
Back to the future:
Data efficient language modeling

Tatsunori Hashimoto
Stanford CS



Roadblocks to progress in machine learning

What is the major bottleneck to continued improvements in ML (and LLMs)?

Algorithms
(better function classes)

Data 
(lack of supervised data)

Compute
(inability to process all the data)



Data lies at the heart of recent advances

Pretraining data

Known pretraining recipes all emphasize the important of the data mix



Data lies at the heart of recent advances

Instruction tuning / post-training

Simple algorithms with the ‘right’ data (for instruction-tuning / RLHF) 
gets you quite far for instruction tuning



Data lies at the heart of recent advances

Reasoning capabilities

Even something as complex as ‘long CoT reasoning’ can (to a suprising 
extent) be unlocked with naïve methods + the right data



Data scarcity problems on the horizon

Thus far, data constraints have not been acute since internet data is vast

But compute has been growing much faster than data



Statistical learning has much to say in this regime

Data >> Compute

(Pretraining / FM era)

Compute >> Data

(Classical deep learning 
.. and the future?)



The problems of the future are those of the past

In a compute rich world,
understanding and engineering data becomes critical

Understanding generalization from data is a foundational question
in statistics and machine learning!



What is there to do?

Understanding generalization 

Rich phenomena in algorithmic generalization

Synthetic data

Firm conceptual (and theoretical) foundation



Part 1: Algorithmic interventions for data efficiency

Are there simple data efficiency interventions
that have been overlooked?
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Part 1: Using data better Part 2: Making ‘new’ data

Pre-training under infinite compute [ArXiv preprint]

Konwoo Kim*, Suhas Kotha*, Percy Liang, Tatsunori Hashimoto



Pretraining – hitting a wall?

~35x more expensive

New, pretrained models – not quite as impressive

Discussions of the ‘end of pretraining’

* Even if you think RL or continual learning are ‘ways out’ you still need data efficiency



Existing approaches are quite bad for data efficiency
What if we have infinite compute, and we just scale up epochs [e.g. Muenninghoff et al] and param size

We get no benefits past a point (600M params w/ 200M dataset) even with infinite compute
Note: overfitting is not benign in the LM pretraining case



Identifying simple, scalable data efficiency gains

Q: if we had infinite compute, are there algorithms that would 
give us significantly more data efficiency?



Developing algorithms for a compute rich future

How should we study the nearly infinite compute regime..

(without paying for infinite compute)

… lim
𝐶→∞

1. Scale down the ‘world’ 
 (200M tokens, eval on perplexity)

2. Compare algorithms via 
compute scaling asymptote

3. Check validity by scaling up the 
‘world size’ (200M -> 1.7B)



Scaling for performance prediction is not new



Step 1: Fixing the ‘standard’ recipe for asymptotic losses

With optimal (much higher) regularization + model scaling, we get clean scaling 
laws

This improves data efficiency and gives our first asymptotic loss baseline (~3.43)

30x higher weight decay



Going beyond regularization

Regularization is maybe too simple 
are there other ways of ‘trading compute for data efficiency’?  

[Herel and Mikolov 2023]

We have a  wealth of theory and intuition for this regime

Ensembling, data augmentation and similar leaderboard interventions come back in play



Step 2: Ensembling as a new axis of scaling

Instead of bigger models, we could ensemble more models, fixing the total param count
Ensembles have far better asymptotes (~3.34)



Subtleties – limits and hyperparameters

Getting smooth ensemble scaling is hard – the best hyper params change w/ ensemble count

This complicates the joint scaling problem of taking param + ensemble count to infinity



Ensembles are surprisingly good

We estimate the perf of ensembles under infinite compute via a joint limit:

First, ensemble count to infinity, then parameter count to infinity.

This gives much, much better asymptotes (3.17 vs 3.34) 

[n.b. We found this to be the easiest order of the limits to estimate via scaling laws.] 



Ensembles for larger dataset sizes

We were doing our analysis on small, fixed data (200M tokens, ~1.4B params). 

Does this generalize to larger corpora? 

Ensemble gains (left two panels) are consistent as we scale up the corpus (right)



Surprising observation: ensemble distillation and self-training

Even with infinite training compute, we 
still care about inference compute

• Can we distil big ensembles into 
small models? (yes)

• Can other ‘ensemble like methods 
like self-training also work? (yes) 

[This has interesting implications for 
data feedback loops / model collapse]



Can we trust small-scale perplexity evaluations?

Generally, yes (avg PIQA, ARC, SciQ)

• Noisier but generally similar scaling trends across all models

• Pareto-dominant models are all ensembles at large compute targets



Gains for continued pretraining

Gains on CPT / Midtraining – this is a naturally data constrained setting

• OctoThinker dataset / evaluations

• The “data efficient” recipes (batch size, epochs) help

• Ensembles help a lot for data efficiency



Data in a compute rich future

Open questions

Data bottlenecks open up interesting, 
basic algorithms research for LLMs

… lim
𝐶→∞

Science of scaling laws for data efficiency Better foundational understanding of ensembling



Part 2: New horizons with synthetic data

Can we ‘create’ new data? 
What would that mean and why would that work?
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Part 1: Using data better Part 2: Making ‘new’ data

Synthetic continued pretraining [ICLR 2025]  - Zitong Yang*, Neil Band*, Shuangping Li, Emmanuel Candès, Tatsunori Hashimoto  

Synthetic bootstrapped pretraining [ArXiv preprint] - Zitong Yang*, Aonan Zhang*, Hong Liu, Tatsunori Hashimoto, Emmanuel Candès, 
Chong Wang, Ruoming Pang



Synthetic data as a major, current bet for data efficiency

Many bets are currently being placed on ‘synthetic data’

Is creating new data in this way really viable?



But the status quo for open synthetic data work is messy 

Synthetic data has often been studied in the context of distillation / post -training

Distillation effects from larger models Post-training / alignment of existing capabilities

* And sometimes people even refer to RL-like algorithms as synthetic data..



Synthetic data research poses new (scaling) challenges

There is a ‘critical’ threshold for synthetic data to start working
This makes naïve scaling down hard!



Changing the setting – continued pretraining

Given:

• A pretrained model 𝑓

• A small domain of knowledge that can be characterized by some corpus  
(e.g. textbook for a specialized domain, proprietary corporate documents).

Goal:

• Modify the weights of 𝑓 such that

• The modified 𝑓 can perform a range of tasks – QA, summarization, as if it was 
pretrained on a large corpus containing our specialized knowledge



Our challenge: learning from 10,000x less data

Can we adapt to knowledge that might be truly in the tail? 
Few hundred books with 10,000x less data



Attempt 1 – Just do continued pretraining



Problems with standard continued pretraining

Standard continued pretraining: train directly on our documents

using the small domain-specific corpus to synthesize a large corpus

We propose to bridge this gap with synthetic continued pretraining: 

Autoregressive LM

Autoregressive learning is data-inefficient (reversal curse)
In the autoregressive direction: “What does synthetic CPT do?” 
In the reverse direction: “What method synthesizes a large corpus?” 



Synthetic continued pretraining – augment the data

Synthetic continued pretraining: Train on LLM-transformed data 

Goal – replicate the diversity of pretraining
• Vary content (topics)
• Vary style (how it’s presented)
• Data diversity for generalization

This is different from synthetic data or..
• compute / size efficiency (WRAP/Phi)
• fine-tuning (task-specific LMs) 

LMaug

{ …

{

Autoregressive LM

{ …

{



Attempt 2 – Just paraphrase the data



What we get: Entity-centric augmentation (EntiGraph)

How do we get diversity? Use a knowledge graph to force diversity in content

1. Prompt LMaug for entities 
in a knowledge graph.

2. Sample k-subgraphs of 
the knowledge graph

3. LMaug synthesizes 
descriptions of the 
entities in the subgraph

New implicit fact as data (The Louvre contains many works by DaVinci..)



A random graph model for synthetic data generation

What’s the ‘mathematical model’?

What does this imply?

Explicit facts are connected edges between entities (vertices) on a random graph.
Implicit facts are paths within a connected component

EntiGraph ‘connects’ the whole connected component 

A mixture-of-exponentials scaling law



(Closed-book) QA performance with EntiGraph

Predictable, scaling gains for QA performance without the text



Can we go beyond prompting a model?

We’ve validated a ‘scaled down’ idea with continued pretraining.

Can we get this to work in the “pure bootstrapping setting”? This means..

• No pre-trained teacher (we have to train our own)

• No strong hand-crafted prompts.

The first one is just a compute problem (‘train your own teacher’)
The second one is a bit more subtle – what is a ‘general purpose’ way to learn to augment data?



Synthetic data as data augmentation

Maini et al ‘24

Rephrasing is much like an label-invariant data augmentation
There is a deep literature on unsupervised learning of transformations 

(i.e. generators of a lie algebra)

Rao and ruderman ‘99



Learning augmentations and smoothing kernels 

We showed a while ago that “learn augmentations from neighbors” also works for language models.

This is a nonparametric language model where the kernel is learned [Guu, Hashimoto, Oren, Liang ‘18]
𝑃 𝑥 = 𝑃 𝑥 𝑥′ 𝑃 𝑥′  where 𝑃 𝑥 𝑥′  is an edit and 𝑃 𝑥′  is a prototype 



Learning the augmentations from scratch

New synthetic data generation process: synthesizer trained on neighbor supervision

Synthetic data is a supervised task of transforming a document into its neighbor

Do these classic “transformation / lie group learning” methods translate to the pretraining setting?



Scaling up fast document nearest neighbor search

Scaling up nearest-neighbor search to pretraining scale (for both queries and keys) 
requires careful handling of ANN indices



The overall procedure

The whole synthetic data / bootstrapping process is 3 simple steps given a base model

Step 1: Pair up nearest neighbors

Define a inner product metric 𝑑, pair up neighbors with inner product > 𝛼

Step 2: Learn the augmentation

Learn a conditional LM 𝑝(𝑥2|𝑥1) by continuing to train the base model

Step 3: Generate synth data and train on it

Sample new documents from 𝑝(𝑥2|𝑥1) for each document, 
train a new model on a mix of synth + real data (1:3 and 1:8 ratios)



Initial steps at scaling

200 Billion token budget (deduplicated DCLM data) for a 3B model

Notes: 75B synthetic repeated once, 10B real data repeated 12.5 times 



Results at 3B/1T

Gains (even at scale) capturing half the gains to having fresh data (oracle)



Qualitative evaluations of data quality across scales

Data quality failures (repetition, low diversity, etc) decrease with scale



Takeaways: synthetic data

1. Can we completely close the ICL to parametric learning gap with enough compute?

2. What are the limits to synthetic data based augmentation?

3. What about synthetic data for reasoning?

Powerful, new forms of augmentation 
(and pretraining unlocks new, stronger gains from augmentations)



Thanks!

Language modeling may return to a foundational challenge – generalizing from limited data

In many ways, this is challenging

Algorithmic gains have been hard fought (and not that well understood)

But also it’s an exciting problem

Foundational problems (might) require more radical solutions
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