Transition probabilities: 
○ a set of probabilities A = a01a02…an1…ann.
○ Each aij represents the probability of transitioning from state i to state j
○ The set of these is the transition probability matrix A

● Distinguished start and end states

54

Markov Chain =  First-order Observable Markov Model
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● Current state only depends on previous state 

● Markov Assumption: 

55

Markov Chain =  First-order Observable Markov Model
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● Instead of start state 

● Special initial probability vector 𝝅
○ An initial distribution over probability of start states

● Constraints:

56

Another Representation for Start State
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The Weather Figure Using 𝝅

Hot1

Cold2

Warm3

a31

a13

a12
a21

a32

a23

a11 a33

a22

𝝅1

𝝅2

𝝅3

𝝅=[𝝅1,𝝅2,𝝅3]
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The Weather Figure Using 𝝅

Hot1

Cold2

Warm3

a31

a13

a12
a21

a32

a23

a11 a33

a22

𝝅1

𝝅2

𝝅3

𝝅=[.5,.3,.2]
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● For Markov chains, output symbols = state symbols
○ See hot weather: we’re in state hot

● But not in speech recognition
○ Output symbols: vectors of acoustics (cepstral features)
○ Hidden states:  phones 

● So we need an extension!

● A Hidden Markov Model is an extension of a Markov chain 
in which the input symbols are not the same as the states

● This means we don’t know which state we are in

59

Hidden Markov Model
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● You are a climatologist in the year 2799

● Studying global warming

● You can’t find any records of the weather in Baltimore, MD for summer of 2008

● But you find Jason Eisner’s diary

● Which lists how many ice-creams Jason ate every date that summer

● Our job: figure out how hot it was

60

HMM for Ice Cream
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HMM for Ice Cream

Hot1

Start0

Cold2

.3

.4

.7 .6

.2

.8

B1

P(1 | HOT)
P(2 | HOT)
P(3 | HOT)

.2

.4

.4
=

B2

P(1 | COLD)
P(2 | COLD)
P(3 | COLD)

.5

.4

.1
=
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● Problem 1 (Evaluation): Given the observation sequence O=(o1o2…oT), and an HMM model 
F = (A,B), how do we efficiently compute P(O| Φ), the probability of the observation 
sequence, given the model?

● Problem 2 (Decoding): Given the observation sequence O=(o1o2…oT), and an HMM model 
Φ = (A,B), how do we choose a corresponding state sequence Q=(q1q2…qT) that is optimal 
in some sense (i.e., best explains the observations)?

● Problem 3 (Learning): How do we adjust the model parameters Φ = (A,B)
 to maximize P(O| Φ)?

62

The Three Basic Problems for HMMs
Jack Ferguson at IDA in the 1960s
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Decoding
● Given an observation sequence

○ 3 1 3

● And an HMM

● The task of the decoder
○ To find the best hidden state sequence

● Given the observation sequence O=(o1o2…oT), and an HMM model Φ = (A,B), how do we choose a 
corresponding state sequence Q=(q1q2…qT) that is optimal in some sense (i.e., best explains the 
observations)
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HMM for Ice Cream Eisner Task
● Given

○ Observed Ice Cream Sequence: 
■ 1,2,3,2,2,2,3…

● Produce:
○ Hidden Weather Sequence: 

■ H,C,H,H,H,C…
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HMM for Ice Cream

Hot1

Start0

Cold2

.3

.4

.7 .6

.2

.8

B1

P(1 | HOT)
P(2 | HOT)
P(3 | HOT)

.2

.4

.4
=

B2

P(1 | COLD)
P(2 | COLD)
P(3 | COLD)

.5

.4

.1
=
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Decoding
● One possibility:

○ For each hidden state sequence Q
○ HHH, HHC, HCH, 

● Compute P(O|Q)

● Pick the highest one 

● Why not?
○ NT

● Instead:
○ The Viterbi algorithm
○ Is a dynamic programming algorithm
○ Uses a similar trellis to the Forward algorithm
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Viterbi Intuition
● We want to compute the joint probability of the observation sequence together with the best state 

sequence 
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Viterbi Recursion
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The Viterbi Trellis
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Viterbi Intuition
● Process observation sequence left to right

○ Filling out the trellis
○ Each cell:
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Viterbi Algorithm
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The Viterbi Trellis
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HMMs for Speech

S1

a11

ih2

a22

k3
s4Start0

a33 a44

End5

a01 a12 a23 a34 a45
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Phones are Not Homogeneous!
Phone-level HMMs Not Enough

ay k

0 0.93Time (s)

5,000

Fr
eq
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nc
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(H
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Each Phone Has 3 Subphones

a11 a22

fin3Start0

a33

End5

a01 a12 a23 a34beg1 mid2
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Resulting HMM Word Model for “six”

Start s0
ends1 s2k0 k1 k2ih0 ih1 ih2s0 s1 s2
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Viterbi Intuition
● Process observation sequence left to right

○ Filling out the trellis
○ Each cell:
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Appendix: MFCC computation details
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Discrete 
Representation
of Signal

Figure: Bryan Pellom 

Represent continuous signal 
into discrete form
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Discrete 
Representation
of Signal
If measure at green dots, will 
see a lower frequency wave 
and miss the correct higher 
frequency one!

Original signal in red
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WAV Format

● Many formats, trade-offs in compression, quality

● Nice sound manipulation tool:  Sox
○ http://sox.sourceforge.net/
○ convert speech formats

http://sox.sourceforge.net/
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Windowing

Figure: Bryan Pellom 
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MFCC
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Discrete Fourier 
Transform 
Computing a 
Spectrum
A 25 ms Hamming- 
windowed signal from [iy]

● And its spectrum as 
computed by DFT (plus 
other smoothing)
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Mel-filter Bank Processing
● Apply the bank of Mel-scaled filters to the spectrum

● Each filter output is the sum of its filtered spectral components
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MFCC
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Log Energy Computation
● Compute the logarithm of the square magnitude of the output of Mel-filter bank
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The Cepstrum
One way to think about this:

● Separating the source and filter

● Speech waveform is created by
○ A glottal source waveform
○ Passes through a vocal tract which because of its shape has a particular filtering characteristic 

● Remember articulatory facts from lecture 2:
○ The vocal cord vibrations create harmonics
○ The mouth is an amplifier
○ Depending on shape of oral cavity, some harmonics are amplified more than others
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George Miller 
Figure



91

CS 224S / LINGUIST 285
Spoken Language Processing

Lecture 7: 
Speech Recognition 91

We Care About the FIlter Not the Source
● Most characteristics of the source

○ F0
○ Details of glottal pulse

● Don’t matter for phone detection

● What we care about is the filter
○ The exact position of the articulators in the oral tract

● So we want a way to separate these
○ And use only the filter function
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The Cepstrum
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Another Advantage of the Cepstrum
● MDCT produces highly uncorrelated features

● If we use only the diagonal covariance matrix for our Gaussian mixture models, we can only handle 
uncorrelated features.

● In general we’ll just use the first 12 cepstral coefficients (we don’t want the later ones which have 
e.g. the F0 spike)


