
Stanford CS224v Course

Conversational Virtual Assistants with Deep Learning

Lecture 13

Multimodal Applications

Jackie (Junrui) Yang & Monica Lam

1

Lecture Goals

• Why do we need multimodal interactions?

• Three problems for multimodal app development

• ReactGenie: a multimodal app development framework

2

Proposed in 1979

Why?

3

Today: Interacting with Touch + Graphics:
Powerful and accurate

4

PowerPoint:

• Textboxes, pictures, shapes

• Fonts, colors, line styles

• Adjust everything accurately
via GUI

Interacting with Touch + Graphics:
But sometimes inefficient and repetitive

5

Slow and tedious for

• Apply actions to multiple
objects

• Less common features

Example: Powerpoint
• Lots and lots of nested menus

6

Example: Powerpoint

• Lots and lots of nested menus

• Horizontal ones and vertical ones

• Takes a long time to make slides 
(even if you know what functions are
available)

7

Here are Some Examples:

• Make this text box bold in the slide master.

• Make the border of this shape with little dots.

• Make everything right aligned on this slide.

• Make every shape on this slide above this yellow.

8

Multimodal Interaction:
High-level goals rather than low-level actions

9

“Make all the word ‘ReactGenie’
red and bold”

Instead of

Low-level actions:

[select] -> [change color] ->
[make bold] … x 3

High-level goals

How to Create Sophisticated Multimodal Apps?

10

Lecture Goals

• Why do we need multimodal interactions?

• Three problems for multimodal app development

• Compositionality of multimodal commands

• Expose diverse actions/APIs from a GUI app

• Allows for interchangeable and simultaneous multimodal interactions

• ReactGenie: a multimodal app development framework

11

Recall the examples earlier
Make this text box bold in the slide master.

Make the border of this shape with little dots.

Make everything right aligned on this slide.

Make every shape on this slide above this yellow.

12

Problem 1: Limitation of Function Calling
Make this text box bold in the slide master.

MakeSlideMasterTextBold()

Make the border of this shape with little dots.

MakeShapeBorder(borderType:"littleDots")

Make everything right aligned on this slide.

SetEverythingAlignment(alignment:"Right")

Make every shape on this slide above this yellow.

SetShapeAboveColor(color:"Yellow")

13

How many functions do we need for function calling — this is not scalable!

Solution 1: Compositionality of multimodal commands

Make this text box bold in the slide master.

Slide.Current().getSlideMaster().matching(field:.id,value:Shape.Current().id)
.textFrame.textRange.font.setBold(bold: true)

Make the border of this shape with little dots.

Shape.Current().lineFormat.setDashStyle(dashSyle:"RoundDot"）

Make everything right aligned on this slide.

Slide.Current().getShapes().textFrame.textRange.paragraphFormat.
setHorizontalAlignment(horizontalAligment:"Right")

Make every shape on this slide above this yellow.

Slide.Current().getShapes().between(field:.top,to:Shape.Current().top).
fill.setForeGroundColor(color:"yellow")

14

Solve Compositionality with compound function calls

NLPL (natural-language
programming language)

Design of NLPL (Natural Language  
 Programming Language)

No param names, more errors

Existing language NLPL

Delete Shapes above this

Slide.Current().
findShape(
 above=Shape.Current())

Python

select * from shape
where top>current_top

SQL

TypeScript

Slide.Current().findShape(
 Shape.Current().top
).forEach((x)=> x.delete())

Slide.Current().findShape(
above: Shape.Current().top
).forEach{$0.delete()}

Swift

Slide.Current().getShapes()
.between(
 field: .top,
 to: Shape.Current().top
).delete()

Weak type, more errors

Ambiguous query

No Action

Easy to generate

Versatile query

Fewer errors

No Lambda Expression

Automatically
distributed to each
element

Expressiveness of NLPL

16

Feature of NLPL English grammar Food Ordering PowerPoint Social Network

Call function of a
object Singular Object + Verb Order.Current().place() TextRange.Current().setBold( 

bold: true) Post.Current().like()

Distribute action to an
array of objects Plural Object + Verb Order.All()[-1].foods.like() Slide.Current().getShapes().textFrame.

setText(“”) User.Me().posts.delete()

Specify function
parameters

Object + Verb + Verb
Modifier

Order.Current().addFoods( 
foods:[Food.GetFood(name:“Burger”)])

Shape.Current().textFrame.setText( 
text: “12345”)

Post.Current().comment( 
comment: “Nice Photo”)

Select objects to do
actions

Object Modifier +
Object + Verb

Restaurant.Current().foods.sort( 
field: .price)[0].order()

Shape.All().matching( 
field: .textFrame.text,  

value: “yellow).delete()

Post.All().equals( 
field: .like,  

value: true)

C h a n g e b a c k g r o u n d c o l o r f o r a l l t h e y e l l o w s h a p e s t o o r a n g e

Shape.All().equals(field: .shapeFill.foregroundColor, value: “yellow”).shapeFill.setForegroundColor(color: “orange”)

Verb Object Modifier Object Verb Modifier

Examples of Compound Commands

17

18

Making PowerPoint Multimodal with Gen
• Built on MS PowerPoint Javascript API

• 110 APIs: Slide, Shape, SlideMaster, TextFrame, TextRange, …

• Yet, it does not include common APIs like Animation, Font color, etc.

• It is super hard to expose API outside of the development cycle of GUI

• Powerpoint today has a human “GUI” interface

• How do we create a multimodal interface?

19

Problem 2: Expose diverse actions/APIs from a GUI app

• 110 APIs: Slide, Shape, SlideMaster, TextFrame, TextRange, …

• That’s everything from MS PowerPoint JS API.

• Yet, it still does not have common APIs like Animation, Font color, etc.

• It is super hard to expose API outside of the development cycle of GUI

• With the advancement of AI, developers need to build two interfaces:

• A human interface, and

• An AI interface

• That’s double the work on developers!

20

Problem 2: How to Expose APIs to Multimodal Interace

• Can we do it with minimal engineering effort?

• Solution: Just add annotations to existing code to expose desired features

• GenieClass: indicates it has a multimodal interface

• GenieKey: each instance has an ID

• GenieProperty: exposed properties (variables)

• GenieFunction: exposed functions

21

class Order extends DataClass {

 public orderId: string;

 public orderItems: FoodItem[];
 constructor({orderId, orderItems}: {orderId: string, orderItems: FoodItem[]}) {
 super({orderId, orderItems}); this.orderId = orderId; this.orderItems = orderItems;
 }

 static All(): Order[] {
 return fetchOrdersFromServer();
 }

 static CreateOrder(): Order {
 return new Order({orderId: randomId(), orderItems: []});
 }

 addItem({foodItem}: {foodItem: FoodItem}) {
 this.orderItems.push(foodItem); updateServer();
 }
}

Solution 2: Annotate exposed APIs

22

@GenieClass(“Past order or a shopping cart")

 @GenieKey()

 @GenieProperty("Items in the order")

 @GenieFunction()

 @GenieFunction("Create a new order")

 @GenieFunction("Add an item to the order")

ReactGenie
Annotations

React App Logic Code

Problem 3: How to tell the user what happened? 🤷

23

When is the last time I  
ordered from this restaurant?

User touching this picture

Solution 3: Interchangeable & simultaneous multimodal I/O

24

When is the last time I  
ordered from this restaurant?

Navigate to order history page 
for McDonald’s

Example 2

s

Add 1 burger to my cart.

Perform action and  
Update page

Example 3

26

s

Add one shake and one  
burger to the cart.

Perform action and  
Navigate to another page

Solution 3: Interchangeable & simultaneous
multimodal I/O

• Multimodal Input

• UI Input Mapping: Getting what object that I’m touching

• Multimodal Output

• Resulting objects are on-screen  
—> UI Updates: Update the values on screen

• Resulting objects are off-screen  
—> Navigation: Navigate to the page with results

27

Lecture Goals

• Why do we need multimodal interactions?

• Three problems for multimodal app development

• ReactGenie: a multimodal app development framework

28

What is ReactGenie?

29

React Code

(In recommended style)

Annotations

(< 5% code typically)

ReactGenie Code+

Combinations of

Voice + GUI input

ReactGenie DSL

Code

Semantic Parser

UI Mapping Execution Both

Voice + GUI output

Ease of Development

Rich Multimodal Functionality

ReactGenie Demo

30

Modern GUI 101: State + Components

RecipeViewImpl = (recipe: Recipe) => {
 return (
 <div>

 <love loved={recipe.loved}
 onClick(()=>recipe.love())/>
 <div> {recipe.name} </div>
 </div>
)
}

class Recipe {
 name: String;
 img: Image;
 loved: boolean;

 love(): void {
 this.loved = true;

}
}

State Code: Implements Features Components: Describe GUI

31

 ReactGenie = React + Annotations

RecipeViewImpl = (recipe: Recipe) => {
 return (
 <div>

 <love loved={recipe.loved}
 onClick(()=>recipe.love())/>
 <div> {recipe.name} </div>
 </div>
)
}

export RecipeView = GenieInterface(“Recipe”,
 RecipeViewImpl)

@DataClass()
class Recipe: GenieClass {

@GenieProperty()
 name: String;

 img: Image;
@GenieProperty()

 loved: boolean;

 @GenieFunction()
 love(): void {
 this.loved = true;

}
}

State Annotations:

Which class/property/function
can be accessed with voice

Components Annotations:

Which components represent
which state classes 32

Recall the Agent Architecture

33

Text input

User

Dialogue StateSemantic

Parser
Execution

Result Response

Generator

Agent Output

Dialogue State

Agent

React has a Similar Architecture

34

Text input

User

Dialogue StateSemantic

Parser
Execution

Result Response

Generator

Agent Output

Dialogue State

Text input

Component

API callUI

Mapping
Execution

Result
UI Update Display

React Program State

React

Agent

Multimodal Agent Architecture

35

Text input

User Dialogue State

(NLPL)Semantic

Parser

Execution

Result Response

Generator

Agent Output

Text input Component

API call

UI

Mapping

Result UI Update Display

React

Program State

ReactGenie

Semantic Parser + Response Generator

36

Text input

User Dialogue State

(NLPL)Semantic

Parser

Execution

Result Response

Generator

Agent Output

Text input Component

API call

UI

Mapping

Result UI Update Display

React

Program State

ReactGenie

Revisiting NLPL
Make this text box bold in the slide master.

Slide.Current().getSlideMaster().matching(field:.id,value:Shape.Current().id)
.textFrame.textRange.font.setBold(bold: true)

Make the border of this shape with little dots.

Shape.Current().lineFormat.setDashStyle(dashSyle:"RoundDot"）

Make everything right aligned on this slide.

Slide.Current().getShapes().textFrame.textRange.paragraphFormat.
setHorizontalAlignment(horizontalAligment:"Right")

Make every shape on this slide above this yellow.

Slide.Current().getShapes().between(field:.top,to:Shape.Current().top).
fill.setForeGroundColor(color:"yellow")

37

NLPL (natural-language
programming language)

// Here are all the functions that we have

class Restaurant {
 string name;
 string address;
 string cuisine;
 float rating;

 // All active restaurants
 static Restaurant[] all();

 // The current restaurants
 static Restaurant current();

 // Get a list of foods representing the menu from a restaurant
 Food[] menu;

 // Book reservations on date
 Reservation get_reservation(date: DateTime)
}

Declaration

// Examples:

user: get me the best restaurant in palo alto
agent: Restaurant.all().matching(field: .address, value: "palo alto”)…

Few-shot examples

// User interaction
user: order the same burger that I ordered at mcDonald last time Current interaction

parsed: Order.current.addFoods(foods: Order.all().matching… Parsed result

LLM-Based Semantic Parser

38

// Here are all the functions that we have

class Restaurant {
 string name;
 string address;
 string cuisine;
 float rating;

 // All active restaurants
 static Restaurant[] all();

 // The current restaurants
 static Restaurant current();

 // Get a list of foods representing the menu from a restaurant
 Food[] menu;

 // Book reservations on date
 Reservation get_reservation(date: DateTime)
}

Declaration

// Generate concise voice feedback for the user’s command Instructions

// User interaction
user: order the same burger that I ordered at mcDonald last time
parsed: Order.current.addFoods(foods: Order.all().matching…
execution_result: {"type": "Order", "items": [{"type": "FoodItem", "name": "Hamburger"}, {"type": "FoodItem", "name": "Fries"}]}

Current interaction

response: Your order with a hamburger and fries has been placed. Generated Response

LLM-Based Response Generator

39

How to Handle Hybrid Inputs

40

Text input

User Dialogue State

(NLPL)Semantic

Parser

Execution

Result Response

Generator

Agent Output

Text input Component

API call

UI

Mapping

Result UI Update Display

React

Program State

ReactGenie

UI Mapping

Programming
Objects

View ReactGenie

Restaurant

(name: “Mcdonald")

Order(date: “3/3/2023”)

FoodItem

(name: “boba tea”)

FoodItem

(name: “mango drink”)

41

How to Handle Hybrid Inputs

42

👆

User: “Reorder this food”

Order.GetActiveOrder().addFood(food:[FoodItem.Current()])

Unresolved UI reference FoodItem.Current()

UI Mapping: Find FoodItem closest to the click point

FoodItem(name:"CrunchWrap")

Continue execution

How to Navigate with Voice Commands

43

Text input

User Dialogue State

(NLPL)Semantic

Parser

Execution

Result Response

Generator

Agent Output

Text input Component

API call

UI

Mapping

Result UI Update Display

React

Program State

ReactGenie

UI Update 1: Object is on UI → React takes care of it

Recipe(name: “Creamy”). love()

“I love the Creamy Potatoes recipe!”

44

recipe.loved = true

RecipeViewImpl = (recipe: Recipe) => {
 return (
 <div>

 <love loved={recipe.loved}
 onClick(()=>recipe.love())/>
 <div> {recipe.name} </div>
 </div>
)
}

UI Update 2: Object not on UI → Navigate to the page

45

Recipe(name: “Creamy Potato”)

“Show me the Creamy Potato recipe!”

Execution

46

Text input

User Dialogue State

(`)Semantic

Parser

Execution

Result Response

Generator

Agent Output

Text input Component

API call

UI

Mapping

Result UI Update Display

React

Program State

ReactGenie

Execution

• Slide.Current()

• Slide(id: 1)

• Slide.Current().getShapes()

• [Shape(text: "A"), Shape(text: "B"), Shape(text: "C"), Shape(text: "D"), Shape(text: “E")]

• Slide.Current().getShapes().between(field:.top, to:Shape.Current().top)

• [Shape(text: "A"), Shape(text: "B")]

• Slide.Current().getShapes().between(field:.top, to:Shape.Current().top).fill.setForeGroundColor(color:”yellow")

• [Fill(), Fill()]

47

D E

C

A B

Slide.Current().getShapes().
between(field:.top,to:Shape.Current().top).
fill.setForeGroundColor(color:"yellow")

“Make everything above this yellow”
A B

Summary 
ReactGenie = React + Annotations

RecipeViewImpl = (recipe: Recipe) => {
 return (
 <div>

 <love loved={recipe.loved}/>
 <div> {recipe.name} </div>
 </div>
)
}

RecipeView = GenieInterface(“Recipe”,
 RecipeViewImpl)

@DataClass()
class Recipe: GenieClass {

@GenieProperty()
 name: String;
 img: Image;

@GenieProperty()
 loved: boolean;

 @GenieFunction()
 love(): void {
 this.loved = true;

}
}

State Annotations:

Which class/property/function
can be accessed with voice

Components Annotations:

Which components represent
which state classes 48

Semantic

Parser

Execution
Response

Generator

UI

Mapping

UI Update

Recap: ReactGenie Uses Declarative UI Architecture for Ease of Development

49

Define Object-
Oriented States

Taco Bell

Taco 3/3
Order

Restaurant

Mr Sun 3/3
Order

Crunchwrap
FoodItem

Quesadilla
FoodItem

Taro boba
FoodItem

Define
UI Components

Restaurant
ItemView

OrderItem
View

Food
Thumbnail

class Order extends DataClass {

 public orderId: string;

 public orderItems: FoodItem[];
 constructor({orderId, orderItems}: {orderId: string, orderItems: FoodItem[]}) {
 super({orderId, orderItems}); this.orderId = orderId; this.orderItems = orderItems;
 }

 static All(): Order[] {
 return fetchOrdersFromServer();
 }

 static CreateOrder(): Order {
 return new Order({orderId: randomId(), orderItems: []});
 }

 addItem({foodItem}: {foodItem: FoodItem}) {
 this.orderItems.push(foodItem); updateServer();
 }
}

@GenieClass(“Past order or a shopping cart")

 @GenieKey()

 @GenieProperty("Items in the order")

 @GenieFunction()

 @GenieFunction("Create a new order")

 @GenieFunction("Add an item to the order")

Recap: ReactGenie Use Annotations for Multimodal Integration

50

Define Object-
Oriented States

Taco Bell

Taco 3/3
Order

Restaurant

Mr Sun 3/3
Order

Crunchwrap
FoodItem

Quesadilla
FoodItem

Taro boba
FoodItem

Define
UI Components

Restaurant
ItemView

OrderItem
View

Food
Thumbnail

Developer-Coded GUI

👆

Recap: ReactGenie Execute User’s Request within UI Context

51

Recap: ReactGenie Execute User’s Request within UI Context

52

Define Object-
Oriented States

Taco Bell

Taco 3/3
Order

Restaurant

Mr Sun 3/3
Order

Crunchwrap
FoodItem

Quesadilla
FoodItem

Taro boba
FoodItem

Define
UI Components

Restaurant
ItemView

OrderItem
View

Food
Thumbnail

Developer-Coded GUI

ReactGenie RuntimeSemantic
Parser

Order.GetActiveCart().addItems(items:O
rder.OrderHistory().matching(field:.re
staurant,value:Restaurant.current())
[0].items) ReactGenieDSL

Defined States

Input
UI Mapping

Taco Bell
Restaurant

UI Reference

Taco 3/3
Order

New Taco
Order

Result

Output
UI Mapping

👆

Order.GetActiveCart().addItems(items:O
rder.OrderHistory().matching(field:.re
staurant,value:Restaurant.current())
[0].items) ReactGenieDSL

Order.GetActiveCart().addItems(items:O
rder.OrderHistory().matching(field:.re
staurant,value:Restaurant.current())
[0].items) ReactGenieDSL

Order.GetActiveCart().addItems(items:O
rder.OrderHistory().matching(field:.re
staurant,value:Restaurant.current())
[0].items) ReactGenieDSL

Generated Multimodal UI

How good is ReactGenie as a framework?

• For developers:

• D-RQ1: Assessing the expressiveness of ReactGenie

• D-RQ2: Development time for expert developers

• D-RQ3: Ease of learning and usability for novice developers

53

We built three apps to demonstrate expressiveness (F-RQ1)

54

• Only 5% of the code
(annotations) was 
written to handle
multimodal interactions.

ReactGenieFoodOrdering ReactGenieSocial ReactGenieSign

ReactGenieSign - NDA Management

Add three of this to my
cart

Show me posts
from Mark that I have liked

before.

Only show me request
through this email

F-RQ2: Expert building an app: a Timer

55

• User can:

• Create, start, and pause timer with voice.

• Start/stop timer of a certain category

• Filter timer by remaining time

• …

ReactGenieTimer

We asked an expert developer to build an App in
ReactGenie and GPT Function Calling (F-RQ2)

56
ReactGenieTimer

Metric ReactGenie
GPT-3

Function
Calling

Time to Develop
(minutes) 45 177

Additional Lines of
Code 159 523

Features
Supported

Touch, Complex Commands,
Navigation

Limited
Support

Less time

Less code

More features

Novice Developer Study on ReactGenie Usability (F-RQ3)

57
ReactGenieTimer

• Study Design:  
Learn with tutorial ->  
Construct timer app on GUI boilerplate

• High comprehension of framework
functionality (99% of questions correct)

• Fast completion time: 67.3 minutes

• Positive feedback on ease of use

• Many participants asked to use ReactGenie in
real-life applications

How good is ReactGenie as a framework?

• For users:

• U-RQ1: Parser performance with natural language commands

• U-RQ2: Usability and efficiency of multimodal UIs generated by ReactGenie

58

Evaluate parser's effectiveness with commands from crowd
workers (U-RQ1)

59

• Participants provided with app screenshots and
videos to prompt commands

• Results:

• 172 rich multimodal commands

• Parser Accuracy:

• 101 supported commands:  

parsed correctly 91%

• 71 unsupported commands: 

generated sensible NLPL 53%

User Experience with ReactGenie-Generated UIs (U-RQ2)

60

• Compare user performance and experience using
multimodal UIs vs. GUI-only

• Study Design:

• Within-subject design with 16 participants

• Multimodal UI vs. GUI-only

• Result: ReactGenie

• Saved 40% time (p=0.0004)

• Lower Cognitive Load (p=0.013)

• Higher Usability (p=0.031)

• Participant Preferences:

• Strong preference on MMI: 11/16

ReactGenieFoodOrdering

Conclusions
• Multimodal interaction history is long, but adoption is limited due to

implementation costs.

• Compared to voice interfaces, multimodal ones are flexible, efficient, clearer,

and less error-prone.

• ReactGenie aims to foster multimodal interaction adoption.

• Merges modern app features and multimodal interface flexibility, ensuring

easy development.

• Utilizes object-oriented state abstraction and declarative UI for modality

synchronization.

• Employs LLMs to expose the app's entire state, rather than limiting it to

individual APIs for voice interfaces.

61

