Distributed word representations: Basic reweighting

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding
Goals of reweighting

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme: How does it compare to the raw count values?
- What overall distribution of values does it deliver?
- We hope to do no feature selection based on counts, stopword dictionaries, etc. Rather, we want our methods to reveal what’s important without these ad hoc interventions.
Normalization

L2 norming (repeated from earlier)

Given a vector u of dimension n, the L2-length of u is

$$||u||_2 = \sqrt{\sum_{i=1}^{n} u_i^2}$$

and the length normalization of u is

$$\left[\frac{u_1}{||u||_2}, \frac{u_2}{||u||_2}, \cdots, \frac{u_n}{||u||_2} \right]$$

Probability distribution

Given a vector u of dimension n containing all positive values, let

$$\text{sum}(u) = \sum_{i=1}^{n} u_i$$

and then the probability distribution of u is

$$\left[\frac{u_1}{\text{sum}(u)}, \frac{u_2}{\text{sum}(u)}, \cdots, \frac{u_n}{\text{sum}(u)} \right]$$
Observed/Expected

\[
\text{rowsum}(X, i) = \sum_{j=1}^{n} X_{ij} \quad \text{colsum}(X, j) = \sum_{i=1}^{m} X_{ij} \quad \text{sum}(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}
\]

\[
\text{expected}(X, i, j) = \frac{\text{rowsum}(X, i) \cdot \text{colsum}(X, j)}{\text{sum}(X)}
\]

\[
\text{oe}(X, i, j) = \frac{X_{ij}}{\text{expected}(X, i, j)}
\]
Observed/Expected

Rowsum \(\text{rowsum}(X, i) = \sum_{j=1}^{n} X_{ij} \)

Colsum \(\text{colsum}(X, j) = \sum_{i=1}^{m} X_{ij} \)

Sum \(\text{sum}(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} \)

\[\text{expected}(X, i, j) = \frac{\text{rowsum}(X, i) \cdot \text{colsum}(X, j)}{\text{sum}(X)} \]

\[\text{oe}(X, i, j) = \frac{X_{ij}}{\text{expected}(X, i, j)} \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>rowsum</th>
<th>oe</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>34</td>
<td>11</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>47</td>
<td>7</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>colsum</td>
<td>81</td>
<td>18</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{array}{cc|c}
 & a & b \\
\hline
 x & 34 & 11 \quad 45 \quad \frac{45}{81} \quad \frac{45}{18} \\
 y & 47 & 7 \quad 54 \quad \frac{54}{81} \quad \frac{7}{99} \\
\end{array}
\]
Observed/Expected

\[
\text{rowsum}(X, i) = \sum_{j=1}^{n} X_{ij} \quad \text{colsum}(X, j) = \sum_{i=1}^{m} X_{ij} \quad \text{sum}(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}
\]

\[
\text{expected}(X, i, j) = \frac{\text{rowsum}(X, i) \cdot \text{colsum}(X, j)}{\text{sum}(X)}
\]

\[
\text{oe}(X, i, j) = \frac{X_{ij}}{\text{expected}(X, i, j)}
\]

Observed

<table>
<thead>
<tr>
<th></th>
<th>tabs</th>
<th>reading</th>
<th>birds</th>
</tr>
</thead>
<tbody>
<tr>
<td>keep</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>enjoy</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

keep and tabs co-occur more than expected given their frequencies, enjoy and tabs less than expected.

Expected

<table>
<thead>
<tr>
<th></th>
<th>tabs</th>
<th>reading</th>
<th>birds</th>
</tr>
</thead>
<tbody>
<tr>
<td>keep</td>
<td>\frac{60\cdot21}{101}</td>
<td>\frac{60\cdot40}{101}</td>
<td>\frac{60\cdot40}{101}</td>
</tr>
<tr>
<td>enjoy</td>
<td>\frac{41\cdot21}{101}</td>
<td>\frac{41\cdot40}{101}</td>
<td>\frac{41\cdot40}{101}</td>
</tr>
</tbody>
</table>

\[
= \frac{12.48}{16.24} \quad \frac{23.76}{16.24} \quad \frac{23.76}{16.24}
\]
Pointwise Mutual Information (PMI)

PMI is observed/expected in log-space (with $\log_e(0) = 0$):

$$pmi(X, i, j) = \log_e \left(\frac{X_{ij}}{\text{expected}(X, i, j)} \right) = \log_e \left(\frac{P(X_{ij})}{P(X_{i\ast}) \cdot P(X_{\ast j})} \right)$$

<table>
<thead>
<tr>
<th></th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>$P(w, d)$</th>
<th>$P(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

$P(d)$ | 0.33 | 0.33 | 0.22 | 0.12 |

PMI

<table>
<thead>
<tr>
<th></th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.28</td>
<td>-0.28</td>
<td>0.13</td>
<td>0.73</td>
</tr>
<tr>
<td>B</td>
<td>0.01</td>
<td>0.01</td>
<td>0.42</td>
<td>0.00</td>
</tr>
<tr>
<td>C</td>
<td>0.42</td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>D</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.11</td>
</tr>
</tbody>
</table>
Positive PMI

The issue
PMI is actually undefined when $X_{ij} = 0$. The usual response is the one given above: set PMI to 0 in such cases. However, this is arguably not coherent (Levy and Goldberg 2014):

- Larger than expected count \Rightarrow large PMI
- Smaller than expected count \Rightarrow small PMI
- 0 count \Rightarrow placed right in the middle!?
Other weighting/normalization schemes

- **t-test:** \[\frac{P(w,d) - P(w)P(d)}{\sqrt{P(w)P(d)}} \]

- **TF-IDF:** For a corpus of documents \(D \):
 - Term frequency (TF):
 \[\frac{x_{ij}}{\text{colsum}(X, j)} \]
 - Inverse document frequency (IDF):
 \[\log_e\left(\frac{|D|}{|\{d \in D : w \in d\}|}\right) \]
 \[\log_e(0) = 0 \]
 - TF-IDF: \(TF \cdot IDF \)

- **Pairwise distance matrices:**

<table>
<thead>
<tr>
<th></th>
<th>(d_x)</th>
<th>(d_y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

\[\text{cosine} \Rightarrow \]

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0.008</td>
<td>0.116</td>
</tr>
<tr>
<td>B</td>
<td>0.008</td>
<td>0</td>
<td>0.065</td>
</tr>
<tr>
<td>C</td>
<td>0.116</td>
<td>0.065</td>
<td>0</td>
</tr>
</tbody>
</table>
High-level effects

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- So we should ask of each weighting scheme: How does it compare to the raw count values?
- What overall distribution of values does it deliver?
- We hope to do no feature selection based on counts, stopword dictionaries, etc. Rather, we want our methods to reveal what’s important without these ad hoc interventions.
Weighting scheme cell-value distributions

Uses the giga5 matrix loaded earlier. Others look similar.
Weighting scheme relationships to counts

Uses the giga5 matrix loaded earlier. Others look similar.
Relationships and generalizations

- The theme running through nearly all these schemes is that we want to weight a cell value X_{ij} relative to the value we expect given X_{i*} and X_{*j}.

- The magnitude of counts can be important; [1, 10] and [1000, 10000] might represent very different situations; creating probability distributions or length normalizing will obscure this.

- PMI and its variants will amplify the values of counts that are tiny relative to their rows and columns. Unfortunately, with language data, these might be noise.

- TF-IDF severely punishes words that appear in many documents – it behaves oddly for dense matrices, which can include word \times word matrices.
Code snippets

[1]:
```python
import os
import pandas as pd
import vsm
```

[2]:
```python
DATA_HOME = os.path.join('data', 'vsmdata')
```

[3]:
```python
yelp5 = pd.read_csv(
    os.path.join(DATA_HOME, 'yelp_window5-scaled.csv.gz'), index_col=0)
```

[4]:
```python
yelp_oe = vsm.observed_over_expected(yelp5)
```

[5]:
```python
yelp_norm = yelp5.apply(vsm.length_norm, axis=1)
```

[6]:
```python
yelp5_ppmi = vsm.pmi(yelp5)
```

[7]:
```python
yelp5_pmi = vsm.pmi(yelp5, positive=False)
```

[8]:
```python
yelp5_tfidf = vsm.tfidf(yelp5)
```
Code snippets

[9]: `vsm.neighbors('bad', yelp5).head()

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bad</td>
<td>0.000000</td>
</tr>
<tr>
<td>unfortunately</td>
<td>0.116183</td>
</tr>
<tr>
<td>memorable</td>
<td>0.120179</td>
</tr>
<tr>
<td>...</td>
<td>0.122024</td>
</tr>
<tr>
<td>obviously</td>
<td>0.123120</td>
</tr>
<tr>
<td>dtype: float64</td>
<td></td>
</tr>
</tbody>
</table>
```

[10]: `vsm.neighbors('bad', yelp5_ppmi).head()

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bad</td>
<td>0.000000</td>
</tr>
<tr>
<td>terrible</td>
<td>0.471554</td>
</tr>
<tr>
<td>horrible</td>
<td>0.516562</td>
</tr>
<tr>
<td>awful</td>
<td>0.571104</td>
</tr>
<tr>
<td>poor</td>
<td>0.599081</td>
</tr>
<tr>
<td>dtype: float64</td>
<td></td>
</tr>
</tbody>
</table>
```