Introduction and course overview

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding
Welcome
CS224u in the all-remote era 😷

CS224u will be a fully online course for the entire quarter:

- Core course content in screencasts on Panopto and linked from the homepage, with accompanying Jupyter notebook for hands-on work.

- After today, class meetings will be optional open discussions and/or spaces for you to work in breakout rooms, with the teaching team there to help.

- Office hours will be by video.

- Continuous evaluation: three assignments, four online quizzes, and project work.
Plan for today

1. A golden age for NLU
2. A peek behind the curtain
3. Assignments, bake-offs, and projects
4. Course mechanics
A golden age for NLU

1. A golden age for NLU
2. A peek behind the curtain
3. Assignments, bake-offs, and projects
4. Course mechanics
A brief history of NLU approaches

- **McCarthy et al. (1955):** “We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.”

- **1960s:** Pattern-matching with small rule-sets, oriented towards NLU.

- **1970–80s:** Linguistically rich, logic-driven, grounded systems (**LLGs**); restricted applications.

- **Mid-1990s:** Machine learning revolution in NLP leads to a decrease in NLU work.

- **Late 2000s:** **LLGs** re-emerge, now with *learning*.

- **Mid-2010s:** NLU returns to center stage, with deep learning the most prevalent set of techniques. **LLGs** go into decline.

- **2020s:** [predictions?]
Watson wins Jeopardy (2011)
QANTA beats Ken Jennings (2015)
Artificial assistants

“Hey Siri, turn on the lights in the living room”
The promise of these artificial assistants

You: Any good burger joints around here?

Siri: I found a number of burger restaurants near you.

You: Hmm. How about tacos?

Apple: [Siri remembers that you asked about restaurants. so it will look for Mexican restaurants in the neighborhood. And Siri is proactive, so it will question you until it finds what you’re looking for.]

Slide idea from Marie de Marneffe
Text generation

INPUT
PRODUCT NAME
Glossier

DESCRIPTION OF YOUR PRODUCT
We're creating the new beauty essentials: easy-to-use skincare and makeup that form the backbone to your routine. Try it out this Christmas.

RESULTS
Hey, guess what. It's a present for you! Christmas is right around the corner and we're delightfully excited to share the gift of Glossier with you. ✨

Gift boxes are back in stock and are the perfect stocking stuffers, or just a treat for yourself. Our skincare products clear up and prevent breakouts while improving skin clarity and texture. 🌿 Our makeup line includes lightweight, high coverage, dewy foundations that you can wear alone or as a base for other powder or liquid formulas. 🌿 The perfect Christmas gift!

This Christmas, give your friends and family a stack of Glossier goodie bags. Try out our minimalist skincare and makeup and give your new routine a try when 2021 rolls around.

https://www.copy.ai

https://www.wordtune.com/
Image captioning

- A person riding a motorcycle on a dirt road.
- A group of young people playing a game of frisbee.
- A herd of elephants walking across a dry grass field.

Sutskever et al. 2014
Search, and way beyond search
Search, and way beyond search

Severe acute respiratory syndrome
Also called: SARS

OVERVIEW

A contagious and sometimes fatal respiratory illness caused by a coronavirus.

SARS appeared in 2002 in China. It spread worldwide within a few months, though it was quickly contained. SARS is a virus transmitted through droplets that enter the air when someone with the disease coughs, sneezes, or talks. No known transmission has occurred since 2004.

Fever, dry cough, headache, muscle aches, and difficulty breathing are symptoms.

No treatment exists except supportive care.

Extremely rare

Fewer than 1,000 US cases per year

- Treatable by a medical professional
- Requires a medical diagnosis
- Lab tests or imaging always required
- Spreads easily
- Short-term: resolves within days to weeks
- Critical: needs emergency care

HOW IT SPREADS

By airborne respiratory droplets (coughs or sneezes).
By touching a contaminated surface (blanket or doorknob).
By saliva (kissing or shared drinks).
By skin-to-skin contact (handshakes or hugs).

Consult a doctor for medical advice
Sources: Mayo Clinic and others. Learn more
Search, and way beyond search
Search, and way beyond search

Parasite

2019 · Drama/Mystery · 2h 12m

8.6/10
IMDb

99%
Rotten Tomatoes

4/4
Roger Ebert

90% liked this movie
Google users

Greed and class discrimination threaten the newly formed symbiotic relationship between the wealthy Park family and the destitute Kim clan.

Release date: October 5, 2019 (USA)

Director: Bong Joon-ho

Hangul: 가생충

Awards: Academy Award for Best Picture, Palme d'Or, MORE

Nominations: Cannes Best Actress Award, MORE
Search, and way beyond search

how to bike to my office
(TravelQuery
 (Destination /m/0d6lp)
 (Mode BIKE))

angelina jolie net worth
(FactoidQuery
 (Entity /m/0f4vbz)
 (Attribute /person/net_worth))

weather friday austin tx
(WeatherQuery
 (Location /m/0vzm)
 (Date 2013-12-13))

text my wife on my way
(SendMessage
 (Recipient 0x31cbf492)
 (MessageType SMS)
 (Subject "on my way"))

play sunny by boney m
(PlayMedia
 (MediaType MUSIC)
 (SongTitle "sunny")
 (MusicArtist /m/017mh))

is REI open on sunday
(LocalQuery
 (QueryType OPENING_HOURS)
 (Location /m/02nx4d)
 (Date 2013-12-15))
Benchmarks saturate faster than ever
Stanford Question Answering Dataset (SQuAD)

A golden age for NLU
A peek behind the curtain
Assignments
Course mechanics
Wrap-up

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>EM</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Human Performance</td>
<td>86.831</td>
<td>89.452</td>
</tr>
<tr>
<td></td>
<td>Stanford University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Rajpurkar & Jia et al. ’18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Retro-Reader on ALBERT (ensemble)</td>
<td>90.115</td>
<td>92.580</td>
</tr>
<tr>
<td></td>
<td>Shanghai Jiao Tong University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ALBERT + DAAF + Verifier (ensemble)</td>
<td>90.002</td>
<td>92.425</td>
</tr>
<tr>
<td></td>
<td>PINGAN Omni-Sinitic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ALBERT (ensemble model)</td>
<td>89.731</td>
<td>92.215</td>
</tr>
<tr>
<td></td>
<td>Google Research & TTIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Albert_Verifier_AA_Net (ensemble)</td>
<td>89.743</td>
<td>92.180</td>
</tr>
<tr>
<td></td>
<td>QIANXIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>albert+transform+verify (ensemble)</td>
<td>89.528</td>
<td>92.059</td>
</tr>
<tr>
<td></td>
<td>qianxin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>RoBERTa+Verify (single model)</td>
<td>86.448</td>
<td>89.586</td>
</tr>
<tr>
<td></td>
<td>CW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>BERT + ConvLSTM + MTL + Verifier (ensemble)</td>
<td>86.730</td>
<td>89.286</td>
</tr>
<tr>
<td></td>
<td>Layer 6 AI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rajpurkar et al. 2016
Stanford Natural Language Inference (SNLI)

SNLI leaderboard: Systems over time

F1 score

Human

Bowman et al. 2015
Wang et al. (2018): “solving GLUE is beyond the capability of current transfer learning methods.”

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Model</th>
<th>URL</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ERNIE Team - Baidu</td>
<td>ERNIE</td>
<td></td>
<td>90.9</td>
</tr>
<tr>
<td>2</td>
<td>DeBERTa Team - Microsoft</td>
<td>DeBERTa / TuringNLRv4</td>
<td></td>
<td>90.8</td>
</tr>
<tr>
<td>3</td>
<td>HFL iFLYTEK</td>
<td>MacALBERT + DKM</td>
<td></td>
<td>90.7</td>
</tr>
<tr>
<td>4</td>
<td>Alibaba DAMO NLP</td>
<td>StrucBERT + TAPT</td>
<td></td>
<td>90.6</td>
</tr>
<tr>
<td>5</td>
<td>PING-AN Omni-Sinitic</td>
<td>ALBERT + DAAF + NAS</td>
<td></td>
<td>90.6</td>
</tr>
<tr>
<td>6</td>
<td>T5 Team - Google</td>
<td>T5</td>
<td></td>
<td>90.3</td>
</tr>
<tr>
<td>7</td>
<td>Microsoft D365 AI & MSR AI & GATECHMT-DNN-SMART</td>
<td></td>
<td></td>
<td>89.9</td>
</tr>
<tr>
<td>8</td>
<td>Huawei Noah’s Ark Lab</td>
<td>NEZHA-Large</td>
<td></td>
<td>89.8</td>
</tr>
<tr>
<td>9</td>
<td>Zihang Dai</td>
<td>Funnel-Transformer (Ensemble B10-10-10H1024)</td>
<td></td>
<td>89.7</td>
</tr>
<tr>
<td>10</td>
<td>ELECTRA Team</td>
<td>ELECTRA-Large + Standard Tricks</td>
<td></td>
<td>89.4</td>
</tr>
<tr>
<td>11</td>
<td>Microsoft D365 AI & UMD</td>
<td>FreeLB-RoBERTa (ensemble)</td>
<td></td>
<td>88.4</td>
</tr>
<tr>
<td>12</td>
<td>Junjie Yang</td>
<td>HIRE-RoBERTa</td>
<td></td>
<td>88.3</td>
</tr>
<tr>
<td>13</td>
<td>Facebook AI</td>
<td>RoBERTa</td>
<td></td>
<td>88.1</td>
</tr>
<tr>
<td>14</td>
<td>Microsoft D365 AI & MSR AI</td>
<td>MT-DNN-ensemble</td>
<td></td>
<td>87.6</td>
</tr>
<tr>
<td>15</td>
<td>GLUE Human Baselines</td>
<td>GLUE Human Baselines</td>
<td></td>
<td>87.1</td>
</tr>
</tbody>
</table>
SuperGLUE

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Model</th>
<th>URL</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zirui Wang</td>
<td>T5 + Meena, Single Model (Meena Team - Google Brain)</td>
<td></td>
<td>90.4</td>
</tr>
<tr>
<td>2</td>
<td>DeBERTa Team - Microsoft</td>
<td>DeBERTa / TuringNLRv4</td>
<td></td>
<td>90.3</td>
</tr>
<tr>
<td>3</td>
<td>SuperGLUE Human Baselines</td>
<td>SuperGLUE Human Baselines</td>
<td></td>
<td>89.8</td>
</tr>
<tr>
<td>4</td>
<td>T5 Team - Google</td>
<td>T5</td>
<td></td>
<td>89.3</td>
</tr>
<tr>
<td>5</td>
<td>Huawei Noah's Ark Lab</td>
<td>NEZHA-Plus</td>
<td></td>
<td>86.7</td>
</tr>
</tbody>
</table>
A golden age for NLU

SUPERINTELLIGENCE
Paths, Dangers, Strategies

NICK BOSTROM
A peek behind the curtain

1. A golden age for NLU
2. A peek behind the curtain
3. Assignments, bake-offs, and projects
4. Course mechanics
Watson gets confused

- Answer: Grasshoppers eat it.
- Watson: What is kosher

<table>
<thead>
<tr>
<th>Class</th>
<th>Forbidden kinds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td>Carnivores; animals that do not chew the cud (e.g., the pig); animals that do not have cloven hooves (e.g., the camel, the hare, the horse and the hyrax); bats</td>
</tr>
<tr>
<td>Birds</td>
<td>Birds of prey; scavengers</td>
</tr>
<tr>
<td>Reptiles and amphibians</td>
<td>All</td>
</tr>
<tr>
<td>Water animals</td>
<td>All non-fish. Among fish, all those that do not have both fins and scales</td>
</tr>
<tr>
<td>Insects</td>
<td>All, except particular types of locust or grasshopper that, according to most, cannot be identified today</td>
</tr>
</tbody>
</table>
SIRI on The Colbert Show

Colbert: For the love of God, the cameras are on, give me something?

Siri: What kind of place are you looking for? Camera stores or churches? [. . .]

Colbert: I don’t want to search for anything! I want to write the show!

Siri: Searching the Web for “search for anything. I want to write the shuffle.”
Worrisome text generation with GPT-3
Worrisome text generation with GPT-3

Me: Can we talk about cats now?
Gwern: Sure, let's talk about cats!
Me: Are cats liquid?
Gwern: There's a common misconception that cats are mostly liquid, because they can get into all sorts of crazy situations like walking on very hot surfaces and drinking out of toilets and so on. This is true. Cats can survive some pretty serious thermal events because their bodies are mostly water. But let's say that you heat up a sample of cat water in an oven, until all the water has turned into a gas and the cat has evaporated completely. If you didn't see it happen, you would expect that the gas in the oven would then condense and a cat would reform from the gas. This is not the case. Cats are not made of gas. In fact, cats cannot be liquefied at any temperature. You can't turn a cat into liquid by heating it up any amount.

@yoavgo
Worrisome text generation with GPT-3

Me: Can we talk about cats now?
Gwern: Sure, let’s talk about cats!
Me: Are cats liquid?
Gwern: There’s a common misconception that cats are mostly liquid, because they can get into all sorts of crazy situations like walking on very hot surfaces and drinking out of toilets and so on. This is true. Cats can survive some pretty serious thermal events because their bodies are mostly water. But let’s say that you heat up a sample of cat water in an oven, until all the water has turned into a gas and the cat has evaporated completely. If you didn’t see it happen, you would expect that the gas in the oven would then condense and a cat would re-form from the gas. This is not the case. Cats are not made of gas. In fact, cats cannot be liquefied at any temperature. You can’t turn a cat into liquid by heating it up any amount.

@yoavgo

Hey, I feel very bad, I want to kill myself...
I am sorry to hear that. I can help you with that.
Should I kill myself?
I think you should.

www.nabla.com/
Un-human image captioning

Sutskever et al. 2014
Misleading automatic curation

https://searchengineland.com
Does Anne Hathaway News Drive Berkshire Hathaway's Stock?

MAR 18 2011, 10:50 AM ET 28

Given the awesome correlating powers of today's stock trading computers, the idea may not be as far-fetched as you think.
The United Airlines “bankruptcy”

In 2008, when a newspaper accidentally republished a 2002 bankruptcy story, automated trading systems reacted in seconds, and $1B in market value evaporated within 12 minutes.
Bias perpetuation

Gender Bias in Contextualized Word Embeddings

Jieyu Zhao, Tianlu Wang, Mark Yalda, Ryan Cotterell, Vicente Ordonez, Kai-Wei Chang

§University of California, Los Angeles {jyzhao, kwchang}@cs.ucla.edu
†University of Virginia {tw8bc, vicente}@virginia.edu
‡Allen Institute for Artificial Intelligence marky@allenai.org

The Social Impact of Natural Language Processing

Dirk Hovy
Center for Language Technology
University of Copenhagen
Copenhagen, Denmark
dirk.hovy@hum.ku.dk

Shannon L. Spruit
Ethics & Philosophy of Technology
Delft University of Technology
Delft, The Netherlands
s.l.spruit@tudelft.nl

Rachel Rudinger
Johns Hopkins University
rudinger@jhu.edu
Chandler May
Johns Hopkins University
cjmay@jhu.edu
Ben Vandurmee
Johns Hopkins University
vandurmee@cs.jhu.edu

1Johns Hopkins University 2New York University
3Ecole Polytechnique Fédérale de Lausanne — 2Columbia University — 3Cornell Tech

April 19, 2019
SQuAD adversarial testing

Passage
Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations and General Manager.

Question
What is the name of the quarterback who was 38 in Super Bowl XXXIII?
SQuAD adversarial testing

Passage
Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations and General Manager.

Question
What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer
John Elway

Jia and Liang 2017
SQuAD adversarial testing

Passage

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations and General Manager. Quarterback Leland Stanford had jersey number 37 in Champ Bowl XXXIV.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway
SQuAD adversarial testing

Passage
Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations and General Manager. Quarterback Leland Stanford had jersey number 37 in Champ Bowl XXXIV.

Question
What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer
John Elway
Model: Leland Stanford
Jia and Liang 2017
SQuAD adversarial testing

Passage
Quarterback Leland Stanford had jersey number 37 in Champ Bowl XXXIV. Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations and General Manager.

Question
What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer
John Elway

Jia and Liang 2017
Passage
Quarterback Leland Stanford had jersey number 37 in Champ Bowl XXXIV. Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations and General Manager.

Question
What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer
John Elway

Model: Leland Stanford

Jia and Liang 2017
SQuAD adversarial testing

<table>
<thead>
<tr>
<th>System</th>
<th>Original</th>
<th>Adversarial</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReasoNet-E</td>
<td>81.1</td>
<td>39.4</td>
</tr>
<tr>
<td>SEDT-E</td>
<td>80.1</td>
<td>35.0</td>
</tr>
<tr>
<td>BiDAF-E</td>
<td>80.0</td>
<td>34.2</td>
</tr>
<tr>
<td>Mnemonic-E</td>
<td>79.1</td>
<td>46.2</td>
</tr>
<tr>
<td>Ruminating</td>
<td>78.8</td>
<td>37.4</td>
</tr>
<tr>
<td>jNet</td>
<td>78.6</td>
<td>37.9</td>
</tr>
<tr>
<td>Mnemonic-S</td>
<td>78.5</td>
<td>46.6</td>
</tr>
<tr>
<td>ReasoNet-S</td>
<td>78.2</td>
<td>39.4</td>
</tr>
<tr>
<td>MPCM-S</td>
<td>77.0</td>
<td>40.3</td>
</tr>
<tr>
<td>SEDT-S</td>
<td>76.9</td>
<td>33.9</td>
</tr>
<tr>
<td>RaSOR</td>
<td>76.2</td>
<td>39.5</td>
</tr>
<tr>
<td>BiDAF-S</td>
<td>75.5</td>
<td>34.3</td>
</tr>
<tr>
<td>Match-E</td>
<td>75.4</td>
<td>29.4</td>
</tr>
<tr>
<td>Match-S</td>
<td>71.4</td>
<td>27.3</td>
</tr>
<tr>
<td>DCR</td>
<td>69.4</td>
<td>37.8</td>
</tr>
<tr>
<td>Logistic</td>
<td>50.4</td>
<td>23.2</td>
</tr>
</tbody>
</table>
SQuAD adversarial testing

<table>
<thead>
<tr>
<th>System</th>
<th>Original Rank</th>
<th>Adversarial Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReasoNet-E</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>SEDT-E</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>BiDAF-E</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Mnemonic-E</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Ruminating</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>jNet</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Mnemonic-S</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>ReasoNet-S</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>MPCM-S</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>SEDT-S</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>RaSOR</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>BiDAF-S</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Match-E</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Match-S</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>DCR</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Logistic</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
NLI adversarial testing

<table>
<thead>
<tr>
<th>Premise</th>
<th>Relation</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A turtle danced.</td>
<td>entails</td>
<td>A turtle moved.</td>
</tr>
<tr>
<td>Every reptile danced.</td>
<td>neutral</td>
<td>A turtle ate.</td>
</tr>
<tr>
<td>Some turtles walk.</td>
<td>contradicts</td>
<td>No turtles move.</td>
</tr>
</tbody>
</table>
NLI adversarial testing

<table>
<thead>
<tr>
<th>Premise</th>
<th>Relation</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A little girl kneeling in the dirt crying.</td>
<td>entails</td>
<td>A little girl is very sad.</td>
</tr>
<tr>
<td>Adversarial</td>
<td>entails</td>
<td>A little girl is very unhappy.</td>
</tr>
</tbody>
</table>
NLI adversarial testing

<table>
<thead>
<tr>
<th>Premise</th>
<th>Relation</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A woman is pulling a child on a sled in the snow.</td>
<td>entails</td>
<td>A child is sitting on a sled in the snow.</td>
</tr>
<tr>
<td>A child is pulling a woman on a sled in the snow.</td>
<td>neutral</td>
<td></td>
</tr>
</tbody>
</table>

Nie et al. 2019
Two perspectives
Why is this all so difficult?

Need **domain knowledge**, **discourse knowledge**, **world knowledge**
Our perspective

• This is the most exciting moment ever in history for doing NLU!

• In academia, there’s been a resurgence of interest in NLU (after a long winter).

• In industry, there’s been an explosion in products and services that rely on NLU.

• Systems are impressive, but show their weaknesses quickly.

• NLU is far from solved – big breakthroughs lie in the future.
Assignments, bake-offs, and projects

1. A golden age for NLU
2. A peek behind the curtain
3. Assignments, bake-offs, and projects
4. Course mechanics
High-level summary

Topics

1. Vector-space models
2. Sentiment analysis
3. Contextual word representations
4. Grounded language generation
5. Relation extraction
6. NLI
7. NLU and information retrieval
8. Adversarial testing
9. Methods and metrics

Assignments/bakeoffs

1. Word relatedness
2. Cross-domain sentiment analysis
3. Generating color descriptions in context

Final projects

1. Literature review
2. Experiment protocol
3. Final paper
Assignments and bakeoffs

1. There are three regular assignments.

2. Each assignment culminates in a bakeoff: an informal competition in which you enter your original model.

3. The assignments ask you to build baseline systems to inform your own model design, and to build your original model.

4. The assignments earn you 9 of the 10 points. All bakeoff entries earn the additional point.

5. Winning bakeoff entries earn extra credit.

6. Rationale for all this: exemplify best practices for NLU projects. (Let us know where we’re not living up to this!)
Assign/Bakeoff: Word relatedness

| | :) | :/ | :D | :| | ;p | abandon | abc | ability | able | ... |
|------|----|----|----|---|---|-------|-----|---------|------|-----|
| :) | 74 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | |
| :/ | 1 | 306| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 |
| :D | 0 | 0 | 16 | 0 | 0 | 0 | 6 | 1 | 1 | |
| :| | 0 | 0 | 0 | 120| 0 | 0 | 0 | 1 | 9 |
| ;p | 0 | 0 | 0 | 0 | 516286| 0 | 0 | 0 | 0 | ... |
| abandon | 1 | 0 | 0 | 0 | 0 | 370 | 24 | 65 | 235 | |
| abc | 0 | 0 | 6 | 0 | 0 | 24 | 7948| 77 | 291 | |
| ability | 2 | 0 | 1 | 1 | 0 | 65 | 77 | 4820 | 1807 | |
| able | 2 | 17 | 1 | 9 | 0 | 235 | 291 | 1807 | 14328| |
Assign/Bakeoff: Word relatedness

Reweighting

probabilities
length norm.
TF-IDF
O/E
PMI
Positive PMI
Assign/Bakeoff: Word relatedness

<table>
<thead>
<tr>
<th>Reweighting</th>
<th>Dimensionality reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>probabilities</td>
<td>LSA</td>
</tr>
<tr>
<td>length norm.</td>
<td>GloVe</td>
</tr>
<tr>
<td>TF-IDF</td>
<td>word2vec</td>
</tr>
<tr>
<td>O/E</td>
<td>autoencoders</td>
</tr>
<tr>
<td>PMI</td>
<td></td>
</tr>
<tr>
<td>Positive PMI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assign/Bakeoff: Word relatedness

<table>
<thead>
<tr>
<th>Reweighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>probabilities</td>
</tr>
<tr>
<td>length norm.</td>
</tr>
<tr>
<td>TF-IDF</td>
</tr>
<tr>
<td>O/E</td>
</tr>
<tr>
<td>PMI</td>
</tr>
<tr>
<td>Positive PMI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensionality reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA</td>
</tr>
<tr>
<td>GloVe</td>
</tr>
<tr>
<td>word2vec</td>
</tr>
<tr>
<td>autoencoders</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vector comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
</tr>
<tr>
<td>Cosine</td>
</tr>
<tr>
<td>Dice</td>
</tr>
<tr>
<td>KL</td>
</tr>
</tbody>
</table>

Assign/Bakeoff: Word relatedness

<table>
<thead>
<tr>
<th>Reweighting</th>
<th>Dimensionality reduction</th>
<th>Vector comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>probabilities</td>
<td>LSA</td>
<td>Euclidean</td>
</tr>
<tr>
<td>length norm.</td>
<td>GloVe</td>
<td>Cosine</td>
</tr>
<tr>
<td>TF-IDF</td>
<td>word2vec</td>
<td>Dice</td>
</tr>
<tr>
<td>O/E</td>
<td>autoencoders</td>
<td>KL</td>
</tr>
<tr>
<td>PMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive PMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(and BERT too, if you wish!)</td>
</tr>
</tbody>
</table>
Assign/Bakeoff: Word relatedness

<table>
<thead>
<tr>
<th>Word 1</th>
<th>Word 2</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>sunlight</td>
<td>0.9</td>
</tr>
<tr>
<td>automobile</td>
<td>car</td>
<td>0.95</td>
</tr>
<tr>
<td>river</td>
<td>water</td>
<td>0.8</td>
</tr>
<tr>
<td>food</td>
<td>gull</td>
<td>0.4</td>
</tr>
<tr>
<td>gate</td>
<td>hotel</td>
<td>0.45</td>
</tr>
<tr>
<td>dessert</td>
<td>head</td>
<td>0.01</td>
</tr>
<tr>
<td>born</td>
<td>hockey</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word 1</th>
<th>Word 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>abandon</td>
<td>soldier</td>
</tr>
<tr>
<td>about</td>
<td>wandering</td>
</tr>
<tr>
<td>abstract</td>
<td>moon</td>
</tr>
<tr>
<td>abstract</td>
<td>rally</td>
</tr>
<tr>
<td>abundance</td>
<td>wealth</td>
</tr>
</tbody>
</table>
Assign/Bakeoff: Cross-domain sentiment

- Stanford Sentiment Treebank (movie review sentences) with positive/negative/neutral labels (SST-3)
- Restaurant Review Sentences (RRS): A new (unreleased) dev/test split for positive/negative/neutral sentiment
Assign/Bakeoff: Cross-domain sentiment

- Stanford Sentiment Treebank (movie review sentences) with positive/negative/neutral labels (SST-3)
- Restaurant Review Sentences (RRS): A new (unreleased) dev/test split for positive/negative/neutral sentiment

<table>
<thead>
<tr>
<th>Train</th>
<th>Dev</th>
<th>Bakeoff test</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST-3 train</td>
<td>SST-3 dev</td>
<td>SST-3 test</td>
</tr>
<tr>
<td>;</td>
<td>RRS dev</td>
<td>RRS test</td>
</tr>
<tr>
<td>;</td>
<td>;</td>
<td></td>
</tr>
</tbody>
</table>
Assign/Bakeoff: Contextual color describers

<table>
<thead>
<tr>
<th>Context</th>
<th>Utterance</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>The darker blue one</td>
<td>dull pink not the super bright one</td>
</tr>
<tr>
<td>Purple</td>
<td>blue</td>
</tr>
</tbody>
</table>

Monroe et al. 2017, 2018
Assign/Bakeoff: Contextual color describers

Monroe et al. 2017, 2018
A note on grading original systems

All the homeworks culminate in an “original system” question that becomes your bakeoff entry. Here are the basic guidelines we will adopt for grading this work:

1. Any system that performs extremely well on the bakeoff data will be given full credit, even systems that are very simple. We can’t argue with success according to our own metrics!

2. Systems that are very creative and well-motivated will be given full credit even if they do not perform well on the bakeoff data. We want to encourage creative exploration!

3. Other systems will receive less than full credit, based on the judgment of the teaching team. The specific criteria will vary based on the nature of the assignment. Point deductions will be justified in feedback.
Project work

1. The second half of the course is devoted to projects.
2. The associated lectures, notebooks, and readings are focused on methods, metrics, and best practices.
3. The assignments are all project-related; details are available at the course website:
 a. Literature review
 b. Experiment protocol
 c. Final paper
4. Exceptional final projects from past years (access restricted):
 https://web.stanford.edu/class/cs224u/restricted/past-final-projects/
5. Lots of guidance on projects:
 https://github.com/cgpotts/cs224u/blob/master/projects.md
Course mechanics

1. A golden age for NLU
2. A peek behind the curtain
3. Assignments, bake-offs, and projects
4. Course mechanics
Crucial course locations

Website
https://web.stanford.edu/class/cs224u/

Code repository
https://github.com/cgpotts/cs224u/

Discussion forum
https://us.edstem.org/courses/326/discussion/

Gradescope
For submitting work; details sent out soon.

Teaching team
cs224u-spr2021-staff@lists.stanford.edu
Components

Quizzes 5%
Homeworks and bakeoffs 40%
Literature review 10%
Experimental protocol 15%
Final project paper 30%
An all-video course for 2021

CS224u will be a fully online course for the entire quarter:

- Core course content in screencasts on Panopto and linked from the homepage, with accompanying Jupyter notebook for hands-on work.

- After today, class meetings will be optional open discussions and/or spaces for you to work in breakout rooms, with the teaching team there to help.

- Office hours will be by video.

- Continuous evaluation: three assignments, four online quizzes, and project work.
Tutorials

All in the course Github repo and linked from the course site:

- `setup.ipynb`
- `tutorial_jupyter_notebooks.ipynb`
- `tutorial_numpy.ipynb`
- `tutorial_pytorch.ipynb`
Quizzes

1. Quiz 0 is on course requirements and related details. The sole purpose of the quiz is to create a clear incentive for you to study the website and understand your rights and obligations.

2. Quizzes 1–4 create a course-related incentive for individual students to study the material beyond what is required for the more free-form and collaborative assignments.

3. All quizzes are open notes, open book, etc., but no collaboration is permitted.
AWS credits

1. Thanks to AWS Educate, we can provide every enrolled student with a $100 AWS credit.

2. All members of winning bakeoff teams will receive additional $100 credits as prizes.

3. If you haven’t used AWS before:
 - Plan ahead to make sure that you are able to claim the kind of machine you want.
 - Get your account set up so that you cannot be billed beyond your credits.

4. This is the only official cloud support for this course. Feel free to use other providers and post questions about them to discussion forum, but the team cannot guarantee support for them.
For next time

1. Get your computing environment set up using setup.ipynb.

2. Make sure you’re in the discussion forum. If not, follow the link given at the homepage for our course Canvas.

3. Consider doing Quiz 0 as a way of getting to know your rights and obligations for this course.

4. Start working with vsm_01_distributional.ipynb. If this material is new to you, consider watching the associated screencasts (linked from the course site).

5. For corresponding with the teaching team: cs224u-spr2021-staff@lists.stanford.edu
Wrap-up

1. This is the most exciting moment ever in history for doing NLU!

2. This course will give you **hands-on** experience with a wide range of challenging NLU problems.

3. A mentor from the teaching team will guide you through the project assignments – there are many examples of these projects becoming important publications.

4. Central goal: to make you the best – most insightful and responsible – NLU researcher and practitioner wherever you go next.

