

CS224v

Conversational Virtual Assistants with Deep Learning

Lecture 1: Introduction

Monica Lam

FOCUS OF THE COURSE

FOUNDATION TO MAKE LLMs USEFUL AS A
TRUSTWORTHY GENERAL VIRTUAL ASSISTANT

90+% ACCURACY

APPLICABLE TO ALL DOMAINS (FOR NON-AI EXPERTS)

A PROJECT/RESEARCH COURSE

ACTIVELY CREATE AND ADVANCE NEW TECHNOLOGIES
ADOPTED BY REAL USERS

SELECT CLASS PROJECTS CONTINUE AS RESEARCH (2026)

COURSE PUBLICATIONS: 2023(2), 2024(5), 2025(6)

SECRET TO SUCCESS: **WORKING SOFTWARE**
SUPPORTS INCREASINGLY COMPLEX PROJECTS

GOAL: AN AI-BASED RESEARCH ASSISTANT

HIGHEST LEVEL OF COGNITION
SUBSUMES ALL OTHER LEVELS

Vanderbilt University Center for Teaching

Bloom's Taxonomy
Education Objectives in Cognition Domain

WHY AN AI-BASED RESEARCH ASSISTANT?

TO ADVANCE KNOWLEDGE DISCOVERY

FASTER

BETTER RESULTS

SCALABILITY

BROADER (BREAKING DOWN DOMAIN & LANGUAGE BARRIERS)

RESEARCH ACCESSIBLE TO MORE PEOPLE

KNOWLEDGE AS WE KNOW IT

Perplexity, Gemini, Copilot, ChatGPT Still Hallucinate With RAG (Retrieval Augmented Generation)

51% of AI answers to news problems have significant issues.

19% of AI answers which cited BBC content introduced factual errors.

13% of the quotes sourced from BBC articles were either altered or didn't actually exist in that article.

How would you rate the accuracy of this response?

AI responses as rated by journalists, %

■ Significant Issues ■ Some Issues

All responses including those which did not cite BBC. n>=71
Source: BBC RAI Research

The Problem

The Enterprise AI Paradox

Enterprises are rushing to deploy AI,
but off-the-shelf LLMs are a ticking time bomb.

Legal and Financial Liability

Air Canada forced to honor fictitious refund policy

Reputational Damage

Lawyer sanctioned over ChatGPT-fabricated legal precedents

Regulatory Risk

NYC's AI chatbot advised businesses to break laws

The result: A crisis of trust that blocks AI adoption for high-value use cases.

THE 70% ACCURACY PROBLEM

IT'S DECEIVINGLY EASY!

IMPOSSIBLE TO GET TO NEAR 100%
WITH NEXT-WORD PREDICTION LLMs!

NEED OF HUMAN FILTERING → NOT SCALABLE!

FUNDAMENTAL PROBLEMS FOR HARDER TASKS

LLMs TRAINED ON NEXT-WORD PREDICTION:

NOT **PRECISE** ENOUGH FOR RESEARCH

CANNOT PERFORM **COMPLEX** TASKS RELIABLY

LIMITED **CONTEXT LENGTH**

APPROACH

AUGMENT LLMS WITH

COMPUTATIONAL THINKING

ALGORITHMS

DATA REPRESENTATION (PATTERN RECOGNITION)

ABSTRACTION (GENERALIZATION)

DECOMPOSITION

UNIVERSAL TO ALL DISCIPLINES

COMPUTATIONAL THINKING

BASIC CONCEPTS: ALAN PERLIS, DON KNUTH (1950s)

COINED TERM: SEYMOUR PAPERT (1980)

EDUCATION OBJECTIVE: JEANNETTE WING, NSF (2006)

Lecture Outline

1. Course Material Overview

- Stage 1 (2022 -- 2025): Computational thinking → general research assistant
- Stage 2 (2025 --): Computational thinking → scientific research assistant

2. Course overview

- Project choice
 - Build on technology for a general assistant
 - Research the bleeding edge of a technical research assistant

Just a high-level picture! Do not worry if you can't follow all the ideas
(Details in the lectures)

GENIE: A PROTOTYPE OF A PUBLIC AI ASSISTANT TO WORLD WIDE KNOWLEDGE (WWK)

Browse
Search
Chat
Research (Storm)

Live Demos: wwknowledge.org

Watch recordings from our 2025 Workshop

The Stanford Open Virtual Assistant Lab presents a pilot of

A Public AI Assistant to World Wide Knowledge

Advancing global education and accelerating knowledge discovery with Artificial Intelligence

Access the WWKnowledge Assistant:

BROWSING

Collaboratively research the web with Storm. Create research articles with comprehensive and accurate bibliographies.

[Get your own article now](#)

Chat with popular Wikipedias in different languages

Start chatting in English, Deutsch, Français, Español, 日本語, Русский, Português, Italiano, 中文, فارسی, ... ↗

DEEP-DIVE

The African Times newspaper (1867 and 1910), available digitally for the first time.

[Chat with the African diaspora in that period](#)

Co-hosted with Wikidata from Wikimedia

[Deep-dive into 15 billion facts and ask questions](#)

Explore FEC campaign donation data (built in partnership with Big Local News)

[Chat and ask questions about campaign donations](#)

Contributing to WWKnowledge:

Upload your Sources

We are always welcoming new data sources to include in WWKnowledge.

[Upload your CSV](#)

[Upload your corpora](#)

Learn the Genie Framework

WWKnowledge is developed on the Stanford OVAL Lab's Genie Agent Framework

[Learn to build with Genie](#)

Learn at our Workshops

Learn about the Genie framework from its creators, and about funding and collaboration opportunities

[Watch the 2025 recordings](#)

In Collaboration With

Northwestern University

Columbia Journalism School

Stanford Center for African Studies

COMPUTATIONAL THINKING APPROACH

FORMALIZE HUMAN COGNITIVE PROCESS

PRODUCE STEP-BY-STEP INSTRUCTIONS

1. READING DOCUMENTS

RAG-BASED LLMs HALLUCINATE

ESPECIALLY WHEN RETRIEVED INFORMATION
DOES NOT ANSWER THE USERS' QUESTION

Genie: Automating Question Answering

Ansätze (an educated guess)

3. Ask LLM
4. Dissect into claims
5. Fact-check each claim
 - Search Wikipedia with claim
 - Filter incorrect claim

Retrieve

1. Search Wikipedia with query
2. Filter irrelevant info

6. Draft
7. Refine

Use multiple, easy LLM steps to consult external data

WikiChat

- Accuracy: 97% (English)
- Best Research Award of the Year, Wikimedia Foundation
- Now in 25 languages: Breaking the language barrier!

Arabic	English	Indonesian	Persian	Serbian
Chinese	Finnish	Italian	Polish	Spanish
Czech	French	Japanese	Portuguese	Swedish
Danish	German	Korean	Romanian	Turkish
Dutch	Hebrew	Norwegian	Russian	Ukrainian

[WikiChat: Stopping the Hallucination of Large Language Model Chatbots by Few-Shot Grounding on Wikipedia](#) Sina J. Semnani, Violet Z. Yao*, Heidi C. Zhang*, Monica S. Lam
In EMNLP 2023, Singapore, December 6-10, 2023.

THE PROBLEM IS HARDER THAN EXPECTED

3 STUDENTS, 4 MONTHS FOR DEVELOPMENT
EVALUATION WAS ALSO HARD

THE DEVIL IS IN THE DETAILS

SOLID BUILDING BLOCKS ARE CRITICAL
APPLICABLE TO GENERAL COGNITIVE PROCESSES

2. READING DATA

Example:

World's Largest Live Knowledge Graph

- 15B facts, 100M entities, 10K properties, 25K contributors
- Wikidata could only be accessed by **SPARQL query language**

Key Concept:

A Semantic Parser Translates NL to Formal Semantics

What are the **musical instruments** played by people
who are **affiliated with the U. of Washington School of Music**
and have been **educated at the U. of Washington**, and how many people play each instrument?

Genie

```
SELECT ?instrument ?instrumentLabel (COUNT(?student) AS ?count) WHERE {  
  ?student wdt:P1303 ?instrument;  
  wdt:P1416 wd:Q98035717;  
  wdt:P69 wd:Q219563.  
  SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }  
}  
GROUP BY ?instrument ?instrumentLabel
```


A Small Subset of Wikidata

instrument	instrumentLabel	count
Q5994	piano	99
Q1467960	mbira	2
Q8350	trombone	11
Q8338	trumpet	8
Q17172850	voice	32
...
Q302497	mandolin	1
Q187851	recorder	1
Q185041	cor anglais	1
Q83509	piccolo	1

Result

Break Down the Cognitive Process

Go acquire knowledge to complete a task!

Deployed at Wikidata Query Forum

https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/Wikidata_Query_Help

- Help users with their complex queries
 - 1700 conversations
 - In 198 samples, success rate: 78%
 - Interpretability:
 - Genie shows the query (in English) and its answer

SPINACH: SPARQL-Based Information Navigation for Challenging Real-World Questions

Shicheng Liu*, Sina J. Semnani*, Harold Triedman, Jialiang Xu, Isaac Dan Zhao, Monica S. Lam
In Findings of the 2024 Conference on Empirical Methods in Natural Language Processing
(EMNLP) , Miami, Florida, November 12–16, 2024.

FACTUAL INFO RETRIEVAL

Input: Text, Databases, Knowledge Bases (Wikipedia, Wikidata, FEC ...)

2023/12 EMNLP	WikiChat: Control hallucination by grounding in Wikipedia - Best chat: achieving 97% factuality - Now grounded in Wikipedia in 25 languages - Best Research of the Year Award by Wikimedia Foundation, 2024
2024/ 6 NAACL	1 st assistant that supports full hybrid queries on free-text + databases - Translate NL into our novel SUQL query language with optimizing compiler - Used by investigative journalists (FEC campaign donation), 311
2024/12 EMNLP	Best assistant for complex queries on Wikidata - Agentic approach that learns about the schema on its own - Deployed on Wikidata
2025/ 7 ACL	Genie Worksheets: Knowledge-Intensive Task-Oriented Agents - Accuracy: 80% vs 0-10% with GPT4 with function calling - Validation with industry in progress

DISCOVERY OF GENERAL KNOWLEDGE

Input: Text, Databases, Knowledge Bases (Wikipedia, Wikidata, FEC ...)

2024/ 6 NAACL	STORM: 1 st deep research assistant by searching the Internet - Comprehensive Wikipedia-like articles with citations to full references - 800K organic users, 1.4M articles written - Used by history students to discover African history newspapers (1800s) - Inspired OpenAI Deep Research, Google Gemini Deep Research, Databricks Genie Deep Research Model
2024/12 EMNLP	1 st assistant that lets users interactively direct the deep research - Uses a novel round-table of experts to explore unknown unknowns

New: DATASTORM discovers insights by combining Storm + DataTalk

GENIE: A PROTOTYPE OF A PUBLIC AI ASSISTANT TO WORLD WIDE KNOWLEDGE (WWK)

Demos: wwknowledge.org

→ **Genie** →

- Browse**
- Search**
- Chat**
- Research (Storm)**

NLP RESEARCH CAN CREATE USEFUL TOOLS

USAGE ALSO HELPS GENERATE RESEARCH IDEAS

Lecture Outline

1. Course Material Overview

- Stage 1 (2022 -- 2025): Computational thinking → general research assistant
- Stage 2 (2025 --): Computational thinking → scientific research assistant

2. Course overview

- Project choice
 - Build on technology for a general assistant
 - Research the bleeding edge of a technical research assistant

SCIENTIFIC RESEARCH
REQUIRES CHANGING THE FUNDAMENTALS OF NLP
WITH COMPUTATION TRAINING (CT)

1. INFORMATION RETRIEVAL (EMBEDDING SIMILARITY)
→ FORMAL SEMANTICS
2. REASONING: CHAIN OF THOUGHT
→ COMPUTATIONAL THINKING (CT)
3. TRAINING: UNSUPERVISED NEXT-WORD PREDICTION TRAINING
FINE-TUNED WITH CHAIN OF THOUGHT
→ FINE-TUNED WITH CT TRAINING

Knowledge in Large Sets of Long Documents

Analysis
combines info
from every doc

Decision, Stats, Trend, ...

Resumes Paper Reviews Proposals Financial Reports	Pubmed Articles Human Genome Drug/Protein/Disease Event News	News Social Media Interviews Medical Rec.	Requirements Regulations Clinical Trials Invoice Match
Ranking (Top n) of ALL documents	Accumulation	Stats/trends	Satisfiability
Finalists	Knowledge Bases	Discover Knowledge	Compliance to Constraints

An Example: Clinical Trials

- Motivation
 - Patients cannot navigate clinical trial websites
 - Clinical trials fail for a lack of finding patients
- Challenges: matching millions of trials with millions of patients
 - Informal Retrieval (IR)
 - Similarity → false positives; false negatives
 - Matching
 - LLM “reasoning” → inaccurate

Missing one appropriate trial is fatal!

Approach for Effective Clinical Trial Matching

1. Representation

- Translate free-text trials/patient records to formal semantics
 - SMT (Satisfiability Modulo Theories)
 - UMLS (Universal Medical Language System) with 3M terms

2. Retrieval algorithm

- Store trials in DBs with columns representing simpler predicates
- Retrieve with DB queries

3. Match algorithm: SMT theorem prover

Curating Knowledge

Semantic Parsing from Free-Text to:

- **Databases:**
 - for analyzing large & long document sets
 - Sets of papers, articles, reports, transcripts
- **Knowledge graphs:** a semantic web
 - NSF Proto-OKN project
- **SMT: constraint satisfaction**
 - Degree satisfaction, regulation compliance, invoice matching

Knowledge Curation—Important but Hard Example:

ACLED: Armed Conflict Location & Event Data

- Best dataset of qualitative coding (Free-text → DB)
- Human annotators, with rounds of reviews
- Over 200 territories, 80 different languages

LEMONADE: A Large Multilingual Expert-Annotated Abstractive Event Dataset for the Real World

Sina J. Semnani¹ Pingyue Zhang² Wanyue Zhai¹ Haozhuo Li¹

Ryan Beauchamp¹ Trey Billing³ Katayoun Kishi³ Manling Li² Monica S. Lam¹

¹Stanford University ²Northwestern University ³ACLED

In Findings of ACL, 2025

ACADEMIC FORMULATION FALLS SHORT

EXTRACTIVE → ABSTRACTIVE

CANONICALIZATION OF ENTITIES

NEEDED: RESEARCH ON ENTITIES IN EXTERNAL LITERATURE

SOTA, BUT NOT ACCURATE ENOUGH

Goal: Create A Universal Semantic Parser

Free Text, Sample Annotations → Formal Representation

1. Ontology: Automatic standardization of terminology
2. Translation to formal semantics. Challenges:
 - Classification among many entities
 - Acquisition of missing knowledge
 - Long documents exceeding LLM contexts
 - Consistency checking
 - Refinement with annotated samples
3. Information retrieval optimizations

3 Case Studies of Scientific Assistants

All the technology developed is generally applicable to any domain
You can join these new projects from the ground up.

1. **Clinical Trial Matching** (Mayo Clinic, Stanford Medicine) using **SMT**
 - Off-line matching & a conversational agent for patients looking for trials
2. **Cancer drug resistance**: Data Synthesis with literature in RNA-Seq Analysis (Stanford Oncology)
 - Analysis of experimental results
 - Extraction of **knowledge graph** of pubmed articles
 - Synthesizing data with literature

Similar use case: **Repurposing drugs for rare diseases** (Everycure, Rare Genomics Inst.)
3. **Sustainability Modeling** (Stanford Cornerstone Initiative)
 - Synthesizing model from many different raw **databases** with judgement

SCIENTIFIC RESEARCH
REQUIRES CHANGING THE FUNDAMENTALS OF NLP
WITH COMPUTATION TRAINING (CT)

1. INFORMATION RETRIEVAL (EMBEDDING SIMILARITY)
→ FORMAL SEMANTICS
2. REASONING: CHAIN OF THOUGHT
→ COMPUTATIONAL THINKING (CT)
3. TRAINING: UNSUPERVISED NEXT-WORD PREDICTION TRAINING
FINE-TUNED WITH CHAIN OF THOUGHT
→ FINE-TUNED WITH CT TRAINING

LLMs Lack Computational Thinking (CT)

Example: Composition

Question

Who is the wife of Benjamin Harrison?

Who is the grandfather of Caroline Harrison?

Who's the grandfather of the wife of Benjamin Harrison?

OpenAI-03 Model

Caroline Harrison

George Scott

Dr. John Witherspoon

Idea

Do not use LLMs to answer complex questions directly

We propose:

1. Use LLM to perform simple functions
2. Use an Algorithmic Engine to invoke LLM functions and compose them

LLMs Lack Computational Thinking (CT)

Example: Composition

OpenAI-03 Model

Caroline Harrison

George Scott

Potential Applications

- Semantic Parser
 - This just in: Beats SOTA on Spider-2 Text-to-SQL
- Data Synthesis
- Coding
- Scientific and Engineering Workflows

SCIENTIFIC RESEARCH
REQUIRES CHANGING THE FUNDAMENTALS OF NLP
WITH COMPUTATION TRAINING (CT)

1. INFORMATION RETRIEVAL (EMBEDDING SIMILARITY)
→ FORMAL SEMANTICS
2. REASONING: CHAIN OF THOUGHT
→ COMPUTATIONAL THINKING (CT)
3. TRAINING: UNSUPERVISED NEXT-WORD PREDICTION TRAINING
FINE-TUNED WITH CHAIN OF THOUGHT
→ FINE-TUNED WITH CT TRAINING

Training CT

- Why?
 - To improve ansatze (educated guess) to aid knowledge discovery
 - Example: Ask LLM "What drug may cure this rare disease?" Literature search on the answer.
- How?
 - Fine-tune with training samples:
(Natural language question → Formal Query; Answer)
 - Teach it formal semantics representation
 - Improve its latent representation of knowledge in LLMs
- Expected result: improved LLMs recall and ansatzes

THE CS224V COURSE

COURSE OBJECTIVES

FOUNDATION TO MAKE LLMs USEFUL AS A
TRUSTWORTHY GENERAL VIRTUAL ASSISTANT

HANDS-ON PROJECT/RESEARCH EXPERIENCE
BUILDING ON THE STATE-OF-THE-ART TOOLS

OR

ADVANCING THE STATE-OF-THE-ART

Course Design

1. 2 homeworks to bring everybody onboard with SOTA tools
2. Lectures on techniques of LLM-based conversational agents
3. Supervised quarter-long project
 - Create a new application on existing tools
 - Enhance existing tools (with an application)
 - Develop new tools (with an application)

Purpose of the 2 Assignments

Prepare you for your project proposal

1. How to create an autonomous LLM-based research agent?
2. How to create a conversational agent using Genie Worksheet
 - Performs tasks; Answers question
 - Does not hallucinate

Project Apprenticeship

- Assistance with project selection: Hardest part in research!
 - We suggest over 20 research-oriented projects on the website
 - Student-initiated projects are hugely welcome
- Weekly group mentorship meeting
 - We want to make you succeed!

Project Mentorship

All homeworks and projects are to be done in pairs

- Week 4: Project proposal, with a weekly plan
- Weeks 5-10 (excluding Thanksgiving break):
 - Submit a written weekend update (every Monday)
 - Group meeting with mentors during the week
- Week 11: Poster presentation (Dec 4)
- Final project report due Dec 9, 2025.

Course Schedule at a Glance

Dates	Lectures / Homeworks	Projects
9/22 - 10/ 6	Introduction; Autonomous Research Agents (HW1) Task-oriented agents (HW2) Grounding on free text	Research Project Ideas
10/ 8 - 10/20		Student-initiated ideas Project discussions Project proposals (2)
10/22 - 11/3	Knowledge retrieval: databases, knowledge graphs, hybrid data, long documents	Weekly meetings with mentor
11/ 5 - 11/12	Reasoning with computational thinking; Formal semantics; NLP building blocks	Weekly meetings with mentor
11/17 – 11/19	Misc: Multimodal apps; Training LLMs	Weekly meetings with mentor
11/25 - 11/27	Thanksgiving	
12/3		Final project posters (3:00-5:40)

This Course

	Grade
Participation	15%
Assignment	25%
Final Project	60%

Participation includes

- Class attendance and participation
- Ed discussion
- Meetings with project mentors