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A Knowledge Graph
• A lot of information cannot be represented in tables

• Knowledge graph is also known as a semantic web

• Nodes are entities

• Edges are relationships
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Wikidata: The Largest Live Knowledge Graph

• Stats: 

• 15B facts (1B more triples per year)

• 100M entities

• 10K properties (3000 of interest)

• 25K contributors

• All entities in Wikipedia are in Wikidata

• Wikidata contains many more entities
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Wikidata Representation – a RDF graph

• Representation: RDF triples

• Nodes are entities (represented by unique QIDs)

• There are many entities with exactly the same name

• Same ID across all Wikipedia in all languages 

• Edges are properties (represented by unique PIDs)

SELECT ?x WHERE 

{ wd:Q41506    wdt:P112     ?x. }

Stanford Founded by

Who founded Stanford? 

Query with SPARQL

A natural language interface can greatly expand access!c
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Running Example: Music Instruments Played 
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Edward Rutschman
(Q107705263)

Hokyung Yang
(Q107851778)

Gwynne Kuhner Brown
(Q106627792)

Chad Kirby
(Q107522681)

University of Washington School of Music
(Q98035717)

University of Washington
(Q219563)

Trombone
(Q8350)

Piano
(Q5994)

Affiliation
(P1416)

Educated At
(P69)

Instrument
(P1303)

A Subset of the Knowledge Graph in Wikidata

Zakir Hussain
(Q144719)

Percussion instrument
(Q133163)

Tabla
(Q213100)
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P1303: instrument

P1416: affiliation

P69:     educated at

Q98035717: 
University of Washington 

School of Music

Q219563: 

University of Washington
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The Power of WikiData

• SPARQL allows relational algebra operations 

across the entire knowledge graph

• Running example needs: filters, projections, joins, counts …

• Query optimizations

• Dataset for research in 

Mathematics, Biology, Education, Social Sciences, Linguistics, .. 

Quiz: Can we represent the data as tables?
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Why Querying Wikidata with SPARQL is Difficult

• No fixed schema: 

• SPARQL and Neo4j are two most popular knowledge graph representations

• Neo4j is typed – it has a fixed schema.  All nodes of the same type have the same set of properties.

• SPARQL is untyped – designed for extension across diverse fields (Adding properties need permission). 

• Many properties (3000): Hard to memorize all the properties

• Many similar properties: 

• Often unclear which property or entity should be used

• Questions on locations: “Where did Isaac Newton live?” “Where is Salesforce?” 

• Possible properties – depends on what is available for the node

• administrative territorial entity

• residence, state, country, place of birth, place of death

• headquarters location, location of formation

• Need to look at a node’s properties to determine the right SPARQL

• Queries can be complex
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Previous Work

Knowledge Base Query Answering (KBQA)

S EM AN T I C  P AR SER :  G EN ERA T I NG  S P AR QL

( F I N E - T U NI N G ,  L LM )

S U BGR AP H  T RA VER SAL :  T RA VER S I NG  T H E  K NO W LEDG E  G RA P H

W I T H OU T  U S I N G  S P A R QL
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Semantic Parser

(Llama fine-tuned with 3K samples)

From Wikidata, the filming location of 

‘A Bronx Tale’ includes New Jersey 
and New York

Where did Bronx take place?

GPT-3

GPT-3 guesses that the movie 
took place in Bronx, New York

Entity Linker

(‘A Bronx Tale’, ‘Q1130705’)

No 

Response

1. Semantic Parsing with Fine-Tuning

Response

Silei Xu et al. Fine-tuned LLMs Know More, Hallucinate Less with Few-Shot Sequence-to-Sequence Semantic Parsing over Wikidata.. EMNLP 2023 
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2. Semantic Parsing with Prompting LLMs

• Recall: Yelp semantic parse with LLM

• LLMs know the syntax of SQL

• Generates accurate SQL queries for simple tables directly

• LLMs know the syntax of SPARQL 

• And just a few PIDs and QIDs of entities

• Cannot parse “research questions” 

(with many joins, group-bys, ranks, …)
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3. Subgraph Retrieval (No SPARQL)

Quiz: Can this provide the full generality of SPARQL

Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering (Zhang et al., ACL 2022)

Retrieve a part of the graph based on a question

Quiz: Can this find the tallest mountain? 

https://aclanthology.org/2022.acl-long.396
https://aclanthology.org/2022.acl-long.396
https://aclanthology.org/2022.acl-long.396
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4. LLM-Based Graph Exploration

Explore a sub-graph by walking the graph one edge at a time

Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph, Sun et al, ICLR 2024

Quiz: Can this provide the full generality of SPARQL
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SPINACH: 

SPARQL-Based Information Navigation for 

Challenging Real-World Questions

Shicheng Liu*     Sina J. Semnani*

Harold Triedman1   Jialiang Xu   Isaac Dan Zhao     Monica S. Lam
Stanford University

* Equal contribution
1 Cornell Tech;  Work conducted while at the Wikimedia Foundation

EMNLP 2024 
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Https://spinach.genie.stanford.edu
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v.       Combines the Best of Semantic Parsing (SPARQL), 
                                                 Subgraph Retrieval, & LLMs 

• Semantic parsing to SPARQL: 

• Expressiveness, implementation/query optimizations

• Graph retrieval: exam actual properties in the data 

• LLM agentic approach combines the 2 above                 

• If human experts can do it: we can do it!

• Automate the human expert’s approach

• Humans don’t memorize the nodes and properties

     → we don’t need fine-tuning! Just use In-Context Learning 



STANFORDLAM

How a Human Expert Write a SPARQL Query

1. Start by writing simple SPARQL queries;

2. Look up Wikidata entity or property pages when needed

• To understand the structure of the knowledge graph 

• Check what properties exist for a node

3. Add new SPARQL clauses to build towards the final SPARQL

LLM Agent weaves together 

- Knowledge inquiry

- Query writing

- Execution and evaluation of results (subgraph retrieval)
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Actions Useful for Writing SPARQL

Provided by Wikidata

search_wikidata(string):         http://wikidata.org (search bar): 

           text → returns QIDs and PIDs

get_wikidata_entry(QID):   https://www.wikidata.org/wiki/QID:<QID>

           QID → Wikidata page for entity

get_property_examples(PID): https://www.wikidata.org/wiki/Property:<PID>:

            PID → examples of how property PID is used

execute_sparql(SPARQL):       https://query.wikidata.org:

            SPARQL → result

http://wikidata.org/
http://wikidata.org/
https://www.wikidata.org/wiki/QID
https://www.wikidata.org/wiki/Property:PID
https://query.wikidata.org/
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Running Example
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search_wikidata("musical instrument")

This step performs Named Entity Disambiguation (NED) with LLM!

Action: search_wikidata
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search_wikidata("affiliation")

Action: search_wikidata
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Action: get_wikidata_entry 

get_wikidata_entry 
("Q98035717")
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Action: get_property_examples

get_property_examples("P1416")

Affiliation (P1416)

Raoul Bott -> Institute for Advanced Study
Hannah Sipe -> University of Washington School
of Environmental and Forest Sciences
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Action: execute_sparql



STANFORDLAM

Agentic Approach for Knowledge Bases

User Query

Agent

thinks
Issues actions

Observes 

results

Agent response

ReAct: Synergizing Reasoning and Acting in Language Models, Yao et al, ICLR 2023
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     The SPINACH Agent

• Imitates what the user does with an agentic approach

• Uses the full expressiveness of SPARQL for exploration

• For N steps:

• Given the history of agent actions, 

• Prompt LLM to generate a thought and an action

• Execute an action against the KG

• Add an observation to the history

Main agent code available in this file,

implemented with LangGraph (part of LangChain) in Python 

https://github.com/stanford-oval/spinach/blob/main/spinach_agent/part_to_whole_parser.py
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Zero-Shot LLM Policy Prompt
# instruction

Your task is to write a Wikidata SPARQL query to answer the given question. Follow a step-by-step process:

1. Start by constructing very simple fragments of the SPARQL query.

2. Execute each fragment to verify its correctness. Adjust as needed based on your observations.

3. Confirm all your assumptions about the structure of Wikidata before proceeding.

4. Gradually build the complete SPARQL query by adding one piece at a time.

5. Do NOT repeat the same action, as the results will be the same.

6. The question is guaranteed to have an answer in Wikidata, so continue until you find it.

7. If the user is asking a True/False question with only one answer, use ASK WHERE to fetch a True/False answer at the very end.

8. In the final SPARQL projections, do not only ask for labels. 

    Ask for the actual entities whenever needed (e.g. instead of doing `SELECT xLabel`, do `SELECT x`).

9. If the final result was contained in last round's `get_wikidata_entry` and you are ready to stop, 

    use ̀ execute_sparql` and generate a SPARQL to retrieve that results.

Form exactly one "Thought" and perform exactly one "Action", then wait for the "Observation".

Possible actions are:

- get_wikidata_entry(QID): Retrieves all outgoing edges (linked entities, properties, and qualifrs) of a specified Wikidata entity using its QID.

- search_wikidata(string): Searches Wikidata for entities or properties matching the given string.

- get_property_examples(PID): Provides a few examples demonstrating the use of the specified property (PID) in Wikidata.

- execute_sparql(SPARQL): Runs a SPARQL query on Wikidata and returns a truncated result set for brevity.

- stop(): Marks the last executed SPARQL query as the final answer and ends the process.

https://github.com/stanford-oval/spinach/blob/main/spinach_agent/prompts/controller.prompt
https://github.com/stanford-oval/spinach/blob/main/spinach_agent/prompts/controller.prompt
https://github.com/stanford-oval/spinach/blob/main/spinach_agent/prompts/controller.prompt
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# input

{% for i in range(0, conversation_history|length) %}

User Question: {{ conversation_history[i]["question"] }}

{% for j in range(0, conversation_history[i]["action_history"]|length) %}

{{ conversation_history[i]["action_history"][j] }}
{% endfor %}

--

{% endfor %}

User Question: {{ question }}

{% if action_history %}

{% for i in range(0, action_history|length) %}

{{ action_history[i] }}
{% endfor %}

{% endif %}

Output one "Thought" and one "Action":

Templates written in jinja syntax 

https://jinja.palletsprojects.com/en/3.1.x/
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Problem: Looping
• SPINACH needs to explore different queries during iteration

• Run policy prompt with temperature 1.0

• LLM can fall into a loop of executing the same action

execute_sparql(“SELECT ?x WHERE {wd:Q1 wdt:P1 ?x.}”)

Did not find any results

execute_sparql(“SELECT ?x WHERE {wd:Q1 wdt:P1 ?x.}”)

Did not find any results

execute_sparql(“SELECT ?x WHERE {wd:Q1 wdt:P1 ?x.}”)

…

Quiz: Why would this happen?
Quiz: How to solve this?
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Solution: Detecting & Stopping Loops 

• If repeated actions are found, 

• Agent resets exploration state to the one before the repetition

• Continues from there

• We cap number of actions by either:

• 15 actions after taking “rollbacks” into account

• a total of 30 actions including “rollbacks”
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The SPINACH Agent in Action (1)
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The SPINACH Agent in Action (2)



STANFORDLAM

The SPINACH Agent in Action (3)
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P1303: instrument

P1416: affiliation

P69:     educated at

Q98035717: 
University of Washington 

School of Music

Q219563: 

University of Washington
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• Computational Thinking for KB Queries
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KBQA Data Sets (Crowdsourcing)

• Datasets with natural questions originally collected through 

search engines or crowdsourcing

• WebQuestionSP (Yih et al., 2016)

• QALD datasets (Usbeck et al., 2017, 2018, 2023; Perevalov et al., 2022)

• RuBQ (Korablinov and Braslavski, 2020)

• SimpleQuestions (Bordes et al., 2015)

Simple Queries

 Quiz: Is this OK? 
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KBQA Data Sets (Synthesized)
• Datasets with synthetically generated logical forms & questions

• ComplexWebQuestions (Talmor and Berant, 2018)

• GrailQA (Gu et al., 2021)

• KQA Pro (Cao et al., 2022a)

• CFQ (Keysers et al., 2020)

• CWQ (Talmor and Berant, 2018)

• LC-QuAD2 (Dubey et al., 2019)

Limited NL variety

& Unique query patterns
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Wikidata SPARQL 
Forum 
https://m.wikidata.org/wiki/Wikidata:Request_a_query

Initial Question

Response with 

SPARQL

Refined SPARQL

Acknowledgement

• To help Wikidata users write 

SPARQL queries

• People exchange 

conversations on how to 

write SPARQLs

• The queries are real, 

but difficult

https://m.wikidata.org/wiki/Wikidata:Request_a_query
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The SPINACH Dataset

From discussions on Wikidata Request Query forum (July 2016 – May 2024)

• From the natural (real) SPARQL, we annotate its corresponding English question

• Disambiguate entities and properties

• Natural verbalizations

• Accurately capturing optional clauses and projections

• We removed these categories of clauses: 

• Wikimedia presentation queries

• Questions on complex SPARQL code

• Queries obscured by optimizations

• Formatting clauses

• 155 validation examples and 165 test examples
 Quiz: These numbers seem small. 

          Are they enough?
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SPINACH dataset: 
natural questions + complex logical forms

SPINACH dataset: natural questions + complex logical forms
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Results on the SPINACH Dataset

Fine-tuned LLMs Know More, Hallucinate Less with Few-Shot Sequence-to-Sequence Semantic Parsing over Wikidata, Xu et al, EMNLP 2023

Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph, Sun et al, ICLR 2023

Fine-tuned model ->

SOTA. Ask LLM to walk the graph ->

SPINACH agent achieves considerable gain over prior approaches!

See calculation of F1 for tables in the Appendix of this lecture
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Results on Other Datasets

Zero-shot ICL (in-context learning) achieves new SOTA on QALD Wikidata datasets

Comes within 1.6 F1 on WikiWebQuestions to WikiSP, fine-tuned on WikiWebQuestions 
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The Importance of Agent Actions

All actions make meaningful contribution to the agent performance
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Live Demo:

https://spinach.genie.stanford.edu/

Code:

https://github.com/stanford-oval/spinach 

As a bot on Wikidata:

https://www.wikidata.org/wiki/User:SpinachBot 

https://spinach.genie.stanford.edu/
https://github.com/stanford-oval/spinach
https://github.com/stanford-oval/spinach
https://github.com/stanford-oval/spinach
https://www.wikidata.org/wiki/User:SpinachBot
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Error Analysis

40%: Property-related problems: 

         Fails to fetch the correct property or incorrectly uses a property

30%: Complicated SPARQL: 

         Fails to write complex SPARQL to fetch results. 

15%: Not enough exploration: 

         Insufficient exploration within limit of actions allowed.

10%: Inaccurate semantic parsing: 

         LLM injecting an extra clause.

  5%: Formatting issues
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SPINACH Deployed on Wikidata Forum

• 600+ conversations in the wild: all real and hard queries!

• 198 randomly selected conversations

• Success rate: 78% (154 cases)

• Failures: 22% (44 cases)

• 50% (22 cases) similar to queries in the dataset

• 50% (22 cases) are not similar:

underspecified queries, query correction/modification, 

string manipulation

https://m.wikidata.org/wiki/Wikidata:Request_a_query

A higher success rate in practice!

https://m.wikidata.org/wiki/Wikidata:Request_a_query
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https://www.nytimes.com/2024/04/17/us/hawaii-
contractors-campaign-donations.html

https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html


https://www.nytimes.com/2024/04/17/us/hawaii-
contractors-campaign-donations.html

100+ hours
for data journalists with experience

https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html
https://www.nytimes.com/2024/04/17/us/hawaii-contractors-campaign-donations.html


Increase Truthful Reporting
in Journalism 

Can Journalists Just TALK to Data

Without Needing a Data Scientist?  
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Serdar Tumgoren2  Monica S. Lam1

1 Stanford CS   2 Stanford Big Local News   3Columbia Journalism School
4 Cornell Tech  5 USC   6 University of Maryland 
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DataTalk: Campaign Finance

• Chat with publicly available 

campaign finance data

• Based on 

• Federal Election Commission 

(FEC)

• OpenElections.org data

• 36 Large, relational databases

Data Tables
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Agentic Approach for Knowledge Bases

User Query

Agent

Graph Knowledge Base actions:

SPINACH agent

Relational Database actions:

DataTalk agent

Agent response

thinks
Issues actions

Observes 

results
get_tables()
retrieve_tables_details([table1, table2, …])
execute_SQL(SQLquery)
entity_linking(search_str, [column1, column2, …])
location_linking(search_str)
stop()

search_wikidata(string)
get_wikidata_entry(QID)
get_property_examples(PID)
execute_sparql(SPARQL)
stop()
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Real-World Experience with Journalists

• Used by journalists and journalism students

• Agentic approach is necessary

• Too many tables: need to retrieve knowledge about the tables

• Interpretation of results are difficult

• Lots of caveats on the data 

(e.g. contributions below $200 not included in some tables)

• Requires experts on the data

• Need to capture the expertise just like an apprentice

• More in the next class
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Agentic Approach

• Incremental decision procedure

• Decides on the action based on 

observations

• Problems

• May loop infinitely without forward 

progress

• Does not plan actions involving 

multiple steps

User Query

Agent

thinks
Issues actions

Observes 

results

Agent response
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LLMs Lack Computational Thinking (CT)
Example: Composition

Question                  OpenAI-03 Model

Who is the wife of Benjamin Harrison?            Caroline Harrison

Who is the grandfather of Caroline Harrison?           George Scott

Who's the grandfather of the wife of Benjamin Harrison?     Dr. John Witherspoon

Dataset: LLM knows every hop of the question

Algorithmic Recursion

& Decomposition
Framework

Primitive?

Solve-Primitive

Decompose

CT  Engine

Problem 

statement

Input 

outputLLM Call
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A Computational Thinking (CT) Engine

• An algorithmic engine

• Manages recursion

• Calls LLM with the relevant information

• LLM functions

• Decomposition agent

• Evaluation if the task should be decomposed 

• Actions for the task

• Operators to combine subtasks
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Decomposition
Agent

Task 
Prompt

Pre-Defined
Action Space

Generate & 
Execute SQL

Is atomic?

Task 
PromptTask 

PromptTask 
Prompt

Action

Join 
Operator

Compose 
Operator

Execution Flow

Subtasks

Decomposition Agent
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Semantic Parsing Actions for SQL

Describe 
Columns

Get 
Background 
Knowledge

Sketch the 
Parse

Generate & 
Execute SQL

Query → List of columns and their description

Describe columns with all the information including type and its values

Query → A dictionary of detailed explanation of each related knowledge

Using a retrieval-based function call 

Query → A natural language sketch

Elaborate on the current query, and sketch the skeleton of the query 

(what columns to use? With what logic?) with reasoning

Query → SQL + execution result

Generate and execute the SQL query based on all info gathered
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Across Different Query Languages
SPARQL Cypher

Describe 
Columns

Get 
Background 
Knowledge

Sketch the 

Parse

Generate & 
Execute SQL

Search 
Wikidata

Get Entity QID

Get Property 
PID

Generate & 
Execute 
SPARQL

Describe 
Related 
Schema

Generate & 
Execute 
Cypher

SQL
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Join Operator

1. Parallel

2. Sequential

Execute
Task 1

Execute
Task 2

Execute
Task 1

Execute
Task 2

Compose
Operator

Join

Compose

Operators to Combine Subtasks
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Task
What were the 

monthly add-to-
cart/purchase 

conversion 

rates?

Task T1
What were 
the monthly 
add-to-cart 

number?

Task T2
What were 
the monthly 

purchase 
number?

Join
Return 

result = T1/T2

Task T1.1
What is the correct 

column for 
“monthly add-to-

card number”

Task T1.2
Use the column to 
calculate “What 
were the monthly 

add-to-cart 

number?”

Compose
Run T1.1 first, 

then use T1.1 as the 
column for T1.2

Describe Column

Generate & 
Execute SQL

Generate & 
Execute SQL

Final 
Result

Decomposition 
Agent

Compose/Join
Operators

Pre-defined 
Action

SQL Example
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Task
Who are the 

doctoral 
advisors of 
Leonhard 

Euler, and 
their advisors?

Task T1
Who are the 

doctoral 
advisors of 
Leonhard 

Euler?

Task T2
Who are the 
advisors of 

the list?

Compose 
Replace the 
list with result 

Task T1.1
Get the QID of 

‘Leonhard Euler’

Task T1.3
Leonhard Euler: QID 

doctoral advisors: PID
Who are the 

doctoral advisors of 

Leonhard Euler

Compose 
Replace QID 
with the result

Get Entity QID

Get Property PID

Generate 
& Execute 

SPARQL

Task T1.2
Get the closest 

property PID that QID 
has to ‘doctoral 

advisors’
Compose 

Replace QID, 
PID with the 

result

Generate & 
Execute SPARQL

SPARQL Example

Decomposition 
Agent

Compose/Join
Operators

Pre-defined 
Action
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• 632 real-world enterprise text-to-SQL workflow problems 

• Contains over 1,000 columns

• Stored in local or cloud databases (BigQuery and Snowflake) 

• Challenges

• Complex SQL workflow environments

• Process extremely long contexts 

• Perform intricate reasoning

• Need multiple SQL queries with diverse operations >=100 lines
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Spider 2.0 Workflow

Spider2

Lei, Fangyu, et al. "Spider 2.0: Evaluating language models on real-world enterprise text-to-sql workflows." arXiv preprint arXiv:2411.07763 (2024).
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Calculate the change in the number of living trees of each fall color in New York City from 1995 to 2015 

by computing, for each tree species, the difference between the number of trees not marked as dead in 1995 

and the number of trees alive in 2015, 

matching species by the uppercase form of their scientific names from the tree_species table. 

Then, group the species by their fall color 

and sum these differences to determine the total change in the number of trees for each fall color.

From the two census tables, count living trees for each species in 1995 and 2015, where:

- 1995 = rows whose status is NOT "Dead".

- 2015 = rows whose status is "Alive".

Match the species in both censuses to the tree_species table 

      by comparing the upper-case form of spc_latin / species_scientific_name.  

For every species that can be matched, produce one row containing: 

(a) the upper-case scientific name, 

(b) its fall_color taken from tree_species, 

(c) cnt_1995 (living trees in 1995), 

(d) cnt_2015 (living trees in 2015) and 

(e) change = cnt_2015 - cnt_1995.  

The result is an intermediate table of per-species changes with the species' fall color already attached.

Using the intermediate table produced above, group the rows by fall_color and sum the change column to 

obtain the total net change in the number of living trees between 1995 and 2015 for each fall color.

SELECT
  fall_color,
  SUM(change) AS total_net_change
FROM s̀pider-471218.temp_recursive_parser.multitable_subquery_depth_0_20250924_215719_0d4439c4`
GROUP BY
  fall_color
ORDER BY
  total_net_change DESC

SELECT
UPPER(spc_latin) AS sci_name,
COUNT(*) AS cnt_1995

FROM `bigquery-public-data.new_york.tree_census_1995`
WHERE spc_latin IS NOT NULL

AND status <> 'Dead'
GROUP BY sci_name

),
cnt_2015 AS (

SELECT
UPPER(spc_latin) AS sci_name,
COUNT(*) AS cnt_2015

FROM `bigquery-public-data.new_york.tree_census_2015`
WHERE spc_latin IS NOT NULL

AND status = 'Alive'
GROUP BY sci_name

),
combined AS (

SELECT
COALESCE(c95.sci_name, c15.sci_name) AS sci_name,
COALESCE(c95.cnt_1995, 0) AS cnt_1995,
COALESCE(c15.cnt_2015, 0) AS cnt_2015

FROM cnt_1995 c95
FULL OUTER JOIN cnt_2015 c15

ON c95.sci_name = c15.sci_name
)
SELECT

cmb.sci_name,
ts.fall_color,
cmb.cnt_1995,
cmb.cnt_2015,
cmb.cnt_2015 - cmb.cnt_1995 AS change

FROM combined cmb
JOIN `bigquery-public-data.new_york.tree_species` ts

ON cmb.sci_name = UPPER(ts.species_scientific_name)
ORDER BY cmb.sci_name;

Computational Thinking on an Example in Spider 2.0
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Baseline1: SOTA of Published Systems: Reforce Agent

Deng et al., ReFoRCE: A Text-to-SQL Agent with Self-Refinement, Format Restriction, and Column Exploration, June 2025,  https://arxiv.org/abs/2502.00675
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Baseline 2: Computation Thinking (CT) Prompt 

• Without the CT Engine

• Prompt LLM to 

"decompose the task and generate the SQL accordingly”

Using the given set of actions
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Preliminary Result

Method Base Model Execution Accuracy @ 1

ByteBrain-Agent Unknown 67.6

ReForce GPT o3 62.9

CT Prompt without an Engine GPT-5 41.2

CT Engine(ours) GPT o3 69.6

Method Base Model Execution Accuracy @ 1

ReForce GPT o3 55.2

CT Prompt without an Engine GPT-5 31.9

CT Engine(ours) GPT o3 55.7

Spider2-Snow

Spider2-Lite
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Conclusions

• Semantic Parsing for real KB is hard

• Natural language access to KB is important

• Wikidata users, FEC journalists, enterprises

• Agentic approaches

• ReAct (Reason + action)

• Computational thinking



Appendix
Calculating F1 for Tables
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The F1 metric

TP: True Positive

FP: False Positive

FN: False Negative
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But: traditional EM & F1does not work

what are the top 3 counties with most people in 
South Dakota?

Minnehaha 

County

206,930

Pennington 

County

115,903

Lincoln County 73,238

Predicted Gold

Minnehaha 

County

Pennington 

County

Lincoln County

Question: Do we want to penalize this column?



STANFORDLAM

New Metric: row-major EM & F1
1. Assignment of rows

Q5994 piano 99

Q8350 trombone 11

Q8338 trumpet 8

Predicted Gold

Q8350 11

Q5994 99

Q1467690 2

Q83509 1

Assigned 

rows

Step 1: Run an assignment algorithm to maximize total overlap (recall)

Without penalizing extra columns in prediction

𝑦𝑖 a row in gold

𝑦′𝑖 assigned row of 𝑦𝑖 in prediction

Matching rows with 0 recall is not allowed
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New Metric: row-major EM & F1
2. True positives

Q5994 piano 99

Q8350 trombone 11

Q8338 trumpet 8

Predicted Gold

Q8350 11

Q5994 99

Q1467690 2

Q83509 1

Assigned 

rows

Step 2: Calculate true positives as sum of recalls in assigned rows

= 2
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New Metric: row-major EM & F1
3. false positives

Q5994 piano 99

Q8350 trombone 11

Q8338 trumpet 8

Predicted Gold

Q8350 11

Q5994 99

Q1467690 2

Q83509 1

Assigned 

rows

False 

Positives

= 1

Step 3: Each unassigned row in prediction counts as a false positive

𝑛′: number of rows in prediction

𝑟: number of rows in matching
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New Metric: row-major EM & F1
4. false negatives

Q5994 piano 99

Q8350 trombone 11

Q8338 trumpet 8

Predicted Gold

Q8350 11

Q5994 99

Q1467690 2

Q83509 1

Assigned 

rows

= 2

False 

Negatives

False 

Positives

Step 4: Each unassigned row in gold counts as a false negative

plus sum of 1– recall in the matching (0 in this case)

𝑛: number of rows in gold

𝑟: number of rows in matching
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New Metric: row-major EM & F1
5. F1

Q5994 piano 99

Q8350 trombone 11

Q8338 trumpet 8

Predicted Gold

Q8350 11

Q5994 99

Q1467690 2

Q83509 1

Assigned 

rows

False 

Negatives

False 

Positives

Step 5: Calculate F1 with the usual formula

𝐹1 =
2𝑡𝑝

2𝑡𝑝+𝑓𝑛+𝑓𝑝
 = 0.66
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