CS224v

Conversational Virtual Assistants with Deep Learning

Lecture 1: Introduction

Monica Lam
Really Exciting Time for NLP!

- Paradigm shift from Classical ML to LLMs (prompts)
 - Rapid prototyping
- Can create functional assistants
 - With a lot less work
- Lots of juicy research topics

Big picture:
Opportunity to change fundamentally how we acquire and use knowledge across all domains
Course Objectives

• Understand the strengths and weakness of LLMs
• How to build conversational virtual assistants
 • Methodology & framework for assistant development

| Domain Corpus + High-Level Specification | Framework | Virtual Assistants |

• Hands-on experience
 • Apply, evaluate, feedback on current methodology
 • Or extend the state of the art in methodology
• Contribute to understanding of Conversational Virtual Assistants
Project Apprenticeship

• Assistance with project selection: Hardest part in research!
 • We suggest
 • Academic research projects (20)
 • External projects
 • Student-initiated projects are also welcome
 • Weekly group mentorship meeting
 • We want to make you succeed!

1st attempt at a large, supervised project-based class with lectures
Please bear with us!
Course Personnel

- Prof. Monica Lam. Open Virtual Assistant Lab Director
 - Initiated virtual research interest 8 years ago
 - Experimentalist: AI, Systems, HCI
 - Developed 1st conversational virtual assistant
 - Popular Science’s Best of What’s New Award in Security in 2019
 - https://oval.cs.Stanford.edu
Course Personnel

- Head TA: Shicheng Liu, PhD student
- TAs:
 - Tommy Bruzzese, CS co-term
 - Amol Singh, CS co-term
 - Arvind Sridhar, CS co-term
- Additional project mentors:
 - John Whaley, Weiyan Shi, Sina Semnani, Jackie Yang
- Additional project advisors:
 - Profs. Russ Altmann, Lynn Koegel, Vasilis Syrgkanis, Diyi Yang
Outline

• Part 1:
 • Vision: How will LLMs change the world?
 • The problems with LLMs today
 • How to realize the vision with LLMs?
 • The first results
 • Next steps
 • Part 2:
 • Course design
Prediction

- Industrial revolution: automated manual labor (1760-1840)
- Generative AI -- Large language models (LLMs):
 1. assist
 2. automate the average knowledge workers in many domains
- Knowledge workers: call agents, salesmen, administrators, lawyers, doctors, engineers, programmers, scientists, teachers, therapists, social workers
 - Specialized knowledge and expertise
 - Decision making and problem solving
 - With social intelligent behavior
Large Language Models (LLMs)

GPT-3 in 2020
• Trained to predict the next word
• Unsupervised: 45 TB of Internet text
• 175 Billion parameters

YaLM & GPT-4 (3/14/2023)
• Multimodal: text, images
LLMs Got the Attention of Businesses

Can we use/train a LLM with corporate information?

So it can answer our questions about work in natural language.
LLM Accomplishments

ChatGPT: US Medical Licensing Exam Pass!
GPT-4: Uniform Bar Examination Pass!

https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000198
Is GPT Ready to Practice?

Exams are designed for humans, not AI

Humans passing the bar can practice

• They know when to look up info

But not AI bots

• don’t know the meaning of their words
• make mistakes no humans will
It Hallucinates!

Generative AI = Hallucination
As of September 2021, the monarch of the United Kingdom is **Queen Elizabeth II**. She has been the queen since February 6, 1952, following the death of her father, King George VI. Queen Elizabeth II is the longest-reigning monarch in British history and has played an important role in the country's political and cultural life over the past seven decades.
ChatGPT (7/2/2023)

+ Conversational
- Hallucinates on long-tail info.
 With details and conviction

1978
Hinton, G. E.
Relaxation and its role in vision.
PhD Thesis, University of Edinburgh

Geoffrey Hinton received his PhD in Artificial Intelligence from the University of Edinburgh in 1978. His doctoral thesis was titled "Relational Learning of Pattern-Matchable Templates". Hinton is widely regarded as one of the pioneers of deep learning and has made significant contributions to the field of artificial intelligence and machine learning throughout his career.
Buying a Ticket from GPT-3

User: I'd like to buy a plane ticket to New York.
Agent: Sure, I can help you with that. What date and time would you like to depart?
User: July 7th, 9am.
Agent: Alright, I can book a flight for you departing on July 7th at 9am. What airport would you like to depart from?
User: SFO
Agent: Great, I can book a flight for you departing from San Francisco on July 7th at 9am. Would you like to book this flight now?
User: What is the flight number?
Agent: The flight number is AA123.
Examples of Business Use Cases

• EPIC medical use cases
 • Requires expert reviews before sharing with patients
• Microsoft travel article (with human reviewers)
 • “Visit Food Bank if you are hungry in Ottawa”
 • Withdrawn
• Meta Galactica: Assistant for scientific articles
 • Withdrawn after 1 day

How do we make sense of LLMs?
We All Have an “LLM” in Our Brain!

- Our “LLM”: Speech area
- Prefrontal cortex
 - Inhibition and attention
 - Planning
 - Long-term memory
 - Monitoring external signals
- If prefrontal cortex is damaged, “Speak without thinking”
Takeaway #1

Common Misconception:
Just train a bigger LLM (with domain knowledge),
and hallucination will go away!
Outline

• Part 1:
 • Vision: How will LLMs change the world?
 • The problems with LLMs today
 • **How to realize the vision with LLMs?**
 • The first results
 • Next steps
• Part 2:
 • Course design
How Can LLMs Automate Knowledge Workers

1. Unsupervised Learning
2. Manual Supervised Learning
3. Self Learning
1. Unsupervised Learning

- GPT-3 is Big! 175B parameters
 - Trained to predict the next word (45 TB Data)
 - Not a database
- Generalize / anticipate what typically comes next (statistically)
 - Finish a thought, a sentence, give an answer, complete a list
 - Finish an essay, continue a conversation
 - Respond like a typical person, base on the speaker’s feeling
 - Remember the most common facts (Err on recent, long-tail info)
- What it is good at
 - General knowledge, common sense, social intelligence (norms)
- BUT it does not know what it is saying (meaning, semantics)
2: Manual Supervised Learning

- GPT-3.5 Fine-tuned with manual annotations
- Alignment with human values
- Learn to follow instructions (prompts):
 - Chain-of-thought: Talking out load as it derives or evaluates the answer

It learns how to learn!
3: Self-Learning

Instruction + a few examples + GPT-generated Inputs → Teacher Model (multi-step) e.g. GPT-4 → Final answer

Fine-tune → Student Model

Student model learns new concepts by rote (by heart, without thinking)

Reinforcement learning with or without human in the loop
Self-learning ➔ Democratize LLMs

- Open-AI’s GPT
 - Concern of privacy, HIPPA
 - Microsoft Azure service – guarantees confidentiality
- Apply self-learning to a smaller model
 - Meta’s open LLaMA (7B, 13B, 33B, and 65B)
 - 7B runs on a raspberry pi
 - Use GPT-4 to train LLaMA:
 Our expt: get GPT-3-like behavior!
Outline

• Part 1:
 • Vision: How will LLMs change the world?
 • The problems with LLMs today
 • How to realize the vision with LLMs?
 • The first results
 • Next steps
• Part 2:
 • Course design
Problem #1

- Hallucination is a problem
 - Continual learning (incremental training with recent information)
- Other problems
 - Long-tail information – LLMs are not databases
 - Real-time knowledge
 - Private, case-specific information (e.g. medical transcripts)
- Answer: Grounding in external corpora of data!
Lesson 1: Stop Hallucinating

Grounding with external corpus:

Knowledge Corpus
• Databases
• Knowledge Bases
• Texts
• APIs
WikiChat: Chatbot on Wiki

1st factual & conversational chatbot grounded on:

- Wikidata: 12B facts
- Wikipedia: 6.7M articles in English

Note: 61M articles in 333 languages
Wikidata: Largest, Live Knowledge Graph

- 12B facts, 100M entities, 10K properties, 25K contributors
- Every Wikipedia article has a corresponding entity in Wikidata
- Dataset for research in life sciences, digital humanity, etc.

- Representation: Semantic web (triples)
- Query with SPARQL

A natural language interface can greatly expand access

Who founded Stanford?

```
SELECT ?x WHERE
{ wd:Q41506 wdt:P112 ?x. }
```

Stanford Founded by

GPT-3 on New Wiki-WebQuestions Dataset

- Adapted from WebQuestions for FreeBase
- Questions from Google Suggest API
- Real-world popular questions
- 2431 train, 438 dev, 1384 test
- GPT-3: trained on Wikipedia + Internet

Question: “What does Obama have a degree in?”
GPT-3: “Political science degree”
Missing: “Law degree”
GPT-3 + Genie Semantic Parser

user input

Genie Semantic Parser

DB/API

response?

yes

<semantic parser response>

no

LLM

The answer is likely to be <LLM response>
Reduce GPT3 Hallucination with WikiData

Benchmark: Wiki-WebQuestions (Popular, Human-Generated)

Just GPT-3 Guesses
- Correct GPT: 66%
- Incorrect GPT: 7%
- Incomplete GPT: 27%

Wikidata (Genie semantic parser) + GPT3 Guesses
- Correct GPT: 4%
- Incorrect GPT: 6%
- Incomplete GPT: 15%
- Verifiable from WikiData: 76%
Takeaway #2

LLMs can produce verifiable answers by generating knowledge base queries
Wikipedia: Open-Text

• 6.7M articles in English

• Lots of interesting information:
 Why? How? Descriptions ...
Microsoft Bing

Traditional (Factuality)

1. Search corpus with query
2. Summarize with LLM
What do Humans Do Today?

Traditional (Factuality)
1. Search corpus with query
2. Summarize and filter

LLM (Conversationality + Factuality)
3. Ask GPT
4. Extract claims
5. Fact-check each claim
 • Search corpus with claim
 • Filter incorrect claim

6. Draft
7. Refine
Teaching LLMs with Few-Shot Prompting (GPT-3.5/4)

Traditional (Factuality)
1. Search corpus with query
2. Summarize and filter

LLM (Conversationality + Factuality)
3. Ask GPT
4. Extract claims
5. Fact-check each claim
 - Search corpus with claim
 - Filter incorrect claim

6. Draft
7. Refine
What do you think about the casting of Oppenheimer?

Traditional (Factuality)

1 & 2. Search, summarize, filter:
- Much of the Oppenheimer (2023) movie’s cast signed on between September 2021 and April 2022.
- Cillian Murphy is to play as Robert Oppenheimer in the Oppenheimer (2023) movie.

3. GPT: Christopher Nolan is known for his meticulous casting choices. He often casts well-known actors in his films, and this time he has selected Tom Hanks and Michael Caine.

4. Extract claims:
- Christopher Nolan is known for his meticulous casting choices.
- Christopher Nolan often casts well-known actors in his films.
- Tom Hanks stars in the Oppenheimer (2023) movie.
- Michael Caine stars in the Oppenheimer (2023) movie.

5. Filter incorrect claims:
- Christopher Nolan is known for his meticulous casting choices.
- Christopher Nolan often casts well-known actors in his films.

6. Draft: Cillian Murphy has been cast to play Robert Oppenheimer in Christopher Nolan's "Oppenheimer" movie. Christopher Nolan is known for his meticulous casting choices and often casts well-known actors in his films. The movie's cast was signed on between September 2021 and April 2022.

7. Refine: Christopher Nolan has cast Cillian Murphy as the titular role of Oppenheimer, keeping with his tradition of meticulous casting choices. I’m sure it will be an excellent film!
WikiChat-GPT4

Factuality

- Head
 - GPT-4: 94.9
 - WikiChat-GPT4: 98.8

- Tail
 - GPT-4: 56
 - WikiChat-GPT4: 94.6

- Recent
 - GPT-4: 47.5
 - WikiChat-GPT4: 98.5

- All
 - GPT-4: 66.1
 - WikiChat-GPT4: 97.3
WikiChat-GPT3.5

Factuality

- Head: 94.9, 98.8, 97.1
- Tail: 56, 82.2
- Recent: 47.5, 88.2
- All: 66.1, 97.3, 89.2

Legend:
- GPT-4
- WikiChat-GPT4
- WikiChat-GPT3.5
WikiChat-LLaMA (7B Parameters)

![Bar Chart]

- **Factuality**
- **Head**: GPT-4 (94.9), WikiChat-GPT4 (98.8), WikiChat-GPT3.5 (97.1), WikiChat-LLaMA (95.2)
- **Tail**: GPT-4 (94.6), WikiChat-GPT4 (82.2), WikiChat-GPT3.5 (87.1), WikiChat-LLaMA (56)
- **Recent**: GPT-4 (98.5), WikiChat-GPT4 (88.2), WikiChat-GPT3.5 (90.9), WikiChat-LLaMA (47.5)
- **All**: GPT-4 (66.1), WikiChat-GPT4 (89.2), WikiChat-GPT3.5 (91.1), WikiChat-LLaMA (97.3)
Takeaway #3

Elimination of hallucination

→ User-Facing LLM-Based Systems
Outline

• Part 1:
 • Vision: How will LLMs change the world?
 • The problems with LLMs today
 • How to realize the vision with LLMs?
 • The first results
 • Next steps
 • Part 2:
 • Course design
Exciting time for NLP Research: Paradigm shift from Classical ML to LLMs

- Classical NLP: Data set driven, one for each problem
- LLMs can automatically handle:
 - Paragraph-level summary, question answering
 - Small lists: classification, clustering
 - Intuitive, fluent, socially intelligent responses on open domains, with common-sense reasoning
 - Semantic parsing: Can generate queries for smallish domains
Re-think Approach & Metric

• How to control conversational agents
 • Previous: dialogue tree, dialogue acts (Low level)
 • New: high-level specification

• Metrics
 • Human data collection/annotations are outdated!
 • Old metrics e.g. Bleu scores are meaningless
Research Approach with LLMs

- Experiment
 - Build real systems
 - conduct user studies – incorporate user feedback
 - discover uncharted problems!
- Aim at domain-independent techniques and tools
 - By learning from specific use cases
Tips with LLMs

- Be systematic: Go slow, Build general capabilities
 - Start with solid primitives
 - Develop general next-building blocks
- Do not optimize prematurely
 - Self-learning/distillation: learn high-level functions by heart
Outline

• Part 1:
 • Vision: How will LLMs change the world?
 • The problems with LLMs today
 • How to realize the vision with LLMs?
 • The first results
 • Next steps
• Part 2:
 • Course design
<table>
<thead>
<tr>
<th>Date</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Due (Monday)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/25</td>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/2</td>
<td>Grounding on free-text (HW)</td>
<td>Possible projects</td>
<td>Student profile</td>
</tr>
<tr>
<td>10/9</td>
<td>Grounding on databases (HW)</td>
<td>Project discussion</td>
<td>HW1</td>
</tr>
<tr>
<td>10/16</td>
<td>Multimodal app framework</td>
<td>Project discussion</td>
<td>HW2 + Project abstract</td>
</tr>
<tr>
<td>10/23</td>
<td>Proposal presentations</td>
<td>Proposal presentations</td>
<td>Project proposal</td>
</tr>
<tr>
<td>10/30</td>
<td>Dialogue Initiatives</td>
<td>Multi-lingual agents</td>
<td></td>
</tr>
<tr>
<td>11/6</td>
<td>Large knowledge bases</td>
<td>Robotic automation</td>
<td></td>
</tr>
<tr>
<td>11/13</td>
<td>Tools/APIs/Domain-specific languages</td>
<td>LLM: training, fine-tuning, distillation</td>
<td></td>
</tr>
<tr>
<td>11/20</td>
<td>Thanksgiving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/27</td>
<td>Curation of common-sense knowledge</td>
<td>Class discussions</td>
<td></td>
</tr>
<tr>
<td>12/4</td>
<td></td>
<td>Final project posters (2.5 hours)</td>
<td></td>
</tr>
<tr>
<td>12/12</td>
<td></td>
<td></td>
<td>Final Report (Tue)</td>
</tr>
</tbody>
</table>
Project Mentorship

All homeworks and projects are done in groups of 2

- Week 4: Project proposal, with a weekly plan
- Weeks 5-10 (excluding Thanksgiving break):
 - Submit a written weekend update (every Monday)
 - Group meeting with mentors during the week
- Week 11: Poster presentation (Dec 6)
- Final project report due Dec 12, 2023.
This Course

<table>
<thead>
<tr>
<th></th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>15%</td>
</tr>
<tr>
<td>Assignment</td>
<td>25%</td>
</tr>
<tr>
<td>Final Project</td>
<td>60%</td>
</tr>
</tbody>
</table>

Participation includes

- Class attendance and participation
- Ed discussion
- Meetings with project mentors