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Outline

e Listen, Attend & Spell

e Convolutional Transformer (Conformer)
e Semi Supervision in ASR (wav2vec?2)

® Weak Supervision and Whisper

® LLM + Speech (SpeechGPT, AudioPalm)

e Streaming ASR
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Listen, Attend, & Spell
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Listen, Attend, and Spell

e Discriminative, character-based encoder-decoder

e Unlike CTC:

o  Outputs also condition on previous outputs so far
o  No blank/epsilon. LAS just outputs characters

e Attention-based decoder. Precursor to modern encoder-decoder and transformer approaches

h = Listen(x)

P(ylx) = | [ P(yilx,y<i) P(y|x) = AttendAndSpell(h, y)
7

From: Chan, Jaitly, Le, & Vinyals. 2015
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Listen, Attend,
and Spell

Figure: Listen, Attend and Spell (LAS) model:

the listener is a pyramidal BLSTM encoding
our input sequence x into high level features
h, the speller is an attention-based decoder
generating the y characters from h.

(Chan, Jaitly, Le, & Vinyals. 2015)
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Grapheme characters y; are
modelled by the

CharacterDistribution

Speller AttentionContext creates
context vector ¢; from h
and s;
Long input sequence X is encoded with the pyramidal
b= (h.....hy) BLSTM Listen into shorter sequence h
= (hy.es 4
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Listen, Attend,
and Spell

Figure: Chan, Jaitly, Le, & Vinyals. 2015
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Listen, Attend,
and Spell

Table: WER comparison on the clean and
noisy Google voice search task. The
CLDNN-HMM system is the state-of-the-art
system, the Listen, Attend and Spell (LAS)
models are decoded with a beam size of 32.
Language Model (LM) rescoring was applied
to our beams, and a sampling trick was
applied to bridge the gap between training
and inference.

(Chan, Jaitly, Le, & Vinyals. 2015)
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Model Clean WER | Noisy WER
CLDNN-HMM [20] 8.0 8.9

LAS 16.2 19.0

LAS + LM Rescoring 12.6 14.7

LAS + Sampling 14.1 16.5

LAS + Sampling + LM Rescoring | 10.3 12.0




CTC + LAS
Multi-Task
Approach

Figure: Our proposed Joint CTC-attention
based end-to-end framework: the shared
encoder is trained by both CTC and attention
model objectives simultaneously. The shared
encoder transforms our input sequence x
into high level features h, the location-based
attention decoder generates the character
sequencey

(Kim, Hori, & Watanabe. 2017)
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Attention
Decoder

Lyt = ALcere + (1 — X)L Attention.


https://ieeexplore.ieee.org/abstract/document/7953075

CTC + LAS
Multi-Task
Approach

Table: Character Error Rate (CER) on clean
corpora WSJ1 (80 hours) and WSJO (15
hours), and a noisy corpus CHIME-4 (18
hours). None of our experiments used any
language model or lexicon information.
(Word Error Rate (WER) of our model

MTL(1 = 0.2) was 18.2% and WER of [7] was
18.6% on WSJ1.Note that this is not an exact
comparison because the hyper parameters
were not completely same as [7].)

(Kim, Hori, & Watanabe. 2017)
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Model(train) ] CER(valid) CER(eval)
WS]J-train_si284 (80hrs) dev93 eval92
CTC 11.48 8.97
Attention(content-based) 13.68 11.08
Attention(location-based) 11.98 8.17
MTL(A = 0.2) 11.27 7.36
MTL(A = 0.5) 12.00 8.31
MTL(A = 0.8) 11.71 8.45
WSJ-train_si84 (15hrs) dev93 eval92
CTC 27.41 20.34
Attention(content-based) 28.02 20.06
Attention(location-based) 24.98 17.01
MTL(\ = 0.2) 23.03 14.53
MTL(A = 0.5) 26.28 16.24
MTL(A = 0.8) 32.21 21.30
CHiME-4-tr0S _multi (18hrs) dt05 _real et05_real
CTC 37.56 48.79
Attention(content-based) 43.45 54.25
Attention(location-based) 35.01 47.58
MTL(A = 0.2) 32.08 44.99
MTL(A = 0.5) 34.56 46.49
MTL(A = 0.8) 35.41 48.34

content-based:
wT tanh(Wsy—1 + Vh; + b)

ew,l = { location-based:
fu =Fx Qu—1
w” tanh(Wsy—1 + Vhi + U fu, +b)
Ayl = exp(’yeu,l)
' Zz exp(veu,)

Lmr = Acre + (1 — ) LAttention:


https://ieeexplore.ieee.org/abstract/document/7953075

CTC + LAS
Multi-Task
Approach

Figure: Comparison of learning curves: CTC,
location-based attention model, and MTL
with (1 =0.2, 0.5, 0.8). The character
accuracy on the validation set of CHIME-4 is
calculated by edit distance between
hypothesis and reference. Note that the
reference history were used in the attention
and our MTL models.

(Kim, Hori, & Watanabe. 2017)
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https://ieeexplore.ieee.org/abstract/document/7953075

CTC + LAS Multi-Task Approach

(a) Attention 1 epoch
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Figure: Comparison of speed in learning alignments between characters (y-axis) and acoustic frames (x-axis) between the location-based attention model (1st row) and our model MTL (2nd
row) over training epoch (1,3,5,7, and 9). All alignments are for one manually chosen utterance FO5_442C020U_CAF_REAL - "THE ONE HUNDRED SHARE INDEX CLOSED SIX POINT EIGHT

POINTS LOWER AT ONE THOUSAND SEVEN HUNDRED FIFTY NINE POINT NINE") in the noisy CHIME-4 evaluation set. (
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Kim, Hori, & Watanabe. 2017)
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CTC + LAS
Multi-Task
Approach

Table: Character error rate (CER) for
conventional attention and hybrid
CTC/attention end-to-end

ASR. Corpus of Spontaneous Japanese
speech recognition (CSJ) task.

Figure:The effect of weight parameter \ in
Eq. (14) on the CSJ evaluation tasks (The

CERs were obtained by one-pass decoding).

(Hori, Watanabe, Zhang, & Chan. 2017)
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Model Hour Taskl | Task2 | Task3
Attention 581 114 7.9 9.0
MTL 581 10.5 7.6 8.3
MTL + joint decoding (rescoring) 581 10.1 7.1 7.8
MTL + joint decoding (one pass) 581 10.0 71 7.6
MTL-large + joint decoding (rescoring) 581 84 6.2 6.9
MTL-large + joint decoding (one pass) 581 84 6.1 6.9
GMM-discr. (Moriya et al., 2015) 236 for AM, 581 forLM | 11.2 9.2 12.1
DNN/HMM (Moriya et al., 2015) 236 for AM, 581 forLM | 9.0 7.2 9.6
CTC-syllable (Kanda et al., 2016) 581 9.4 7.3 7.5
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Convolutional Transformer
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Conformer: Convolution-augmented Transformer

for Speech Recognition e

Layernorm

e Sequence-to-sequence transformer with \ :fj

multi-headed self attention. e o s wex]
Y

Feed Forward Module

is followed by a post layernorm. Feed Forward Module

e Combines attention (global context) with convolution Lt ; t
(local invariance) Ao 1 : (#—
et : C I 'I Modul
e RNN-T loss architecture i . N i st
40 ms rate ! T
Convolution . L + —
Subsampling : ; T X
S - Ti ‘ E Mulli-Hee;:loilefa Attention
Figure: Conformer encoder model architecture. Conformer comprises of SpecAug E ?:,
two macaron-like feed-forward layers with half-step residual connections o T : (+
sandwiching the multi-headed self-attention and convolution modules. This : : 12 xT

(Gulatietal. 2020) o memeeee Iﬁ 8
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https://arxiv.org/abs/2005.08100

Conformer: RNN-Transducer Loss

e Directly optimizes target word sequence as correct label
o  Graphemes (letters) or word parts (10k-50k) used in practice P(y|t’ u')

e Learned combination of acoustic + language model pieces T

Conditions on sequence output so far (y, ,)
e Single alignment:

P(z[x) = | [ P(zilx, t:, Labels(z1.i-1)))

Softmax

T zf.u,

Joint Network

e Maximize P(y|x) by summing over all consistent alignments T pdec
u

Ply)= > P(ax)

zcZ(y,T)

RNN-T loss: (Graves, 2012)
Figure: Rao, Sak, & Prabhavalkar. 2017)
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Conformer: Convolution-augmented Transformer
for Speech Recognition e

' ' E Layernorm
e Sequence-to-sequence transformer with multi-headed | |conormerBiocks XN ! ! :fj
self attention. Directly optimizes target word sequence f ________ R 12x]
. . . . ™! | Foed Forward Moduis
e Combines attention (global context) with convolution Dropot 5 t
(local invariance) w1 : (+——
Linear : I
1 : Convolution Module
Convolution ‘ ] 0 ms rate '
Module Layernorm— PEONS® >, vation “’ioe":'?wm —>BatcnNom—> , SUEL - P - [ Dropout —>(+ ( ! E Tf
\ ) Conv Convolution 1 5 E—
Subsampling T 1 x
— ' |Multi-Head Self Attention
Multi-headed | ) b | : | Mok |
self-attention L T I 2t elesoil R Dropout > : SpecAu : :'
module Emeidg = E &—
10 ms rate T E - XT
Feed L { ‘ l i Feed Forward Module
forward Layesmornm —» Linear > Swish > Dropout —» Linear ~» Dropout —» + :

module Layer Activation | Layer
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Conformer: Putting it All Together

40 ms rate 1 ( '
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P(yl! P
U) . ! '
y ’ Conformer Blocks  x N | 1 T '
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i .
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Conformer: Convolution-augmented Transformer
for Speech Recognition

Method #Params (M) WER Without LM WER With LM

testclean testother testclean testother

Hybrid
Transformer [33] - - - 2.26 4.85
CTC
QuartzNet [9] 19 3.90 11.28 2.69 725 Table: Comparison of Conformer with recent
LAS published models. Our model shows
Transformer [34] 270 2.89 6.98 2.33 5.17 improvements consistently over various
Transformer [19] - 2.2 5.6 2.6 327 model parameter size constraints. At 10.3M
LSTM 360 2.6 6.0 22 5.2 parameters, our model is 0.7% better on test
'h',aIl‘nsdl;cer 7 139 24 56 20 46 other when compared to contemporary work,
cﬁif&ﬁfs[) ][10] 10.8 29 7.0 23 5.5 ContextNet(S) [10]. At 30.7M model
ContextNet(M) [10] 31.4 24 54 2.0 45 parameters our model already significantly
ContextNet(L) [10] 112.7 2.1 4.6 1.9 4.1 outperforms the previous published state of
Coiiformer:(Oxis) the art results of Transformer Transducer [7]
Conformer(S) 103 27 63 2.1 5.0 with 139M parameters.
Conformer(M) 30.7 2.3 5.0 2.0 4.3 )
Conformer(L) 118.8 2.1 43 1.9 3.9 (Gulati et al. 2020)
Stanford

University 18
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Semi Supervision in ASR

Stanford CS 224S / LINGUIST 285 Lecture 9:
University Spoken Language Processing State-of-the-art ASR



Wav2Vec2 (Pretraining)

Context
representations

Quantized
representations

Latent speech
representations

raw waveform
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]
I

Contrastive loss

JERIA.

Transformer

Masked

Table: lllustration of our framework which
jointly learns contextualized speech
representations and an inventory of
discretized speech units.

(Baevski et al. 2020)
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https://arxiv.org/abs/2006.11477

Wav2Vec2 (Fine Tuning)

e Pre trained model are general purpose and can be used for any downstream task such as
emotion detection, speaker identification, etc.

e Pre-trained models are fine-tuned for speech recognition by adding a randomly initialized
linear projection on top of the context network into classes representing the vocabulary of
the task.

e The fine-tuning process involves optimizing models by minimizing a CTC loss

e 4-gram and Transformer LMs are used for beam search decoding

Stanford

University
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Wav2Vec2
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Unlabeled dev test
Model data M clean  other clean  other
10 min labeled
Discrete BERT [4] LS-960 4-gram 157 241 163 252
BASE LS-960 4-gram 8.9 15.7 9.1 15.6
Transf. 6.6 132 69 129
LARGE LS-960 Transf. 6.6 10.6 6.8 10.8
LV-60k Transf. 4.6 79 4.8 8.2
1h labeled
Discrete BERT [4] LS-960 4-gram 8.5 16.4 9.0 17.6
BASE LS-960 4-gram 50 108 55 11.3
Transf. 3.8 9.0 4.0 9.3
LARGE LS-960 Transf. 3.8 7.1 3.9 7.6
LV-60k Transf. 2.9 54 29 5.8
10h labeled
Discrete BERT [4] LS-960 4-gram 53 13.2 5.9 14.1
Iter. pseudo-labeling [58] LS-960  4-gram+Transf. 23.51 2548 24.37  26.02
LV-60k  4-gram+Transf. 17.00 19.34 18.03 19.92
BASE LS-960 4-gram 3.8 9.1 43 9.5
Transf. 2.9 74 3.2 7.8
LARGE LS-960 Transf. 2.9 5.7 32 6.1
LV-60k Transf. 2.4 4.8 2.6 4.9
100h labeled
Hybrid DNN/HMM [34] - 4-gram 50 195 5.8 18.6
TTS data augm. [30] - LSTM 43 135
Discrete BERT [4] LS-960 4-gram 40 109 45 12.1
Iter. pseudo-labeling [58] ~ LS-860  4-gram+Transf.  4.98  7.97 559 895
LV-60k  4-gram+Transf. 319 6.14 372 711
Noisy student [42] LS-860 LSTM 3.9 8.8 42 8.6
BASE LS-960 4-gram 2.7 7.9 34 8.0
Transf. 22 6.3 2.6 6.3
LARGE LS-960 Transf. 2.1 4.8 23 5.0
LV-60k Transf. 1.9 4.0 2.0 4.0

Table: lllustration of our framework which
jointly learns contextualized speech
representations and an inventory of
discretized speech units.

(Baevski et al. 2020)
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Weak Supervision and Whisper

Stanford CS 224S / LINGUIST 285 Lecture 9:
University Spoken Language Processing State-of-the-art ASR



Weak supervision

e Labelled data are generally scarce (Librispeech is 1000 hrs)

e Models like wav2vec2 can use unlabelled data (much more abundant ~1,000,000, Zhang et
al.) to train encoder, but, the lack of an equivalently high-quality pre-trained decoder, limits
their usefulness and robustness

e Whisper uses weak supervision to create : 680,000 hours of multilingual and multitask
labeled audio data

e 680,000 hours of audio : 117,000 hours cover 96 other languages, 125,000 hours of X—en
translation data; 438 hours of English language

e Used multiple heuristics to get high quality data and remove machine generated transcripts

Whisper Demo

Stanford

University
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Whisper (Model Architecture)

-

Multitask training data (680k hours)

English transcription
* “Ask not what your country can do for ---"

D Ask not what your country can do for -

Any-to-English speech translation
l “El répido zorro marrén salta sobre ---”

D The quick brown fox jumps over ---
Non-English transcription
& oo 90 22t Yeicie e 2L Yo Y

D oY 9lof 22} Lhaiche ™ 2L 50

rlo

BL

rlo

No speech

m (background music playing)

ER

B
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Sequence-to-sequence learning

Transformer
Encoder Blocks

Sinusoidal
Positional @—)G
Encoding A

o —

TRANS-
EN CRIBE

=2
S)

The |quick brown| ...

next-token
prediction

2 x Conv1D + GELU

=

Log-Mel Spectrogram

cross attention

A )
MLP

cross attention

self attention

LP Transformer

Decoder Blocks
attention

self attention

LP

cross attention

\ 4

IIHIIiHHIII

self attention
——— J
A Learned
4 Positional
A Encoding

SOT| EN |ase | 0.0 | The |quick| ..

Tokens in Multitask Training Format

N

(Radford et al. 2020)
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Whisper is a transformer encoder-decoder approach

QOutput
Probabilities

Add & Norm

Add & Norm

Multi-Head

Feed Attention
Forward Nx

Nx | Add & Norm
Add & Norm Masked

Multi-Head Multi-Head
Attention Attention

At 4 At 4

— ] —

\_ . J
Positional ® @ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
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Sequence-to-sequence learning

Transformer
Encoder Blocks

Sinusoidal
Positional @—){
Encoding 4

-

o —

2 x Conv1D + GELU

e

Log-Mel Spectrogram

cross attention

’EN

TRANS-
CRIBE

o

\ 4

A

\
next-token
prediction

LP

cross attention

self attention

LP

cross attention

self attention

MLP

cross attention

self attention

’ SOT

Tokens in Multitask Training Format

EN

TRANS- ‘

cmee‘ 0.0 | The |quick]| ...

.0 | The |quickbrown ...

Transformer
Decoder Blocks

Learned
Positional
Encoding

N
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Whisper (Multitask Training)

p

MUItltaSk tralnlng format : Language X —’.X. Time-aligned transcription
identification Transcription
o
T L C 3
(LANGUAGE TRANSCRIBE —» 229 Ly texttokens » &" | .. | P®9N Ly tetiokens » N
TAG time J time time L time .,
PREV previous START OF ’ g | EOT
text tokens TRANSCRIPT ] ¥
NO | NO i A
SPEECH l TRANSLATE | TIMESTAMPS r){ text tokens ’
Custom vocabulary/ g
prompting . ¢ o T ) . ~ )
Vc:ce agtnvnty ' S E"Q"Sh Text-only transcription ;
special text timestamp iechon Translation (allows dataset-specific fine-tuning)
(VAD)
| tokens | tokens . tokens
-
Stanford

University
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Whisper (Demo)

e Working in noisy env

e Working in other language
e Multi-lingual

e Give examples

English transcription Any-to-English speech translation
% Ask not what your country can do for ... % Elrapido zorro marrén salta sobre ...
Ask not what your country can do for ... D The quick brown fox jumps over ...
Stanford

University

Non-English transcription

¥ ofcf 9o Sat LiR{cHR R HRL W e .

ofe 9/ 2t LR{CHES LPL HT We

e

No speech

% (background music playing)
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Whisper (Results)
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wav2vec 2.0 Whisper | RER
Dataset Large (noLM) Large V2 | (%)
LibriSpeech Clean | 2.7 29 | 0.0
Artie 24.5 6.2 74.7
Common Voice 29.9 9.0 69.9
Fleurs En 14.6 4.4 69.9
Tedlium 10.5 4.0 61.9
CHIME6 65.8 25.5 61.2
VoxPopuli En 17.9 73 59.2
CORAAL 35.6 16.2 54.5
AMI IHM 37.0 16.9 54.3
Switchboard 28.3 13.8 512
CallHome 34.8 17.6 494
WSJ 7.7 3.9 494
AMI SDM1 67.6 36.4 46.2
LibriSpeech Other 6.2 5.2 16.1
Average | 29.3 128 | 552

Table: Although both models perform within
0.1% of each other on LibriSpeech, a
zero-shot Whisper model performs much
better on other datasets than expected for
its LibriSpeech performance and makes
55.2% less errors on average.

(Radford et al. 2020)
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Whisper (Results)

Average WER on [Common Voice, CHIME-6, TED-LIUM] (%)
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® Supervised LibriSpeech models
® Zero-shot Whisper models
® Zero-shot Human (Alec)

== lIdeal robustness (y = x)

WER on LibriSpeech dev-clean (%)

Figure: Zero-shot Whisper models close the gap to
human robustness. Despite matching or
outperforming a human on LibriSpeech dev-clean,
supervised LibriSpeech models make roughly twice
as many errors as a human on other datasets
demonstrating their brittleness and lack of
robustness. The estimated robustness frontier of
zero-shot Whisper models, however, includes the 95%
confidence interval for this particular human.

(Radford et al. 2020)
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Whisper (Results)
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160

Word Error Rate (WER)

2.5 T T T T T T
0.1 1 10 100 1K 10K 100K iM
Hours of transcribed audio

Figure 3. Correlation of pre-training supervision amount with
downstream speech recognition performance. The amount of
pre-training speech recognition data for a given language is very
predictive of zero-shot performance on that language in Fleurs.

Observation: Many of the largest outliers
are languages that have unique scripts and
are more distantly related to the
Indo-European languages.

Outliers: Hebrew (HE), Telugu (TE), Chinese
(ZH), and Korean (KO)

(Radford et al. 2020)
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Whisper (Results)
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Word Error Rate (WER)

2.5 T T T T T T
0.1 1§ 10 100 1K 10K 100K M
Hours of transcribed audio

Figure 3. Correlation of pre-training supervision amount with
downstream speech recognition performance. The amount of
pre-training speech recognition data for a given language is very
predictive of zero-shot performance on that language in Fleurs.

Observation: Many of the largest outliers
are languages that have unique scripts and
are more distantly related to the
Indo-European languages.

Outliers: Hebrew (HE), Telugu (TE), Chinese
(ZH), and Korean (KO)

(Radford et al. 2020)
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Whisper (Results)
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Figure 6. Whisper is competitive with state-of-the-art commercial and open-source ASR systems in long-form transcription. The
distribution of word error rates from six ASR systems on seven long-form datasets are compared, where the input lengths range from a
few minutes to a few hours. The boxes show the quartiles of per-example WERs, and the per-dataset aggregate WERs are annotated

on each box. Our model outperforms the best open source model (NVIDIA STT) on all datasets, and in most cases, commercial ASR
systems as well.
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Whisper (Fine Tuning Assighment 2)

p
MUItItaSK tralnlng format : Language x — X. Time-aligned transcription
identification Transcription 5
- 4 .
LANGUAGE I [ begin | end "begin | " end
\ TAG —){ TRANSCRIBE el ~>[ text tokens }—} o text tokens time |,
\ PREV | previous | START OF IN _ﬁ - - EOT
| | text tokens | TRANSCRIPT 1 / |
= = = NO NO i 4
| SPEECH | TRANSLATE ¥ 1 \MESTAMPS \—’{ foxtfokens J
Custom vocabulary / 7¢7 ¢ 5 i
prompting . oy .
. - . V‘:;Z?eigg:ty )_:_ = Eln?I'Sh Text-only transcription
special text timestamp (VAD) Y lensiauen (allows dataset-specific fine-tuning)
tokens tokens tokens
&
Stanford
University
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LLM + Speech (SpeechGPT, AudioPalm)
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SpeechGPT

Capability

.......................................................
2 .

(My name is SpeechGPT.)

............................. B T T

Please read this sentence:
“Today is a beautiful day.”

Sure, | will read it now:

QR U | (TRRRRURYT | | FERUTT [TECE “Have a good day!”

Website and Demo: https://Onutation.qgi
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The content of this speech is:
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https://0nutation.github.io/SpeechGPT.github.io/

AudioPalm

audio tokens
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pre-trained on text-only data
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Website and Demo: https:/google-research.github.io/seanet/audiopalm/examples/
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Ciao
mondo!


https://google-research.github.io/seanet/audiopalm/examples/
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Dual Mode ASR: Joint Encoder + Training for

Streaming & Full Context Mod

els

) h e " "h" e "
4 C £
) [
e N ® ¢ ¢ EncoderOuput | Q@ 2
‘ ;// Self-attention . IR
¢ 9 Q ¢ 9 9 9
|  Feed-forward
P 0 9 0 QL Q Q Q 9
‘ g 7 | Convolution X X g
9 G ¢ 9 9O O 0
| Feed-forward
e g e o (boteripe | © © © © ©
(et specarogram ) k== [N e~ =
j J " - - —
Streaming ASR with Full-context ASR with
Auto-regressive Encoder Full-context Encoder
Stanford

University

Figure: A simplified illustration of the similarity and
difference between Streaming ASR and Full-context ASR
networks. Modern end-to-end streaming and full-context
ASR models share most of the neural architectures and
training recipes in common, with the most significant
difference in ASR encoder (highlighted). Streaming ASR
encoders are auto-regressive models, with each
prediction of the current timestep conditioned on
previous ones (no future context). We show examples of
feed-forward layer, convolution layer and self-attention
layer in the encoder of streaming and full-context ASR
respectively. With Dual-mode ASR, we unify them without
parameters overhead. (Yu et al. 2021)
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https://arxiv.org/abs/2010.06030

Dual Mode ASR: Joint Encoder + Training for
Streaming & Full Context Models
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Method Mode # Params (M) Test Clean/Other Latency@50 Latency@90
WER(%) (ms) (ms)
LSTM-LAS Full-context 360 26 / 6.0 - —
QuartzNet-CTC Full-context 19 39 / 113 e _
Transformer Full-context 29 31 /7 73 B —
Transformer Full-context 139 24 |/ 5.6 — -
ContextNet Full-context 314 24 /| 54 — —
Conformer Full-context 30.7 23 / 50 _— _—
Transformer Streaming 18.9 50 / 11.6 80 190
ContextNet Streaming 31.4 45 /100 70 270
Conformer Streaming 30.7 46 / 99 140 280
ContextNet Look-ahead ~ Streaming 314 41 / 90 150 420
Full-context 3.1 /7 79 B — o
Dual-mode Transformer Strearning 29 4.4 (-0.6) /11.5 (-0.1) -50 (-130) 30 (-160)
Full-context 23 / 53 R
Dual-mode ContextNet Streaming 31.8 30 e oy 7, P
Full-context 25 1/ 59 E
Dual-mode Conformer Streaming 30.7 3 Tini 05 i 10 s 00 i
Weight Sharing  Joint Training Inplace Distillation TestOther Latency@50 Latency@90
WER(%) (ms) (ms)
("4 v v 8.5 40 160
v v b 4 10.2 (417 120 (480 310 (4150
‘/ x x 10-6 (+2.1) 90 (+50) 290 (+130)
X v 4 9.9 (414 50 (+10) 210 (430

Table 1: Summary of our results on
Librispeech dataset (Panayotov et al.,
2015). We report WER on TestClean and
TestOther (noisy) set. Compared with
standalone ContextNet and Conformer
models, Dual-mode ASR models have
both higher accuracy in average and
better streaming latency.

Table 2: Ablation studies of weight
sharing, joint training and inplace
distillation. We report WER on TestOther
(noisy) set (Panayotov et al., 2015) using
ContextNet with same training
settings.(Yu et al. 2021)
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Thank You
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