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Outline

e Early speech recognition research
e Noisy channel model & ASR architecture
e ASR with Hidden Markov Models

Stanford CS 224S / LINGUIST 285 Lecture 7:
University Spoken Language Processing Speech Recognition



Early speech recognition research
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Arc of Recent History

e 1In2013:
o ASR, TTS, dialog all used specialized, hard-to-build modeling approaches
Industry application of SLU systems limited. ASR “didn’t quite work well enough”

e Today:
o ASR, TTS, dialog all use deep learning approaches. Less specialized and better performance
o  Spoken language systems are everywhere!
o  New tools enable building full systems
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History: Foundational Insights 1900s-1950s

e Automaton:
o  Markov 1911
o  Turing 1936
o McCulloch-Pitts neuron (1943)
m http:/marr.bsee.swin.edu.au/~dtl/het704/lecture10/ann/nodel.html
m  http:/diwww.epfl.ch/mantra/tutorial/english/mcpits/html/
o Shannon (1948) link between automata and Markov models

e Human speech processing
o  Fletcher at Bell Labs (1920’s)

e Probabilistic/Information-theoretic models
o Shannon (1948)
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Early Recognition

1920’s Radio Rex

e Celluloid dog with iron base held within house by electromagnet
against force of spring

e Current to magnet flowed through bridge which was sensitive to
energy at 500 Hz

e 500 Hz energy caused bridge to vibrate, interrupting current,
making dog spring forward

e The sound “e” (ARPAbet [eh]) in Rex has 500 Hz component

Stanford 6
University



ASR: 1950’s - Early Speech Recognizers

e 1952: Bell Labs single-speaker digit recognizer
o  Measured energy from two bands (formants)
o  Built with analog electrical components
o 2% error rate for single speaker, isolated digits

e 1958: Dudley built classifier that used continuous spectrum rather than just formants

e 1959: Denes ASR combining grammar and acoustic probability
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ASR: 1970’s and 1980’s

e Hidden Markov Model 1972

o Independent application of Baker (CMU) and Jelinek/Bahl/Mercer lab (IBM) following work of
Baum and colleagues at IDA

e ARPA project 1971-1976
o  5-year speech understanding project: 1000 word vocab, continuous speech, multi-speaker
o SDC,CMU, BBN
o  Only 1 CMU system achieved goal

e 1980°s +
o  Annual ARPA “Bakeoffs”
o  Large corpus collection
m TIMIT
m  Resource Management
m  Wall Street Journal
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NIST STT Benchmark Test History - May 2009
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More recent ASR Improvements
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Hub5'00 Evaluation (Switchboard / CallHome)

(Possibly trained on more data than SWB, but test set = full HubZ

WER
(SWB)

4.9%

5.0%

51%

51%

WER Paper

(CH) g
An investigation of
phone-based

9.5% subword units for
end-to-end speech
recognition
The CAPIO 2017

91% Conversational N
Speech Recognition
System

9.9% Language Modeling

with Highway LSTM

The Microsoft 2017
Conversational
Speech Recognition
System
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December
2017

September
2017

August 2017
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WsJ

(Possibly trained on more data than WSJ.)

WER WER

Paper
eval'92  eval'93 B
Humans Deep Speech 2: End-to-End
5.03% 8.08% Speech Recognition in English and
Mandarin
2.9% End-to-end Speech Recognition
e Using Lattice-Free MMI
310% Deep Speech 2: End-to-End Speech
SR Recognition in English and Mandarin
LibriSpeech

(Possibly trained on more data than LibriSpeech.)

WER WER

test- test- Paper

clean other
Humans Deep Speech 2: End-to-

583% 12.69% End Speech Recognition in
English and Mandarin
Conformer: Convolution-

1.9% 3.9% augmented Transformer for
Speech Recognition
ContextNet: Improving

19% 241% Convolutional Neural Networks for

Automatic Speech Recognition
with Global Context

Published

December
2015

September
2018

December
2015

Published

December
2015

May 2020

May 2020

https://github.com/syhw/wer_are_we
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Noisy Channel Model & ASR Architecture
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The Noisy Channel Model

e Search through space of all possible sentences.
e Pick the one that is most probable given the waveform

Noisy Channel
Source Sentence: y
3 /‘\\
If music be the ———_ R e )
food of love.. A I ‘l —
\ T = S <
~
Decoder
Every happy family EES A A 0N
Guess at Source = V=
. In a hole in the ground EESUAYA oisy
If music be the - A
food of love.. If music be the food of love z=x, .7y Noisyn

\ Z ToA
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The Noisy Channel Model

e What is the most likely sentence out of all sentences in the language L that generated some given
some acoustic input 0?

e Treat acoustic input O as sequence of individual observations

o 0= 0,,0,,04,.,0,

e Define a sentence as a sequence of words:

o W= W W, W, W

Stanford

University
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The Noisy Channel Model

e Probabilistic implication: Pick the highest prob word sequence W:

W = argmax P(W 10)

WeEL

e We can use Bayes rule to rewrite this:

W - argmax P(OIW)P(W)
WeL P(O)

e Since denominator is the same for each candidate sentence W,
we can ignore it for the argmax:

W = argmax P(O |W)P(W)

WEL

Stanford
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The Noisy Channel Model

e Ignoring the denominator leaves us with two factors: P(Source) and P(Signal|Source)

In a hole in the ground == oY

Noisy Channel
Source Sentence: y
q /‘\\
If music be the ———_ R e )
food of love.. A I ‘l -
v, ~~<Z Noisy Sentence
S A
Decoder
oo “ “nu I
: EESUACA Noisy 1

Guess at Source Every happy family LAV
If music be the AV \/
food of love.. /2y Noisy n

If music be the food of love--: -

<0
\J

_—— 3

A
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The Noisy Channel Model

Likelihood Prior

A 1

W =argmax P(O |W)P(W)

WeEL

Stanford
University
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Speech Recognition Architecture

HHHH-

Acoustic Feature
Extraction

\ Prior
O _______________ MFCC Features
Likelihood '

Gaussian Mixture N-gram —--—--—--—- P(W)
Acoustic Model Language Model

e R .

P(OIW) "1 Phone Likelihoods HMM Lexicon ;
\\ __________ |_ ______________________ 1 ___________ //

v

Viterbi Decoder

l

W -—-—----------- If music be the food of love..
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Speech Architecture Meets Noisy Channel

P(OIW)
Acoustic Model
+ Lexicon J
o — Feature Decoding
Extraction Search
Language 1
Model
P(W)
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Word error rate (WER)

Insertions + Substitutions + Deletions

Word Error Rate = 100 X : .
Can be >100% Total Words in Correct Transcript

Doesn't distinguish between function words (of, they, he, she) and more important content words

Compute best alignment of reference and hypothesis to count errors:

REF: 1 ***% % UM the PHONE IS 1 LEFT THE portable **** PHONE UPSTAIRS last night
HYP: 1GOT IT TO the ***** FULLEST 1 LOVE TO portable FORM OF STORES last night
Eval: 1 I S D S S S I S S

Stanford

University
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Word error rate (WER)

Word Error Rate — 100 x Dsertions + Substitutions + Deletions

Total Words 1n Correct Transcript

Can be >100%.
Doesn't distinguish between function words (of, they, he, she) and more important content words

I II IIT IV
. . REF: |it was|the best|of|times it|was the worst|of times| |it was
Comparing aligned systems | | L | | |
for deeper error aHGIYSIS' SYS A:|ITS |the best|of|times it|IS the worst |of times|OR|it was

I | [ I I [
SYS B:|it was|the best| |times it|WON the TEST |of times| |it was

Stanford 20

University



ASR with Hidden Markov Models &
Gaussian Mixture Models (HMM-GMM)
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HMM-GMM Decoding Architecture: Main components

e Feature Extraction:
o 39 MFCC features

e Acoustic Model:
o  Gaussians for computing p(olq)

e Lexicon/Pronunciation Model
o  HMM: what phones can follow each other

e Language Model
o N-grams for computing p(w,|w. )

e Decoder
o  Viterbi algorithm: dynamic programming for combining
all these to get word sequence from speech

Stanford

University
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HMM-GMM System

Transcription: Samson
Pronunciation:. S8 - AE - M - S -AH - N
Sub-phones: 942 - 6 - 37 - 8006 - 4422 ..

Hidden Markov

Model (HMM): 942 e 6
Acoustic Model: GMM models:
P(olq)
o: input features
q: HMM state

Audio Input:

Features Features

Stanford

University
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Hidden Markov Model (HMM) basics

Q=qq2...qn
e Markov assumption: A=anayw...an...Gm

P(g;1q,---q;_) = P(q;1q;_)

0O=0)02...0T

B =bji(o;)

e Output-independence assumption:

P(o,107,q))=P(o,1q,)  90:9F

Stanford

University

a set of N states

a transition probability matrix A, each a;; rep-

resenting the probability of moving from state i
X n :

tostate j,s.t. 35y ajj=1 Vi

a sequence of 7" observations, each one drawn

from a vocabulary V = v|, vy, ..., vy

a sequence of observation likelihoods, also
called emission probabilities, each expressing
the probability of an observation o; being gen-
erated from a state i

a special start state and end (final) state that are
not associated with observations, together with
transition probabilities apjap;...ag, out of the
start state and a ra>F . . . ayF into the end state
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Feature Extraction (MFCCs)
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Mel-scale
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Mel Filter Bank Processing

e Mel Filter bank

o Roughly uniformly spaced before 1 kHz
o logarithmic scale after 1 kHz

3
2
2
<
o* NS
0 N 1000 2000 3000
IR Frequency (Hz)
\\ \\\ ”/’
~ ~ -
4 A poad
Mel Spectrum my My M

Stanford
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MFCC

e Mel-Frequency Cepstral Coefficient (MFCC)

e Most widely used spectral representation in ASR

Speech signal X, (%) Mel
=0 Pre-emphasis " DFT fiter-barik
Window Y’(m)
energy Log(| |?)
Vi (] . €, < &
y:= %"’r (j )’Az{er} <— |derivatives v, () Y, (m)
Ay, (A} —{IDFT[*
MFCC

Stanford
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Delta and Double-delta

e Derivative: in order to obtain temporal information

MFCC stream y,(j)

AMFCC stream Ay, (j)

AZMFCC stream A?y,(j)

A n-171 n n+1 n+2
quefrency() o| o o @
® O O e
i i i f E—
E | I i »
Frame index miz_ me Vi ()
> Ay, (}) == 7 ,
AV A AV A Z",
z 4 m=-=p
aeprencri)] (@] [@] [@] [@
oo oo
RERRER —
® @O @ @& .
Q| O] O] |O Fralil? index 2 § me Ay, (j)
L () _ m=—p
AVA  Ava Ay ()= P,
) o K Sm
quefrency(j) ol o e e m=—p
o o o e
T
i | | !

Frame index
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Typical MFCC Features

Window size: 25ms

Window shift: 10ms

Pre-emphasis coefficient: 0.97

MFCC:

O

O O O O O

12 MFCC (mel frequency cepstral coefficients)
1 energy feature

12 delta MFCC features

12 double-delta MFCC features

1 delta energy feature

1 double-delta energy feature

Total 39-dimensional features

Stanford

University
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GMM Acoustic Models
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Gaussians for Acoustic Modeling

e P(ol|q): A Gaussian parameterized by mean and variance:

Different Means

P(olq) is highest here at mean
P(olq) / P(olq) is lowest here at mean

Stanford

University

32



GMMs

Summary: each state has a likelihood function parameterized by:
e M Mixture weights
e M Mean Vectors of dimensionality D

e either:
o M Covariance Matrices of DxD

e or more likely:
o M Diagonal Covariance Matrices of DxD
o  which is equivalent to
o M Variance Vectors of dimensionality D

Stanford

University



Phonetic Context: Different “eh’’s

H"H

il t"’ I
' Il !‘JH I

umummmq

» il H
am
‘ i

Wiw L "

il

HHH

Time (s)

SSSSSSSS
Universit



Context Dependent (CD) Phones: Triphones

e The strongest factor affecting phonetic variability is the neighboring phone
o  HMMs assume the opposite: per-state observation likelihoods are conditionally independent

e Idea: have phone models which are specific to context. Context-Dependent (CD) phones
o Instead of Context-Independent (Cl) phones

e Each triphone captures facts about preceding and following phone

e Monophone:
o ptk

e Triphone:
o ly-ptaa

o  a-b+c means “phone b, preceding by phone a, followed by phone ¢”

e AND for each triphone, we use 3 separate sub-states (beginning, middle, end) to further split the
categories and reduce within-state variance of observations

Stanford 35
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“Need” with Triphone Models

#-n+iy n-iy+d iy—d+#

Stanfqrd
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Word-Boundary Modeling

e Word-Internal Context-Dependent Models

‘OUR LIST":
SIL AA+R AA-R L+IH L-IH+S IH-S+T S-T

e Cross-Word Context-Dependent Models

‘OUR LIST":
SIL-AA+R AA-R+L R-L+IH L-IH+S IH-S+T S-T+SIL

e Dealing with cross-words makes decoding harder!

Stanford

University

37



Implications of Cross-Word Triphones

Possible triphones: 50x50x50=125,000

How many triphone types actually occur?

20K word WSJ Task, numbers from Young et al
Cross-word models: need 55,000 triphones

But in training data only 18,500 triphones occur!

Need to generalize models

Stanford

University
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Modeling Phonetic Context: Some Contexts Look Similar

5,000 Hz

"
820.08 Hz , BURLALLL

0 Hz

Stanford
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Solution: State Tying

e Young, Odell, Woodland 1994
e Decision-Tree based clustering of triphone states
e States which are clustered together will share their Gaussians

e We call this “state tying”, since these states are “tied together” to the same Gaussian.

t-iy+n t-iy+ng f-iy+l S-iy+l
e & O O O QO O © 0O O O O
QOO cOPVPeePOPeeOOTe
==

Stanford
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Triphone Decision Tree Clustering

Cluster A:
n-ih+l,
ng-ih+l,
m-ih+],

- -ih+r,
D O O O O O~ o

g-ih+r,
w w m'ih+run

Stanford
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Phone /ih/
beg. state

Yes

Left nasal?
Yes No
Right liquid? Left fricative?
Yes No
Yes No
Right /1/? @
No

$8H 8D

Cluster B:

n-ih+w,
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Triphone Decision Tree Clustering

Feature Phones

Stop bdgkpt

Nasal m n ng

Fricative chdh f jh s shthvzzh

Liquid lrwy

Vowel aa ae ah ao aw ax axr ay eh er ey ih iX 1y ow oy uh uw

Front Vowel ae eh 1h ix 1y

Central Vowel aa ah ao axr er

Back Vowel ax ow uh uw

High Vowel ih 1X 1y uh uw

Rounded ao ow oy uh uw w

Reduced ax axr ix

Unvoiced chfhhkpsshtth

Coronal chddhjhlnrsshtthzzh
Stanford

University
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Iterative expectation maximization training

e We initially have no alignments between audio and transcripts

e General process. Iteratively improve alignments and train more complex models
o  Use current HMM-GMM system to produce a “forced alignment”.
Given the transcripts (ground truth phoneme sequence) produce the phoneme-time alignments
o  Use aligned data as ground truth.
Throw away old GMMs. Fit more complex GMMs or increase number of states for a more accurate model
o  Repeat the iterative process above to progress to GMM acoustic models with clustered CD states.
e Progression towards GMMs for each state:
o Gaussians
o  Multivariate Gaussians
o Mixtures of Multivariate Gaussians
e Make more expressive states progressively:
o  ClPhone
o  Cl Subphone (3ish per phone)
o CD phone (=triphones)
o  State-tying of CD phone
e This results in a “training recipe” and there is some art in getting the right progression.
A clunky optimization process for the full system
Stanford

University
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HMM-GMM Embedded Training

Transcription ’ Nine four oh two two I Wavefile - o WWW%“
| v

one wahn

s R YR B I
Lexicon y R T T T

eight eyt TYY YV YT NNy oy Yoy

nine nayn

zero ZIlyrow £

oh ow Feature Extraction
naynfaorowtuwtuw | YYYYYYYOYYY

\
Raw HMM %@@'&&%’g)’ I %&M '\:/Z%{g:g g g g % g

(D
(IO
(MY
(TITTTICIY
(T
(TITITTITIID

Stanford
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Training an HMM system (Viterbi)

e Given our lexicon + HMM structure, and some acoustic model, we can:
o  Generate the best alignment of HMM states to acoustic observations

e With an alignment of HMM states to observations:
o  Build a new acoustic model. Treat current state/obs mapping as training data+labels
o  This acoustic model is hopefully better than previous one

e Repeat the align -> rebuild acoustic model process until convergence
o  Add parameters / complexity to acoustic model each iteration

Stanford
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Forced Alignment

e Computing the “Viterbi path” over the training data is called “forced alignment”
e Because we know which word string to assign to each observation sequence.
e Wejust don't know the state sequence.

e Soweuse a; to constrain the path to go through the correct words

e And otherwise do normal Viterbi

e Result: state sequence!

Stanford

University
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Initialization: “Flat start”

e Transition probabilities:
o  Set to zero any that you want to be “structurally zero” (lexicon/pronunciation)
o  Settherest to identical values

e Likelihoods:
o Initialize GMM and of each state to global mean and variance of all training data

Stanford

University
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DNN Hybrid Acoustic Models

Stanford

University

Transcription:
Pronunciation:
Sub-phones:

Hidden Markov
Model (HMM):

Acoustic Model:

Audio Input:

Samson

S-AE-M-S -AH - N

942 - 6 - 37 - 8006 - 4422 ..

942

t
P(s|X,)
?

?

?
Features (X,)

942

P(s Ix,)

t
Features (x,)

Features (x,)

Use a DNN to approximate:
P(s|x)

Apply Bayes' Rule:
P(x|s) = P(s|x) * P(x) / P(s)

DNN * Constant / State prior

48



Objective Function for Learning

e Supervised learning, minimize our classification errors

e Standard choice: Cross entropy loss function
o  Straightforward extension of logistic loss for binary

K

Loss(x,y; W,b) = =Y (y =Fk)log f(z)x
k=1

e This is a frame-wise loss. We use a label for each frame from a forced alignment

e Other loss functions possible. Can get deeper integration with the HMM or word error rate

Stanford

University
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Appendix: HMMs for Speech
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Lexicon

A list of words
e Each one with a pronunciation in terms of phones

e We get these from an existing pronunciation dictionary
o  Default academic resource: CMU dictionary: 127K words

e We represent the lexicon as an HMM

Stanford

University
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Markov Chain for Weather

Start0

Stanford

University

Q 99

Cold2
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Markov Chain for Words

Stanford
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Q 99
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Markov Chain = First-order Observable Markov Model

e Asetof states
o [Q=q,q,.q, thestateattimetisq,

e Transition probabilities:
o asetof probabilitesA=a,a,..a_..a_ .
o Each a, represents the probability of transitioning from state i to state |
o  The set of these is the transition probability matrix A

a; P(g =jlgq,_ =i) 1=i,jsN
N

Ea ;, 1=<isN

Jj=1

e Distinguished start and end states

Stanford

University
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Markov Chain = First-order Observable Markov Model

e Current state only depends on previous state

e Markov Assumption:

P(g;1q9,---q,.) =P(q;1q,_,)

Stanford

University

55



Another Representation for Start State

e Instead of start state

e Special initial probability vector st
o Aninitial distribution over probability of start states

w,=P(q =1i) lsisN

e Constraints:

N
2”1 =1
j=1

Stanford

University
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The Weather Figure Using T

a3

a, a
a,, 32
a, a33
a3,
JU Hot, > Warm,
1 -
a

Stanford
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The Weather Figure Using T

Stanford
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a3
a, a
a,, 32

a, a33
a3,

JU Hot, > Warm,

1 -

a3

7a=[.5,.3,2]
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Hidden Markov Model

e For Markov chains, output symbols = state symbols
o  See hot weather: we're in state hot

e But not in speech recognition
o  Output symbols: vectors of acoustics (cepstral features)
o Hidden states: phones

e So we need an extension!

e A Hidden Markov Model is an extension of a Markov chain
in which the input symbols are not the same as the states

e This means we don't know which state we are in

Stanford

University
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HMM for Ice Cream

e You are a climatologist in the year 2799

e Studying global warming

e You can't find any records of the weather in Baltimore, MD for summer of 2008
e But you find Jason Eisner’s diary

e Which lists how many ice-creams Jason ate every date that summer

e Ourjob: figure out how hot it was

Stanford

University
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HMM for Ice Cream

Stanford
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[P(HHOT)] [2] ,
P(2 | HOT) [=].4
PR IHOT) | |4

.. [pP@|coLp)
P(2 | COLD) | =

B,

P(3 | COLD)

i
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The Three Basic Problems for HMMs

Jack Ferguson at IDA in the 1960s

Problem 1 (Evaluation): Given the observation sequence 0=(0.0,...0,), and an HMM model
F = (A,B), how do we efficiently compute P(O| ®), the probability of the observation
sequence, given the model?

Problem 2 (Decoding): Given the observation sequence 0=(0.0,...0,), and an HMM model
® = (A,B), how do we choose a corresponding state sequence Q=(q,q,...q,) that is optimal
in some sense (i.e., best explains the observations)?

Problem 3 (Learning): How do we adjust the model parameters ® = (A,B)
to maximize P(O| ®)?

Stanford
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Decoding

e Given an observation sequence
o 313

e Andan HMM

e The task of the decoder
o  To find the best hidden state sequence

e Given the observation sequence 0=(0.0,...0,), and an HMM model ® = (A,B), how do we choose a

corresponding state sequence Q=(q,q,...q;) that is optimal in some sense (i.e., best explains the
observations)

Stanford

University
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HMM for Ice Cream Eisner Task

e Given
o  Observed Ice Cream Sequence:
m 1,232223..
e Produce:
o  Hidden Weather Sequence:
m HCHHHC..
Stanford

University
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HMM for Ice Cream

Stanford
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[P(HHOT)] [2] ,
P(2 | HOT) [=].4
PR IHOT) | |4

.. [pP@|coLp)
P(2 | COLD) | =

B,

P(3 | COLD)

i
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Decoding

e One possibility:
o  For each hidden state sequence Q
o HHH, HHC, HCH,

e Compute P(0|Q)

e Pick the highest one

e Why not?
o) NT
e |nstead:

o  The Viterbi algorithm
o Is a dynamic programming algorithm
o  Uses a similar trellis to the Forward algorithm

Stanford
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Viterbi Intuition

e We want to compute the joint probability of the observation sequence together with the best state
sequence

w(j)= max P(qo,q1.--91—1,01,02...0t,q; = j|A)
40,41 -+-dr—1

N

vi(j) = I{lzalxw—l(i) aijbj(or)

Stanford

University
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Viterbi Recursion

1. Initialization:

vi(j) = aojbj(o1) 1<j<N
bii(j) = 0

2. Recursion (recall that states 0 and gr are non-emitting):
: N ; .
vi(j) = n,lafivr—l(’)aijbj(ot)§ 1<j<N,1<t<T
1=

N
bi(j) = argmaxv,_1(i)a;;bj(o;); 1<j<N,1<t<T
i

3. Termination:

N .
The best score: Px =v;(qr) = 11lalx vr (i) *a; F
i=

N .
The start of backtrace: qr* =btr(qr) = argmax vr(i)*a;r
i=1

Stanford
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The Viterbi Trellis

9k «: end | ': end “,
vl(2)=.32
qs ': H | .
o // (
- C//y}
$
>
& wm=.02 o0
D ™ \\'\\G L2
F ;937 ’ ?
9 {e) &
R )
&
D A
\%\’b PR
&7

O { s

_>_P(CIC)* P(1IC)
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Viterbi Intuition

e Process observation sequence left to right
o  Filling out the trellis
o Eachcell:

VI‘(.]): max P(Qanl"'QT—laolaoz'"Of’qr:j‘)L)

q0:91+---:9r—1
: N :
vi(j) = maxvi_1(i) ai; bj(or)
1=
vi1(i)  the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state ¢; to current state ¢
bj(or) the state observation likelihood of the observation symbol o; given

the current state |
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Viterbi Algorithm

function VITERBI(observations of len T, state-graph of len N) returns besi-path

create a path probability matrix virerbifN+2,T]
for each state s from 1 to N do ; Initialization step
viterbi[s,1]«ap s * Ds(0y)
backpointer(s,1]—0
for each time step 7 from 2 to 7 do ; recursion step
for each state s from 1 to N do

; ; N ; ;
viterbi[s,t1]—max viterbi[s'.t — 1] * ag 5 * bs(o;)
’=1

. N TR
backpointer[s,1) — argmax viterbils',1 — 1] * ay

=1
s e ', ST, s
viterbi[qr ,T] < max viterbi[s.T| % asg; . termination step
s=1
; N — .
backpointer(qr . T]— argmax viterbi[s,T| * asqp ; termination step

s=1
return the backtrace path by following backpointers to states back in
time from backpointer(qr . T]

Stanford CS 224S / LINGUIST 285 Lecture 7:
University Spoken Language Processing Speech Recognition



The Viterbi Trellis

qe -: end“. -'\ end ". -: end\'.
V(=82 __ -~ 77 7T =< v,2)=max(32".014, .02".08) = .0448 ' '
o S0  PHH)TPAH) oo\ S
2 Nl ,” p(C//’, 7.2 2 :
PR a)'p(’ \\ /,‘ C
.7 N e AN :'
- \ :.: ’.
/ QQ\$ o o v,(1) = max(.32*.15;.02%30) = .048
A R AR
SN Lo \_P(CIC)*P(1IC o
94 \\'\C,' é"’q-’ —~ ( .6)*.5( S (s T A —
.~ Q \0\ NG -
\ % _————-
\ - /
\ 'b& D /
é *
1) @ /’ -1 start | { start } { start |
- - / \__‘ \~—’
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HMMs for Speech

{3 §272 33 44
12 23 34
| H | S
S, ih, K, 4
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Phones are Not Homogeneous!
Phone-level HMMs Not Enough

5,000 -

Frequency (Hz)

Stanford CS 224S / LINGUIST 285 Lecture 7:
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Each Phone Has 3 Subphones

a11 a22

\/ \/

a a a
01 12 . 23
beg, —— mid,

Start0
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fin

34

End5
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Resulting HMM Word Model for “six”

{ YT TAY, TR {

Start - s, — s, — s
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Viterbi Intuition

e Process observation sequence left to right
o  Filling out the trellis
o Eachcell:

VI‘(.]): max P(Qanl"'QT—laolaoz'"Of’qr:j‘)L)

q0:91+---:9r—1
: N :
vi(j) = maxvi_1(i) ai; bj(or)
1=
vi1(i)  the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state ¢; to current state ¢
bj(or) the state observation likelihood of the observation symbol o; given

the current state |
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Appendix: MFCC computation details
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Discrete
Representation
of Signal

Represent continuous signal
into discrete form

Figure: Bryan Pellom
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Discrete .
Representation J ]
of Signal

If measure at green dots, will osl
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WAV Format

11 ~ T 1 I [ T 1 T 1 | I T 1
RIFF =~ WAVEfmY | \ : |\ [kl ‘
length Format chunk \
data length (16) / bytes/second \ Data length
Compression type bytes/sample
bits/channel

# channels
Sampling rate

e Many formats, trade-offs in compression, quality

e Nice sound manipulation tool: Sox
o  http:/sox.sourceforge.net/
o  convert speech formats
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http://sox.sourceforge.net/

Windowing

Figure: Bryan Pellom
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MFCC

Speech signal

x(n)
v U)e,
y. =1 Ay, (jAte)
Ay, ()ja e )
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Discrete Fourier
Transform
Computing a
Spectrum

A 25 ms Hamming-
windowed signal from [iy]

e And its spectrum as
computed by DFT (plus
other smoothing)
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Mel-filter Bank Processing

e Apply the bank of Mel-scaled filters to the spectrum

e Each filter output is the sum of its filtered spectral components

il

v

Time domain signal spectrum

P "

A
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MFCC

Speech signal A’,(k) Mel
=) " Pre-emphasis " DFT AN S—
Window o _Yr_(m_) — -
' (
ener I 2
9y | Log(l1?)
.Vt(j’et er ‘————————.'
Ye= % v ) ’Aze’} | |derivatives v, () Y, "(m)
Ay, () A% e, } IDFT
MFCC
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Log Energy Computation

e Compute the logarithm of the square magnitude of the output of Mel-filter bank

Mel-filter output
spectral vector Y,(m) ‘ | ‘ | ‘ | ‘ Filter index(m)
0 ] M-1 ]
Log(] %) ]
Log-spectral vector Y’ (m)
| | | | ‘ | | | | | Filter index(m)
0 1 M1 i
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MFCC

Speech signal ‘ . X, (k) Mel
=) " Pre-emphasis N IDFET ™ TR
Window Y,(m)
energy Log(| |?)
Y (J . €, i ————
S ’ ; \ :
X = %h (J)Aze:} “— | |derivatives ¥y, () 1( Y (m)
Ay, () A% e, } 4 |IDET
MFCL‘ |
——
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The Cepstrum

One way to think about this:

e Separating the source and filter

e Speech waveform is created by
o  Aglottal source waveform
o  Passes through a vocal tract which because of its shape has a particular filtering characteristic

e Remember articulatory facts from lecture 2:
o  The vocal cord vibrations create harmonics
o  The mouth is an amplifier
o  Depending on shape of oral cavity, some harmonics are amplified more than others
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George Miller
Figure

Stanford CS 224S / LINGUIST 285
University Spoken Language Processing
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We Care About the Fllter Not the Source

e Most characteristics of the source
o FO
o  Details of glottal pulse

e Don't matter for phone detection

e What we care about is the filter
o  The exact position of the articulators in the oral tract

° So wewant a way to separate these
o  And use only the filter function

Stanford
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The Cepstrum

120

M

1000 2000 3000 4000 5000 6000 7000 8000

normalise frequency

T T T
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Another Advantage of the Cepstrum

e MDCT produces highly uncorrelated features

e If we use only the diagonal covariance matrix for our Gaussian mixture models, we can only handle
uncorrelated features.

e In general we'll just use the first 12 cepstral coefficients (we don’t want the later ones which have
e.g. the FO spike)
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