CS 224V Assignment 2

Due: October 13 2025

Instructions: Use this Colab Notebook in conjunction with this write-up. Make sure to
“Save a copy in Drive” before running the notebook. Submit your answers through Grade-
scope and attach your Google Colab notebook. In red, we label how each question in this
writeup corresponds to a Gradescope question

We expect heavy loads on the OVAL machine used in this assignment close to the deadline.
Thus, we highly recommend you start this assignment early and do not wait un-
til the last minute. This assignment is designed to be completed in groups of 2. Please
submit as a group to Gradescope.

1 Introduction

This assignment is designed to give you hands-on experience with how we can leverage LLMs
to create task-oriented dialogue agents grounded on knowledge corpus. You will learn:

e strategies for leveraging LLMs to develop task-oriented dialogue systems capable of
performing complex tasks;

e key requirements and considerations for building effective dialogue agents;
e the importance of grounding task agents in a comprehensive knowledge corpus.

e a new framework for quickly creating dialogue agents with minimal steps.

2 Task Oriented Dialogue Agents

Researchers and industry practitioners have demonstrated significant interest in developing
task-oriented dialogue agents. These agents are typically designed with a transactional focus,
aiming to fill slot values based on user utterances to complete specific tasks (Budzianowski
et al., 2018; Andreas et al., 2020; Rastogi et al., 2020). However, existing approaches have
limitations in handling conditional logic, integrating knowledge sources, and consistently
following instructions. Researchers and industry professionals often employ ad hoc pipelines
to construct conversational agents. These pipelines aim to maintain context, address failure
cases, and minimize hallucinations, yet frequently fail to achieve these objectives.


https://colab.research.google.com/drive/1OsROGm7x_SjahgP07KEzZjetsY5f4eja#scrollTo=cQv6V2GC86eq

LLMs offer a promising opportunity to create more natural general-purpose dialogue agents
such as ChatGPT, Claude, and Gemini (OpenAl, 2024; Anthropic, 2024; Gemini et al.,
2023). However, task-oriented agents should provide reliable, grounded responses while let-
ting developers exercise control over the conversation flow.

Here are the key challenges faced in creating reliable task-oriented dialogue agents:

1. Creation of effective, informative, and responsive informative agents, while letting
developers exercise control without onerous efforts.

2. Support users’ queries for information, which may be embedded in a task request.

3. Dialogue systems need to remember pertinent facts from the dialogue history.

3 GenieWorksheet

To tackle the aforementioned challenges, task-oriented conversational agents recent libraries,
such as those offered by LangChain and Guidance, provide abstractions for developing
LLM-based agents but still require developers to manually craft prompts and create reli-
able pipelines. This is particularly challenging for complex task-oriented agents.

Genie (Joshi et al., 2025) was designed to address this gap. Instead of asking developers to
hand-craft prompt pipelines, Genie introduces a new abstraction called the GenieWorksheet.
A worksheet is a declarative specification of how a task-oriented dialogue agent should be-
have.

With worksheets, the developer does not need to spell out every possible dialogue path (as
in traditional dialogue trees). Instead, they declare the task requirements: what informa-
tion the agent should collect, what conditions must be satisfied, and what actions should
be taken once those requirements are met. Genie then handles the details of prompting,
state tracking, and conversation flow. This is a novel way of defining task-oriented agents,
GenieWorksheets, that provides explicit control to the TOD (Task Oriented Dialogue) agent
developer.

Imperative vs. Declarative

GenieWorksheet enables programming policies in the declarative paradigm, in contrast
to dialogue trees’ much more complex imperative approach. Declarative programming
is a paradigm that focuses on what the program should achieve without explicitly
stating how to achieve it.

e Imperative (dialogue tree): If the user provides a departure city,
then ask for arrival; if they give arrival, then ask for time; if
all three are present, call book ride().

e Declarative (worksheet): I need fields {departure, arrival, time}.




Once they’re filled, call book ride().

The developer can program what actions the agent should take based on the state of the
conversations; these are called agent policies. This way the developer can manage dialogue
flow and deliver high-level support for integrated knowledge assistants.

Further Reading: Dialogue Agent Frameworks

GenieWorksheets is one approach to designing task-oriented dialogue agents, but it
sits in a broader ecosystem of tools. Each framework has its own strengths and weak-
nesses, and understanding the trade-offs can help you choose the right tool for a given
application:

e LangChain“: The most widely used orchestration framework for LLM-powered
apps. Provides modular components (chains, agents, memory) and strong inte-
grations, but can be complex to maintain in large projects.

e Guidance’: A Python library for precise prompt programming with control
flow and constraints. Useful when you need structured outputs or deterministic
behaviors.

e Haystack® A framework focused on retrieval-augmented generation (RAG).
Particularly strong for document-grounded agents that need to search, retrieve,
and cite knowledge sources.

Compared to these, Genie emphasizes a declarative paradigm with worksheets,
which simplifies complex dialogue flows and makes it easier to ensure reliability in
task-oriented contexts.

“https://www.langchain.com
https://github.com/guidance-ai/guidance
‘https://haystack.deepset.ai

4 Investment Agent with Genie Worksheets

Managing personal investments often requires navigating multiple platforms—checking ac-
count balances on Fidelity, comparing fund options, researching returns, and manually ex-
ecuting deposits or fund purchases. Investors face challenges such as finding the right fund
that matches their risk tolerance, managing certificate of deposits, or tracking how their
existing portfolio is performing relative to benchmarks. These processes are fragmented and
require constant switching between dashboards, reports, and calculators.

The Investment agent streamlines the process of managing and growing investments by
integrating key financial actions with data-driven recommendations. It enables users to:


https://www.langchain.com
https://github.com/guidance-ai/guidance
https://haystack.deepset.ai

e GetRecommendation: receive tailored fund or investment suggestions based on goals
and risk appetite.

e GetAccountBalance: instantly retrieve their account balance for real-time financial
awareness.

e UsersInvestmentPortfolio: view and analyze their current portfolio composition,
including fund allocations and performance.

e CertificateDepositInvestment: explore and invest in certificate of deposit oppor-
tunities with clear terms and yield comparisons.

e FundInvestment: research, select, and execute investments into Fidelity-managed
funds or ETFs.

The agent operates on top of a comprehensive database containing detailed information about
Fidelity’s funds—including historical performance, risk ratings, sector allocations, and ex-
pense ratios. This structured data allows the agent to both answer questions (“What are
the top-performing Fidelity bond funds this quarter?”) and execute actions (“Invest $2,000
into Fidelity Balanced Fund”).

To get familiar with task-oriented dialogue agents, you will interact with the (Fidelity)
investment agent. We use real-world fund data from Fidelity’s public disclosures. This
database includes tables covering funds, performance metrics, enabling realistic simulation
of investment workflows.



Action Item 1

Learning Goal: Get familiar with task-oriented dialogue agents grounded in knowledge
corpus.

Task 1 Interact with the (fidelity) investment agent for at least 8 turns. Hint: student
input + agent response = 1 turn (Gradescope Q1)

Steps
1. Visit Investment Agent Web UI. There you can interact with the agent.
2. The bot will give you a unique User ID, paste it into Gradescope (Gradescope 1.1)

3. Now you can ask questions related to Fidelity’s public investment courses, ask for
recommendations, ask to invest etc.

4. You should view the intermediate steps by clicking on down arrow for each of the
three steps: “Semantic Parser”, “Agent Policy”, and “Response Generator”.

5. Download the conversation log by clicking on conv_log .json. This conversation log
contains intermediate steps taken by the agent.

6. Upload the conversation log to Gradescope (Gradescope 1.2)

7. Do you think the agent was forgetting information that you had previously men-
tioned in the chat? (Gradescope 1.3)

8. How often does the agent make up information (“hallucinate”)? Provide examples
from the conversation that you had. (Gradescope 1.4)

9. What functionalities do you think such an agent have in addition to the existing
ones? (Gradescope 1.5)

10. List other applications where such task-oriented dialogue agents can be useful.
(Gradescope 1.6)



https://investment.genie.stanford.edu

5 Creating your own task-oriented agent

In the previous section, we used the Investment Agent to learn more about courses offered
and enroll in classes. Now, we will look into what it takes to create task-oriented agents
with GenieWorksheets.

5.1 Components of GenieWorksheets

GenieWorksheets has the following three components:

e APIs: External APIs that the agent will have access to, enabling it to perform desig-
nated actions.

e Databases: Knowledge sources that the agent will use to respond to user queries
requiring external information.

e Worksheets: Worksheets specify how the agent should complete a particular task.
Each worksheet represents one task or subtask, defining when it is activated, what
information to collect from the user, and what actions to take based on that input
(such as API calls, database lookups, or responses). The top-level worksheet always
runs first to capture the main task, while additional worksheets are created for subtasks
or alternative flows that are triggered only when their conditions are satisfied.

See an example of worksheets for the Investment Agent here: Investment Agent Worksheets.
See an example of APIs defined for the Investment Agent in this file: investment_agent.py

Ticket Submission Worksheet

WS Predicate WS Name Predicate Input  Type Name Enum Values Description Don’'t Ask Required Confirmation Actions WS Actions
Main ws submit_ticket
input  Enum student_task The type of student requ... TRUE

TroubleShoot
Leave of Abs.
Test Credits

self.student_task == input  Trouble  trouble_shoot The enroliment issues TRUE

“TroubleShoot” Shoot that the student is facing

self.student_task is not input  str extra_details Ask for any other detail TRUE

None and ( that the student wants to

self.trouble_shoot and add

self.leave_of_abs and

self.test_credits)

input  confirm  confirm . TRUE if self.confirm == False:
Confirm the student w... >say(“Thank you, can |
assist you in any other
way?”)
self.student_task TroubleShoot WS
== "“Trouble...”
services_general_info db:free_text

Figure 1: Sample Worksheet. The Worksheet represents APIs. For example, the Main
API is as follows: Main(student_task: Enum["TroubleShoot", "Leave of Absence",
"Test Credits"], troubleshoot: TroubleShoot, extra_details: str)


https://docs.google.com/spreadsheets/d/12pxx7rNhor1Sv6m2sXHP654wPL-mDDWjPPQuCHB1kaM/edit?gid=0#gid=0
https://github.com/stanford-oval/genie-worksheets/blob/0b77b6decc987af42ef6a9c0b857254d59757b72/experiments/domain_agents/investment_agent/investment_agent.py#L25

5.2 Worksheets

A worksheet, as illustrated in Figure 1, has a name (WS Name), a predicate (WS Predicate)
indicating when it is activated, and a set of fields. The top-level worksheet is unconditionally
executed, and the rest of the worksheets are activated if their corresponding predicates are
true. Each field has these attributes:

e Predicate: Python code for indicating whether the field should be active.

e Input: Whether it is an input or an internal value, the latter is computed rather than
solicited from the user.

e Type: if the type is “Enum”, the possible values are specified in the “Enum Values”
field. Other types allowed are: str, int, bool, name of another worksheet, confirm.

e Name: the name of the field
e Description: a natural language description of the field.

e Don’t Ask: if true, the agent saves the information if offered by the user, but does
not solicit it. An example of such a field could be: “Is the user annoyed?”. In this
case, the system won’t explicitly ask the user if they are annoyed; however, if the user
mentions that they are, the value can be set to True.

e Required: if true, solicits the user for a value

e Confirmation: if true, confirms the value with the user, which is useful if an unde-
sirable side effect can result from a mistaken value.

e Actions: code (in Python) to be executed whenever a value is assigned to the variable.

Design Guideline

When naming worksheets, fields, and enum values, use clear and semantically
meaningful labels.

e Good: departure_city, arrival city, travel date
e Bad: x1, argA, thing

The performance of your agent depends heavily on these names and descriptions, since
the LLM interprets them directly. Thoughtful naming makes the agent more reliable
and easier to debug.

In the WS actions field, the developer can provide Python code to be executed when all
the required fields are filled. Several built-in actions are provided to the developer: (1) say
(str) responds to the user with the given string str. (2) propose (ws, [fld,vall*) in-
stantiates a new worksheet ws with the given field value pairs as a Python dictionary.



Key Analogy

Think of a worksheet as a recipe:
e The predicate decides when to start cooking.
e The fields are your ingredients (some required, some optional).
e The actions are the steps that happen once you have everything ready.

Unlike an imperative recipe that says “chop onions, then heat oil, then add onions,” a
declarative worksheet just says “this dish requires onions, oil, and heat; once you have
them, cook it.” Genie fills in the details.

5.2.1 The Ticket Submission Example

Figure 1 shows an example of ticket submission taken from the Genie Worksheet paper. This
agent reproduces a subset of three tasks using seven pages from Stanford’s ServiceNow ticket
submission portal.

The Main worksheet is defined with the WS type. The value sample ticket under Name
specifies the backend API name, which is automatically invoked with the same parameters as

those defined in the worksheet. In this case, the function signature is submit_ticket (student_task,
trouble_shoot, extra._details).

The first field in the Main worksheet is student_task. Since it has no predicate, the value
can be filled in at any point in the conversation. Its input kind is Input, meaning the value
must be provided by the user. The type is Enum, with allowed values ["TroubleShoot",
"Leave of Absence", "Test Credits"]. A description is also provided to help the parser
identify what this field represents. Finally, it is marked as required by setting its value to
True.

The second field is trouble_shoot, which is used when a student encounters issues enrolling
in a class, as described under the description column. However, the agent can only use this
field if the student’s task is identified as Troubleshooting. This condition is specified by
the predicate self.student task == "TroubleShoot". The type of this field is another
worksheet, namely TroubleShoot, meaning that in order to fill trouble_shoot, the corre-
sponding TroubleShoot worksheet must also be completed.

The last field in the Main worksheet is confirm, which has the type confirm. This type
ensures the user is always asked for confirmation before the worksheet action is executed.
The confirm field also specifies a field action: if the user does not confirm, the agent responds
with ”Thank you, can I assist you in any other way?”

Finally, the services_general_info worksheet is shown. This is a knowledge worksheet
as defined by db type. The special :free_text tell the system that its a vector database



containing free-text documents.



5.3 Building the Ride Booking Agent with GenieWorksheets

Action Item 2

Learning Goal: Get hands-on experience with building task-oriented agents using
GenieWorksheets.

Task 2: Implement a Ride Booking Agent with Genie Worksheets by following the
provided Google Colab Notebook. The Ride Book Agent should follow the conversation
logic provided in Figure 2 or, equivalently, the conversation flow provided in section 5.4.

Before implementing the Ride Booking Agent, make sure to take the time to un-
derstand GenieWorksheets. Read Sections 5.1 and 5.2 in this handout, look at the
example of the Plane Booking Agent in the Google Colab, and refer to the following
resources:

e GenieWorksheets paper

e Starter Worksheet Template

e Example Worksheets: Course Enrollment Agent
e Example Worksheets: Fidelity Investment Agent

After implementing the agent, interact with the agent and download the
conversation_log. json.

Setup Instructions: For this assignment, we will be using Azure OpenAl to access
different models. To claim your compute credit and access your API keys, please follow
the instructions provided here.

\ J

5.4 Conversation Flow for Ride Booking Agent

Here’s the conversation flow represented by the logic diagram in Figure 2.

Step 1: Request and Confirm (Inputs)
The system begins by collecting essential information:

e Customer name
e Departure location

e Arrival location

This establishes the base request.

Step 2: Query (Check)

10


https://colab.research.google.com/drive/1OsROGm7x_SjahgP07KEzZjetsY5f4eja?usp=sharing
https://aclanthology.org/2025.acl-long.1323/
https://docs.google.com/spreadsheets/d/1ST1ixBogjEEzEhMeb-kVyf-JxGRMjtlRR6z4G2sjyb4/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1cqZKg0rGAYfUW65LHp-GigwsOglE11y8r9vQ5XnOnxM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/12pxx7rNhor1Sv6m2sXHP654wPL-mDDWjPPQuCHB1kaM/edit?usp=sharing
https://docs.google.com/document/d/11Qo8cIDRLnj7zTj-1fr8ySkMhQPH8kH7BrxmrnZK0j0/edit?tab=t.0

Request and Confirm

- Customer name

- Departure location

- Arrival location

1

Request Optional
- Service Provider
- Driver Name

- Car Model

Query (Check)

Query knowledge base with
Request Type = ‘Check’

2

Inform and Confirm

Describe the ride
e Departure + arrival
location
e Service provider, price,
pickup time
and ask whether to book

Query (Book)

Query knowledge base with
Request Type = ‘Book’

Inform

Confirm booking with id
and license plate 6

Figure 2: Conversation Logic for Ride Booking Agent

The system sends an api call to our check_availability api. This means it looks up pos-
sible ride options (service providers, driver name and car models).

Step 3: Inform and Confirm
The system describes the ride to the customer:

e Departure + arrival location

e Service provider, price, pickup time
Then it explicitly asks whether the customer wants to book.
Decision Point

e If the customer says Yes — proceed to booking (Step 5).

e If the customer says No — request optional details (Step 4).

Step 4: Request Optional
If the initial offer isn’t accepted, the system may ask for optional preferences:

e Service Provider
e Driver Name

e Car Model

Then it loops back to Step 2 (Query Check) to refine ride options.
Step 5: Query (Book)

11



User: Hi

Agent: Hi! Could you please provide me with the name of the customer who wants to book the ride?
User: Its John Doe

Agent: Hi John! Could you please provide me with the departure location for the ride booking?
User: I am going from LA to SF

Agent: Thank you for providing the details, John. Since you are traveling from LA to SF,

can you let me know the date and time you would like to book the ride?

User: maybe tomorrow around 10am

Agent: Thank you for the information, Rishab. Let me confirm, you would like to book a ride from LA to SF
for tomorrow, October 1st, at around 10:00 AM?

User: Yes thats true

Agent: Your ride has been successfully booked. Here are the details:

- Status: Success
- Booking ID: 7a906279-cc47-4a36-b871-1ec119e80657

Thank you for choosing our service, Rishab! If you have any further questions or need assistance, feel free to ask.
Safe travels!
User: exit()

Table 1: A sample conversation with the Agent. Note that this simple conversation follows
the “Happy Path”. For your assignment, you will interact with the bot and change informa-
tion midway, such as after selecting LA as the departure location, you can say “I am actually
traveling from San Jose”

If the customer accepts, the system executes the book_ride api finalize the booking.

Step 6: Inform (Final Confirmation)
The system confirms the booking details back to the customer, including;:

e Booking ID

e License plate

This concludes the flow.
In summary: The system first checks ride options (Step 1 — 2 — 3). If the customer

refuses, it gathers more optional info and retries (Step 4 — 2). If the customer accepts, it
proceeds to finalize booking (Step 5 — 6).
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5.5 Evaluating the Ride Booking Agent

Action Item 3

Learning Goal: Get hands-on experience with evaluating a task-oriented agent.

Task 3: Read about evaluation in the GenieWorksheets paper and answer Gradescope
(QQ2.1. Then, evaluate all of the turns in your conversation_log. json file and share
your thoughts by updating the conversation log. json file as specified in the Google
Colab.

Once you finish the evaluation, complete the following:
e Upload the evaluated conversation_log.json file to (Gradescope Q2.2).

e Upload the Google Colab notebook as a PDF. In Google Colab, click File — Print
— “Save as PDF” and upload the downloaded PDF file to (Gradescope Q2.3)

e Paste the link to the google spread sheet you created as a worksheet (Gradescope

Q2.4)

13
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