
Stanford CS224v Course

Conversational Virtual Assistants with Deep Learning

Lecture 10

Agentic AI for Knowledge Base Queries

1

Monica Lam & Shicheng Liu & Sina Semnani

A GE N TI C A I

A N A I SY STEM

T H AT C AN M AK E DE CI S I ONS AN D T AK E AC T I ON S ON I T S OW N

T O AC H I EVE A GO AL

L EC T U RE G OA L

F OC US : S E MAN T IC P AR S IN G F OR C OM PL E X K NO WLE DG E B AS E S

A GE N TI C A PPRO AC H

C OM PU T AT IO NA L T H IN KI NG

… SO Y OU C AN A P P LY T H EM T O Y OU R P RO JE CT

STANFORDLAM

Outline

• Knowledge Graphs – aka Knowledge Bases (KB)

• Challenges of KBQA (KB Question Answering)

• Prior Approaches

• The Agentic Approach for KBs

• Dataset and Evaluation

• Agentic Approach to SQL Databases

• Computational Thinking for KB Queries

STANFORDLAM

A Knowledge Graph
• A lot of information cannot be represented in tables

• Knowledge graph is also known as a semantic web

• Nodes are entities

• Edges are relationships

STANFORDLAM

Wikidata: The Largest Live Knowledge Graph

• Stats:

• 15B facts (1B more triples per year)

• 100M entities

• 10K properties (3000 of interest)

• 25K contributors

• All entities in Wikipedia are in Wikidata

• Wikidata contains many more entities

STANFORDLAM

Wikidata Representation – a RDF graph

• Representation: RDF triples

• Nodes are entities (represented by unique QIDs)

• There are many entities with exactly the same name

• Same ID across all Wikipedia in all languages

• Edges are properties (represented by unique PIDs)

SELECT ?x WHERE

{ wd:Q41506 wdt:P112 ?x. }

Stanford Founded by

Who founded Stanford?

Query with SPARQL

A natural language interface can greatly expand access!c

STANFORDLAM

Running Example: Music Instruments Played

STANFORDLAM

Edward Rutschman
(Q107705263)

Hokyung Yang
(Q107851778)

Gwynne Kuhner Brown
(Q106627792)

Chad Kirby
(Q107522681)

University of Washington School of Music
(Q98035717)

University of Washington
(Q219563)

Trombone
(Q8350)

Piano
(Q5994)

Affiliation
(P1416)

Educated At
(P69)

Instrument
(P1303)

A Subset of the Knowledge Graph in Wikidata

Zakir Hussain
(Q144719)

Percussion instrument
(Q133163)

Tabla
(Q213100)

STANFORDLAM

P1303: instrument

P1416: affiliation

P69: educated at

Q98035717:
University of Washington

School of Music

Q219563:

University of Washington

STANFORDLAM

The Power of WikiData

• SPARQL allows relational algebra operations

across the entire knowledge graph

• Running example needs: filters, projections, joins, counts …

• Query optimizations

• Dataset for research in

Mathematics, Biology, Education, Social Sciences, Linguistics, ..

Quiz: Can we represent the data as tables?

STANFORDLAM

Why Querying Wikidata with SPARQL is Difficult

• No fixed schema:

• SPARQL and Neo4j are two most popular knowledge graph representations

• Neo4j is typed – it has a fixed schema. All nodes of the same type have the same set of properties.

• SPARQL is untyped – designed for extension across diverse fields (Adding properties need permission).

• Many properties (3000): Hard to memorize all the properties

• Many similar properties:

• Often unclear which property or entity should be used

• Questions on locations: “Where did Isaac Newton live?” “Where is Salesforce?”

• Possible properties – depends on what is available for the node

• administrative territorial entity

• residence, state, country, place of birth, place of death

• headquarters location, location of formation

• Need to look at a node’s properties to determine the right SPARQL

• Queries can be complex

STANFORDLAM

Outline

• Knowledge Graphs – aka Knowledge Bases (KB)

• Challenges of KBQA (KB Question Answering)

• Prior Approaches

• The Agentic Approach for KBs

• Dataset and Evaluation

• Agentic Approach to SQL Databases

• Computational Thinking for KB Queries

Previous Work

Knowledge Base Query Answering (KBQA)

S EM AN T I C P AR SER : G EN ERA T I NG S P AR QL

(F I N E - T U NI N G , L LM)

S U BGR AP H T RA VER SAL : T RA VER S I NG T H E K NO W LEDG E G RA P H

W I T H OU T U S I N G S P A R QL

STANFORDLAM

Semantic Parser

(Llama fine-tuned with 3K samples)

From Wikidata, the filming location of

‘A Bronx Tale’ includes New Jersey
and New York

Where did Bronx take place?

GPT-3

GPT-3 guesses that the movie
took place in Bronx, New York

Entity Linker

(‘A Bronx Tale’, ‘Q1130705’)

No

Response

1. Semantic Parsing with Fine-Tuning

Response

Silei Xu et al. Fine-tuned LLMs Know More, Hallucinate Less with Few-Shot Sequence-to-Sequence Semantic Parsing over Wikidata.. EMNLP 2023

STANFORDLAM

2. Semantic Parsing with Prompting LLMs

• Recall: Yelp semantic parse with LLM

• LLMs know the syntax of SQL

• Generates accurate SQL queries for simple tables directly

• LLMs know the syntax of SPARQL

• And just a few PIDs and QIDs of entities

• Cannot parse “research questions”

(with many joins, group-bys, ranks, …)

STANFORDLAM

3. Subgraph Retrieval (No SPARQL)

Quiz: Can this provide the full generality of SPARQL

Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering (Zhang et al., ACL 2022)

Retrieve a part of the graph based on a question

Quiz: Can this find the tallest mountain?

https://aclanthology.org/2022.acl-long.396
https://aclanthology.org/2022.acl-long.396
https://aclanthology.org/2022.acl-long.396

STANFORDLAM

4. LLM-Based Graph Exploration

Explore a sub-graph by walking the graph one edge at a time

Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph, Sun et al, ICLR 2024

Quiz: Can this provide the full generality of SPARQL

STANFORDLAM

Outline

• Knowledge Graphs – aka Knowledge Bases (KB)

• Challenges of KBQA (KB Question Answering)

• Prior Approaches

• The Agentic Approach for KBs

• Dataset and Evaluation

• Agentic Approach to SQL Databases

• Computational Thinking for KB Queries

SPINACH:

SPARQL-Based Information Navigation for

Challenging Real-World Questions

Shicheng Liu* Sina J. Semnani*

Harold Triedman1 Jialiang Xu Isaac Dan Zhao Monica S. Lam
Stanford University

* Equal contribution
1 Cornell Tech; Work conducted while at the Wikimedia Foundation

EMNLP 2024

STANFORDLAM

Https://spinach.genie.stanford.edu

STANFORDLAM

v. Combines the Best of Semantic Parsing (SPARQL),
 Subgraph Retrieval, & LLMs

• Semantic parsing to SPARQL:

• Expressiveness, implementation/query optimizations

• Graph retrieval: exam actual properties in the data

• LLM agentic approach combines the 2 above

• If human experts can do it: we can do it!

• Automate the human expert’s approach

• Humans don’t memorize the nodes and properties

 → we don’t need fine-tuning! Just use In-Context Learning

STANFORDLAM

How a Human Expert Write a SPARQL Query

1. Start by writing simple SPARQL queries;

2. Look up Wikidata entity or property pages when needed

• To understand the structure of the knowledge graph

• Check what properties exist for a node

3. Add new SPARQL clauses to build towards the final SPARQL

LLM Agent weaves together

- Knowledge inquiry

- Query writing

- Execution and evaluation of results (subgraph retrieval)

STANFORDLAM

Actions Useful for Writing SPARQL

Provided by Wikidata

search_wikidata(string): http://wikidata.org (search bar):

 text → returns QIDs and PIDs

get_wikidata_entry(QID): https://www.wikidata.org/wiki/QID:<QID>

 QID → Wikidata page for entity

get_property_examples(PID): https://www.wikidata.org/wiki/Property:<PID>:

 PID → examples of how property PID is used

execute_sparql(SPARQL): https://query.wikidata.org:

 SPARQL → result

http://wikidata.org/
http://wikidata.org/
https://www.wikidata.org/wiki/QID
https://www.wikidata.org/wiki/Property:PID
https://query.wikidata.org/

STANFORDLAM

Running Example

STANFORDLAM

search_wikidata("musical instrument")

This step performs Named Entity Disambiguation (NED) with LLM!

Action: search_wikidata

STANFORDLAM

search_wikidata("affiliation")

Action: search_wikidata

STANFORDLAM

Action: get_wikidata_entry

get_wikidata_entry
("Q98035717")

STANFORDLAM

Action: get_property_examples

get_property_examples("P1416")

Affiliation (P1416)

Raoul Bott -> Institute for Advanced Study
Hannah Sipe -> University of Washington School
of Environmental and Forest Sciences

STANFORDLAM

Action: execute_sparql

STANFORDLAM

Agentic Approach for Knowledge Bases

User Query

Agent

thinks
Issues actions

Observes

results

Agent response

ReAct: Synergizing Reasoning and Acting in Language Models, Yao et al, ICLR 2023

STANFORDLAM

 The SPINACH Agent

• Imitates what the user does with an agentic approach

• Uses the full expressiveness of SPARQL for exploration

• For N steps:

• Given the history of agent actions,

• Prompt LLM to generate a thought and an action

• Execute an action against the KG

• Add an observation to the history

Main agent code available in this file,

implemented with LangGraph (part of LangChain) in Python

https://github.com/stanford-oval/spinach/blob/main/spinach_agent/part_to_whole_parser.py

STANFORDLAM

Zero-Shot LLM Policy Prompt
instruction

Your task is to write a Wikidata SPARQL query to answer the given question. Follow a step-by-step process:

1. Start by constructing very simple fragments of the SPARQL query.

2. Execute each fragment to verify its correctness. Adjust as needed based on your observations.

3. Confirm all your assumptions about the structure of Wikidata before proceeding.

4. Gradually build the complete SPARQL query by adding one piece at a time.

5. Do NOT repeat the same action, as the results will be the same.

6. The question is guaranteed to have an answer in Wikidata, so continue until you find it.

7. If the user is asking a True/False question with only one answer, use ASK WHERE to fetch a True/False answer at the very end.

8. In the final SPARQL projections, do not only ask for labels.

 Ask for the actual entities whenever needed (e.g. instead of doing `SELECT xLabel`, do `SELECT x`).

9. If the final result was contained in last round's `get_wikidata_entry` and you are ready to stop,

 use ̀ execute_sparql` and generate a SPARQL to retrieve that results.

Form exactly one "Thought" and perform exactly one "Action", then wait for the "Observation".

Possible actions are:

- get_wikidata_entry(QID): Retrieves all outgoing edges (linked entities, properties, and qualifrs) of a specified Wikidata entity using its QID.

- search_wikidata(string): Searches Wikidata for entities or properties matching the given string.

- get_property_examples(PID): Provides a few examples demonstrating the use of the specified property (PID) in Wikidata.

- execute_sparql(SPARQL): Runs a SPARQL query on Wikidata and returns a truncated result set for brevity.

- stop(): Marks the last executed SPARQL query as the final answer and ends the process.

https://github.com/stanford-oval/spinach/blob/main/spinach_agent/prompts/controller.prompt
https://github.com/stanford-oval/spinach/blob/main/spinach_agent/prompts/controller.prompt
https://github.com/stanford-oval/spinach/blob/main/spinach_agent/prompts/controller.prompt

STANFORDLAM

input

{% for i in range(0, conversation_history|length) %}

User Question: {{ conversation_history[i]["question"] }}

{% for j in range(0, conversation_history[i]["action_history"]|length) %}

{{ conversation_history[i]["action_history"][j] }}
{% endfor %}

--

{% endfor %}

User Question: {{ question }}

{% if action_history %}

{% for i in range(0, action_history|length) %}

{{ action_history[i] }}
{% endfor %}

{% endif %}

Output one "Thought" and one "Action":

Templates written in jinja syntax

https://jinja.palletsprojects.com/en/3.1.x/

STANFORDLAM

Problem: Looping
• SPINACH needs to explore different queries during iteration

• Run policy prompt with temperature 1.0

• LLM can fall into a loop of executing the same action

execute_sparql(“SELECT ?x WHERE {wd:Q1 wdt:P1 ?x.}”)

Did not find any results

execute_sparql(“SELECT ?x WHERE {wd:Q1 wdt:P1 ?x.}”)

Did not find any results

execute_sparql(“SELECT ?x WHERE {wd:Q1 wdt:P1 ?x.}”)

…

Quiz: Why would this happen?
Quiz: How to solve this?

STANFORDLAM

Solution: Detecting & Stopping Loops

• If repeated actions are found,

• Agent resets exploration state to the one before the repetition

• Continues from there

• We cap number of actions by either:

• 15 actions after taking “rollbacks” into account

• a total of 30 actions including “rollbacks”

STANFORDLAM

The SPINACH Agent in Action (1)

STANFORDLAM

The SPINACH Agent in Action (2)

STANFORDLAM

The SPINACH Agent in Action (3)

STANFORDLAM

P1303: instrument

P1416: affiliation

P69: educated at

Q98035717:
University of Washington

School of Music

Q219563:

University of Washington

STANFORDLAM

Outline

• Knowledge Graphs – aka Knowledge Bases (KB)

• Challenges of KBQA (KB Question Answering)

• Prior Approaches

• The Agentic Approach for KBs

• Dataset and Evaluation

• Agentic Approach to SQL Databases

• Computational Thinking for KB Queries

STANFORDLAM

KBQA Data Sets (Crowdsourcing)

• Datasets with natural questions originally collected through

search engines or crowdsourcing

• WebQuestionSP (Yih et al., 2016)

• QALD datasets (Usbeck et al., 2017, 2018, 2023; Perevalov et al., 2022)

• RuBQ (Korablinov and Braslavski, 2020)

• SimpleQuestions (Bordes et al., 2015)

Simple Queries

 Quiz: Is this OK?

STANFORDLAM

KBQA Data Sets (Synthesized)
• Datasets with synthetically generated logical forms & questions

• ComplexWebQuestions (Talmor and Berant, 2018)

• GrailQA (Gu et al., 2021)

• KQA Pro (Cao et al., 2022a)

• CFQ (Keysers et al., 2020)

• CWQ (Talmor and Berant, 2018)

• LC-QuAD2 (Dubey et al., 2019)

Limited NL variety

& Unique query patterns

STANFORDLAM

Wikidata SPARQL
Forum
https://m.wikidata.org/wiki/Wikidata:Request_a_query

Initial Question

Response with

SPARQL

Refined SPARQL

Acknowledgement

• To help Wikidata users write

SPARQL queries

• People exchange

conversations on how to

write SPARQLs

• The queries are real,

but difficult

https://m.wikidata.org/wiki/Wikidata:Request_a_query

STANFORDLAM

The SPINACH Dataset

From discussions on Wikidata Request Query forum (July 2016 – May 2024)

• From the natural (real) SPARQL, we annotate its corresponding English question

• Disambiguate entities and properties

• Natural verbalizations

• Accurately capturing optional clauses and projections

• We removed these categories of clauses:

• Wikimedia presentation queries

• Questions on complex SPARQL code

• Queries obscured by optimizations

• Formatting clauses

• 155 validation examples and 165 test examples
 Quiz: These numbers seem small.

 Are they enough?

STANFORDLAM

SPINACH dataset:
natural questions + complex logical forms

SPINACH dataset: natural questions + complex logical forms

STANFORDLAM

Results on the SPINACH Dataset

Fine-tuned LLMs Know More, Hallucinate Less with Few-Shot Sequence-to-Sequence Semantic Parsing over Wikidata, Xu et al, EMNLP 2023

Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph, Sun et al, ICLR 2023

Fine-tuned model ->

SOTA. Ask LLM to walk the graph ->

SPINACH agent achieves considerable gain over prior approaches!

See calculation of F1 for tables in the Appendix of this lecture

STANFORDLAM

Results on Other Datasets

Zero-shot ICL (in-context learning) achieves new SOTA on QALD Wikidata datasets

Comes within 1.6 F1 on WikiWebQuestions to WikiSP, fine-tuned on WikiWebQuestions

STANFORDLAM

The Importance of Agent Actions

All actions make meaningful contribution to the agent performance

STANFORDLAM

Live Demo:

https://spinach.genie.stanford.edu/

Code:

https://github.com/stanford-oval/spinach

As a bot on Wikidata:

https://www.wikidata.org/wiki/User:SpinachBot

https://spinach.genie.stanford.edu/
https://github.com/stanford-oval/spinach
https://github.com/stanford-oval/spinach
https://github.com/stanford-oval/spinach
https://www.wikidata.org/wiki/User:SpinachBot

STANFORDLAM

Error Analysis

40%: Property-related problems:

 Fails to fetch the correct property or incorrectly uses a property

30%: Complicated SPARQL:

 Fails to write complex SPARQL to fetch results.

15%: Not enough exploration:

 Insufficient exploration within limit of actions allowed.

10%: Inaccurate semantic parsing:

 LLM injecting an extra clause.

 5%: Formatting issues

STANFORDLAM

SPINACH Deployed on Wikidata Forum

• 600+ conversations in the wild: all real and hard queries!

• 198 randomly selected conversations

• Success rate: 78% (154 cases)

• Failures: 22% (44 cases)

• 50% (22 cases) similar to queries in the dataset

• 50% (22 cases) are not similar:

underspecified queries, query correction/modification,

string manipulation

https://m.wikidata.org/wiki/Wikidata:Request_a_query

A higher success rate in practice!

https://m.wikidata.org/wiki/Wikidata:Request_a_query

STANFORDLAM

Outline

• Knowledge Graphs – aka Knowledge Bases (KB)

• Challenges of KBQA (KB Question Answering)

• Prior Approaches

• The Agentic Approach for KBs

• Dataset and Evaluation

• Agentic Approach to SQL Databases

• Computational Thinking for KB Queries

https://www.nytimes.com/2024/04/17/us/hawaii-
contractors-campaign-donations.html

https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html

https://www.nytimes.com/2024/04/17/us/hawaii-
contractors-campaign-donations.html

100+ hours
for data journalists with experience

https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html

Increase Truthful Reporting
in Journalism

Can Journalists Just TALK to Data

Without Needing a Data Scientist?

STANFORDLAM

Shicheng Liu1 Harold Triedman4 Leah Harrison3 Eryn Davis3

Sajid Omar Farook1 Alexander Spangher5 Cheryl Phillips2 Derek Willis6

Serdar Tumgoren2 Monica S. Lam1

1 Stanford CS 2 Stanford Big Local News 3Columbia Journalism School
4 Cornell Tech 5 USC 6 University of Maryland

STANFORDLAM

STANFORDLAM

DataTalk: Campaign Finance

• Chat with publicly available

campaign finance data

• Based on

• Federal Election Commission

(FEC)

• OpenElections.org data

• 36 Large, relational databases

Data Tables

STANFORDLAM

Agentic Approach for Knowledge Bases

User Query

Agent

Graph Knowledge Base actions:

SPINACH agent

Relational Database actions:

DataTalk agent

Agent response

thinks
Issues actions

Observes

results
get_tables()
retrieve_tables_details([table1, table2, …])
execute_SQL(SQLquery)
entity_linking(search_str, [column1, column2, …])
location_linking(search_str)
stop()

search_wikidata(string)
get_wikidata_entry(QID)
get_property_examples(PID)
execute_sparql(SPARQL)
stop()

STANFORDLAM

Real-World Experience with Journalists

• Used by journalists and journalism students

• Agentic approach is necessary

• Too many tables: need to retrieve knowledge about the tables

• Interpretation of results are difficult

• Lots of caveats on the data

(e.g. contributions below $200 not included in some tables)

• Requires experts on the data

• Need to capture the expertise just like an apprentice

• More in the next class

STANFORDLAM

Outline

• Knowledge Graphs – aka Knowledge Bases (KB)

• Challenges of KBQA (KB Question Answering)

• Prior Approaches

• The Agentic Approach for KBs

• Dataset and Evaluation

• Agentic Approach to SQL Databases

• Computational Thinking for KB Queries

STANFORDLAM

Agentic Approach

• Incremental decision procedure

• Decides on the action based on

observations

• Problems

• May loop infinitely without forward

progress

• Does not plan actions involving

multiple steps

User Query

Agent

thinks
Issues actions

Observes

results

Agent response

STANFORDLAM

LLMs Lack Computational Thinking (CT)
Example: Composition

Question OpenAI-03 Model

Who is the wife of Benjamin Harrison? Caroline Harrison

Who is the grandfather of Caroline Harrison? George Scott

Who's the grandfather of the wife of Benjamin Harrison? Dr. John Witherspoon

Dataset: LLM knows every hop of the question

Algorithmic Recursion

& Decomposition
Framework

Primitive?

Solve-Primitive

Decompose

CT Engine

Problem

statement

Input

outputLLM Call

STANFORDLAM

A Computational Thinking (CT) Engine

• An algorithmic engine

• Manages recursion

• Calls LLM with the relevant information

• LLM functions

• Decomposition agent

• Evaluation if the task should be decomposed

• Actions for the task

• Operators to combine subtasks

STANFORDLAM

Decomposition
Agent

Task
Prompt

Pre-Defined
Action Space

Generate &
Execute SQL

Is atomic?

Task
PromptTask

PromptTask
Prompt

Action

Join
Operator

Compose
Operator

Execution Flow

Subtasks

Decomposition Agent

STANFORDLAM

Semantic Parsing Actions for SQL

Describe
Columns

Get
Background
Knowledge

Sketch the
Parse

Generate &
Execute SQL

Query → List of columns and their description

Describe columns with all the information including type and its values

Query → A dictionary of detailed explanation of each related knowledge

Using a retrieval-based function call

Query → A natural language sketch

Elaborate on the current query, and sketch the skeleton of the query

(what columns to use? With what logic?) with reasoning

Query → SQL + execution result

Generate and execute the SQL query based on all info gathered

STANFORDLAM

Across Different Query Languages
SPARQL Cypher

Describe
Columns

Get
Background
Knowledge

Sketch the

Parse

Generate &
Execute SQL

Search
Wikidata

Get Entity QID

Get Property
PID

Generate &
Execute
SPARQL

Describe
Related
Schema

Generate &
Execute
Cypher

SQL

STANFORDLAM

Join Operator

1. Parallel

2. Sequential

Execute
Task 1

Execute
Task 2

Execute
Task 1

Execute
Task 2

Compose
Operator

Join

Compose

Operators to Combine Subtasks

STANFORDLAM

Task
What were the

monthly add-to-
cart/purchase

conversion

rates?

Task T1
What were
the monthly
add-to-cart

number?

Task T2
What were
the monthly

purchase
number?

Join
Return

result = T1/T2

Task T1.1
What is the correct

column for
“monthly add-to-

card number”

Task T1.2
Use the column to
calculate “What
were the monthly

add-to-cart

number?”

Compose
Run T1.1 first,

then use T1.1 as the
column for T1.2

Describe Column

Generate &
Execute SQL

Generate &
Execute SQL

Final
Result

Decomposition
Agent

Compose/Join
Operators

Pre-defined
Action

SQL Example

STANFORDLAM

Task
Who are the

doctoral
advisors of
Leonhard

Euler, and
their advisors?

Task T1
Who are the

doctoral
advisors of
Leonhard

Euler?

Task T2
Who are the
advisors of

the list?

Compose
Replace the
list with result

Task T1.1
Get the QID of

‘Leonhard Euler’

Task T1.3
Leonhard Euler: QID

doctoral advisors: PID
Who are the

doctoral advisors of

Leonhard Euler

Compose
Replace QID
with the result

Get Entity QID

Get Property PID

Generate
& Execute

SPARQL

Task T1.2
Get the closest

property PID that QID
has to ‘doctoral

advisors’
Compose

Replace QID,
PID with the

result

Generate &
Execute SPARQL

SPARQL Example

Decomposition
Agent

Compose/Join
Operators

Pre-defined
Action

STANFORDLAM

• 632 real-world enterprise text-to-SQL workflow problems

• Contains over 1,000 columns

• Stored in local or cloud databases (BigQuery and Snowflake)

• Challenges

• Complex SQL workflow environments

• Process extremely long contexts

• Perform intricate reasoning

• Need multiple SQL queries with diverse operations >=100 lines

STANFORDLAM

Spider 2.0 Workflow

Spider2

Lei, Fangyu, et al. "Spider 2.0: Evaluating language models on real-world enterprise text-to-sql workflows." arXiv preprint arXiv:2411.07763 (2024).

STANFORDLAM

Calculate the change in the number of living trees of each fall color in New York City from 1995 to 2015

by computing, for each tree species, the difference between the number of trees not marked as dead in 1995

and the number of trees alive in 2015,

matching species by the uppercase form of their scientific names from the tree_species table.

Then, group the species by their fall color

and sum these differences to determine the total change in the number of trees for each fall color.

From the two census tables, count living trees for each species in 1995 and 2015, where:

- 1995 = rows whose status is NOT "Dead".

- 2015 = rows whose status is "Alive".

Match the species in both censuses to the tree_species table

 by comparing the upper-case form of spc_latin / species_scientific_name.

For every species that can be matched, produce one row containing:

(a) the upper-case scientific name,

(b) its fall_color taken from tree_species,

(c) cnt_1995 (living trees in 1995),

(d) cnt_2015 (living trees in 2015) and

(e) change = cnt_2015 - cnt_1995.

The result is an intermediate table of per-species changes with the species' fall color already attached.

Using the intermediate table produced above, group the rows by fall_color and sum the change column to

obtain the total net change in the number of living trees between 1995 and 2015 for each fall color.

SELECT
 fall_color,
 SUM(change) AS total_net_change
FROM s̀pider-471218.temp_recursive_parser.multitable_subquery_depth_0_20250924_215719_0d4439c4`
GROUP BY
 fall_color
ORDER BY
 total_net_change DESC

SELECT
UPPER(spc_latin) AS sci_name,
COUNT(*) AS cnt_1995

FROM `bigquery-public-data.new_york.tree_census_1995`
WHERE spc_latin IS NOT NULL

AND status <> 'Dead'
GROUP BY sci_name

),
cnt_2015 AS (

SELECT
UPPER(spc_latin) AS sci_name,
COUNT(*) AS cnt_2015

FROM `bigquery-public-data.new_york.tree_census_2015`
WHERE spc_latin IS NOT NULL

AND status = 'Alive'
GROUP BY sci_name

),
combined AS (

SELECT
COALESCE(c95.sci_name, c15.sci_name) AS sci_name,
COALESCE(c95.cnt_1995, 0) AS cnt_1995,
COALESCE(c15.cnt_2015, 0) AS cnt_2015

FROM cnt_1995 c95
FULL OUTER JOIN cnt_2015 c15

ON c95.sci_name = c15.sci_name
)
SELECT

cmb.sci_name,
ts.fall_color,
cmb.cnt_1995,
cmb.cnt_2015,
cmb.cnt_2015 - cmb.cnt_1995 AS change

FROM combined cmb
JOIN `bigquery-public-data.new_york.tree_species` ts

ON cmb.sci_name = UPPER(ts.species_scientific_name)
ORDER BY cmb.sci_name;

Computational Thinking on an Example in Spider 2.0

STANFORDLAM

Baseline1: SOTA of Published Systems: Reforce Agent

Deng et al., ReFoRCE: A Text-to-SQL Agent with Self-Refinement, Format Restriction, and Column Exploration, June 2025, https://arxiv.org/abs/2502.00675

STANFORDLAM

Baseline 2: Computation Thinking (CT) Prompt

• Without the CT Engine

• Prompt LLM to

"decompose the task and generate the SQL accordingly”

Using the given set of actions

STANFORDLAM

Preliminary Result

Method Base Model Execution Accuracy @ 1

ByteBrain-Agent Unknown 67.6

ReForce GPT o3 62.9

CT Prompt without an Engine GPT-5 41.2

CT Engine(ours) GPT o3 69.6

Method Base Model Execution Accuracy @ 1

ReForce GPT o3 55.2

CT Prompt without an Engine GPT-5 31.9

CT Engine(ours) GPT o3 55.7

Spider2-Snow

Spider2-Lite

STANFORDLAM

Conclusions

• Semantic Parsing for real KB is hard

• Natural language access to KB is important

• Wikidata users, FEC journalists, enterprises

• Agentic approaches

• ReAct (Reason + action)

• Computational thinking

Appendix
Calculating F1 for Tables

STANFORDLAM

The F1 metric

TP: True Positive

FP: False Positive

FN: False Negative

STANFORDLAM

But: traditional EM & F1does not work

what are the top 3 counties with most people in
South Dakota?

Minnehaha

County

206,930

Pennington

County

115,903

Lincoln County 73,238

Predicted Gold

Minnehaha

County

Pennington

County

Lincoln County

Question: Do we want to penalize this column?

STANFORDLAM

New Metric: row-major EM & F1
1. Assignment of rows

Q5994 piano 99

Q8350 trombone 11

Q8338 trumpet 8

Predicted Gold

Q8350 11

Q5994 99

Q1467690 2

Q83509 1

Assigned

rows

Step 1: Run an assignment algorithm to maximize total overlap (recall)

Without penalizing extra columns in prediction

𝑦𝑖 a row in gold

𝑦′𝑖 assigned row of 𝑦𝑖 in prediction

Matching rows with 0 recall is not allowed

STANFORDLAM

New Metric: row-major EM & F1
2. True positives

Q5994 piano 99

Q8350 trombone 11

Q8338 trumpet 8

Predicted Gold

Q8350 11

Q5994 99

Q1467690 2

Q83509 1

Assigned

rows

Step 2: Calculate true positives as sum of recalls in assigned rows

= 2

STANFORDLAM

New Metric: row-major EM & F1
3. false positives

Q5994 piano 99

Q8350 trombone 11

Q8338 trumpet 8

Predicted Gold

Q8350 11

Q5994 99

Q1467690 2

Q83509 1

Assigned

rows

False

Positives

= 1

Step 3: Each unassigned row in prediction counts as a false positive

𝑛′: number of rows in prediction

𝑟: number of rows in matching

STANFORDLAM

New Metric: row-major EM & F1
4. false negatives

Q5994 piano 99

Q8350 trombone 11

Q8338 trumpet 8

Predicted Gold

Q8350 11

Q5994 99

Q1467690 2

Q83509 1

Assigned

rows

= 2

False

Negatives

False

Positives

Step 4: Each unassigned row in gold counts as a false negative

plus sum of 1– recall in the matching (0 in this case)

𝑛: number of rows in gold

𝑟: number of rows in matching

STANFORDLAM

New Metric: row-major EM & F1
5. F1

Q5994 piano 99

Q8350 trombone 11

Q8338 trumpet 8

Predicted Gold

Q8350 11

Q5994 99

Q1467690 2

Q83509 1

Assigned

rows

False

Negatives

False

Positives

Step 5: Calculate F1 with the usual formula

𝐹1 =
2𝑡𝑝

2𝑡𝑝+𝑓𝑛+𝑓𝑝
 = 0.66

	Default Section
	Slide 1: Stanford CS224v Course Conversational Virtual Assistants with Deep Learning Lecture 10 Agentic AI for Knowledge Base Queries
	Slide 2
	Slide 3

	Knowledge Graphs
	Slide 4: Outline
	Slide 5: A Knowledge Graph
	Slide 6: Wikidata: The Largest Live Knowledge Graph
	Slide 7: Wikidata Representation – a RDF graph
	Slide 8: Running Example: Music Instruments Played
	Slide 9: A Subset of the Knowledge Graph in Wikidata
	Slide 10
	Slide 11: The Power of WikiData
	Slide 12: Why Querying Wikidata with SPARQL is Difficult

	Prior work
	Slide 13: Outline
	Slide 14: Previous Work Knowledge Base Query Answering (KBQA)
	Slide 15: 1. Semantic Parsing with Fine-Tuning
	Slide 16: 2. Semantic Parsing with Prompting LLMs
	Slide 17: 3. Subgraph Retrieval (No SPARQL)
	Slide 18: 4. LLM-Based Graph Exploration

	Agentic Approach
	Slide 19: Outline
	Slide 20: SPINACH: SPARQL-Based Information Navigation for Challenging Real-World Questions
	Slide 21: Https://spinach.genie.stanford.edu
	Slide 22: v. Combines the Best of Semantic Parsing (SPARQL), Subgraph Retrieval, & LLMs
	Slide 23: How a Human Expert Write a SPARQL Query
	Slide 24: Actions Useful for Writing SPARQL
	Slide 25: Running Example
	Slide 26: Action: search_wikidata
	Slide 27: Action: search_wikidata
	Slide 28: Action: get_wikidata_entry
	Slide 29: Action: get_property_examples
	Slide 30: Action: execute_sparql
	Slide 31: Agentic Approach for Knowledge Bases
	Slide 32: The SPINACH Agent
	Slide 33: Zero-Shot LLM Policy Prompt
	Slide 34
	Slide 35: Problem: Looping
	Slide 36: Solution: Detecting & Stopping Loops
	Slide 37: The SPINACH Agent in Action (1)
	Slide 38: The SPINACH Agent in Action (2)
	Slide 39: The SPINACH Agent in Action (3)
	Slide 40

	KBQA Dataset
	Slide 41: Outline
	Slide 42: KBQA Data Sets (Crowdsourcing)
	Slide 43: KBQA Data Sets (Synthesized)
	Slide 44: Wikidata SPARQL Forum https://m.wikidata.org/wiki/Wikidata:Request_a_query
	Slide 45: The SPINACH Dataset
	Slide 46: SPINACH dataset: natural questions + complex logical forms

	Evaluation
	Slide 47: Results on the SPINACH Dataset
	Slide 48: Results on Other Datasets
	Slide 49: The Importance of Agent Actions
	Slide 50:
	Slide 51: Error Analysis
	Slide 52: SPINACH Deployed on Wikidata Forum

	Agentic on SQL
	Slide 53: Outline
	Slide 54
	Slide 55: 100+ hours for data journalists with experience
	Slide 56: Increase Truthful Reporting in Journalism
	Slide 57
	Slide 58
	Slide 59: DataTalk: Campaign Finance
	Slide 60: Agentic Approach for Knowledge Bases
	Slide 64: Real-World Experience with Journalists
	Slide 65

	Computational Thinking
	Slide 66: Outline
	Slide 67: Agentic Approach
	Slide 68: LLMs Lack Computational Thinking (CT) Example: Composition
	Slide 69: A Computational Thinking (CT) Engine
	Slide 70: Decomposition Agent
	Slide 71: Semantic Parsing Actions for SQL
	Slide 72: Across Different Query Languages
	Slide 73: Operators to Combine Subtasks
	Slide 74: SQL Example
	Slide 75: SPARQL Example
	Slide 76
	Slide 77: Spider 2.0 Workflow
	Slide 78
	Slide 79: Baseline1: SOTA of Published Systems: Reforce Agent
	Slide 80: Baseline 2: Computation Thinking (CT) Prompt
	Slide 81: Preliminary Result
	Slide 82: Conclusions
	Slide 83: Appendix
	Slide 84: The F1 metric
	Slide 85: But: traditional EM & F1does not work
	Slide 86: New Metric: row-major EM & F1 1. Assignment of rows
	Slide 87: New Metric: row-major EM & F1 2. True positives
	Slide 88: New Metric: row-major EM & F1 3. false positives
	Slide 89: New Metric: row-major EM & F1 4. false negatives
	Slide 90: New Metric: row-major EM & F1 5. F1

