
Back to the future:
Data efficient language modeling

Tatsunori Hashimoto
Stanford CS

Roadblocks to progress in machine learning

What is the major bottleneck to continued improvements in ML (and LLMs)?

Algorithms
(better function classes)

Data
(lack of supervised data)

Compute
(inability to process all the data)

Data lies at the heart of recent advances

Pretraining data

Known pretraining recipes all emphasize the important of the data mix

Data lies at the heart of recent advances

Instruction tuning / post-training

Simple algorithms with the ‘right’ data (for instruction-tuning / RLHF)
gets you quite far for instruction tuning

Data lies at the heart of recent advances

Reasoning capabilities

Even something as complex as ‘long CoT reasoning’ can (to a suprising
extent) be unlocked with naïve methods + the right data

Data scarcity problems on the horizon

Thus far, data constraints have not been acute since internet data is vast

But compute has been growing much faster than data

Statistical learning has much to say in this regime

Data >> Compute

(Pretraining / FM era)

Compute >> Data

(Classical deep learning
.. and the future?)

The problems of the future are those of the past

In a compute rich world,
understanding and engineering data becomes critical

Understanding generalization from data is a foundational question
in statistics and machine learning!

What is there to do?

Understanding generalization

Rich phenomena in algorithmic generalization

Synthetic data

Firm conceptual (and theoretical) foundation

Part 1: Algorithmic interventions for data efficiency

Are there simple data efficiency interventions
that have been overlooked?

10

Part 1: Using data better Part 2: Making ‘new’ data

Pre-training under infinite compute [ArXiv preprint]

Konwoo Kim*, Suhas Kotha*, Percy Liang, Tatsunori Hashimoto

Pretraining – hitting a wall?

~35x more expensive

New, pretrained models – not quite as impressive

Discussions of the ‘end of pretraining’

* Even if you think RL or continual learning are ‘ways out’ you still need data efficiency

Existing approaches are quite bad for data efficiency
What if we have infinite compute, and we just scale up epochs [e.g. Muenninghoff et al] and param size

We get no benefits past a point (600M params w/ 200M dataset) even with infinite compute
Note: overfitting is not benign in the LM pretraining case

Identifying simple, scalable data efficiency gains

Q: if we had infinite compute, are there algorithms that would
give us significantly more data efficiency?

Developing algorithms for a compute rich future

How should we study the nearly infinite compute regime..

(without paying for infinite compute)

… lim
𝐶→∞

1. Scale down the ‘world’
 (200M tokens, eval on perplexity)

2. Compare algorithms via
compute scaling asymptote

3. Check validity by scaling up the
‘world size’ (200M -> 1.7B)

Scaling for performance prediction is not new

Step 1: Fixing the ‘standard’ recipe for asymptotic losses

With optimal (much higher) regularization + model scaling, we get clean scaling
laws

This improves data efficiency and gives our first asymptotic loss baseline (~3.43)

30x higher weight decay

Going beyond regularization

Regularization is maybe too simple
are there other ways of ‘trading compute for data efficiency’?

[Herel and Mikolov 2023]

We have a wealth of theory and intuition for this regime

Ensembling, data augmentation and similar leaderboard interventions come back in play

Step 2: Ensembling as a new axis of scaling

Instead of bigger models, we could ensemble more models, fixing the total param count
Ensembles have far better asymptotes (~3.34)

Subtleties – limits and hyperparameters

Getting smooth ensemble scaling is hard – the best hyper params change w/ ensemble count

This complicates the joint scaling problem of taking param + ensemble count to infinity

Ensembles are surprisingly good

We estimate the perf of ensembles under infinite compute via a joint limit:

First, ensemble count to infinity, then parameter count to infinity.

This gives much, much better asymptotes (3.17 vs 3.34)

[n.b. We found this to be the easiest order of the limits to estimate via scaling laws.]

Ensembles for larger dataset sizes

We were doing our analysis on small, fixed data (200M tokens, ~1.4B params).

Does this generalize to larger corpora?

Ensemble gains (left two panels) are consistent as we scale up the corpus (right)

Surprising observation: ensemble distillation and self-training

Even with infinite training compute, we
still care about inference compute

• Can we distil big ensembles into
small models? (yes)

• Can other ‘ensemble like methods
like self-training also work? (yes)

[This has interesting implications for
data feedback loops / model collapse]

Can we trust small-scale perplexity evaluations?

Generally, yes (avg PIQA, ARC, SciQ)

• Noisier but generally similar scaling trends across all models

• Pareto-dominant models are all ensembles at large compute targets

Gains for continued pretraining

Gains on CPT / Midtraining – this is a naturally data constrained setting

• OctoThinker dataset / evaluations

• The “data efficient” recipes (batch size, epochs) help

• Ensembles help a lot for data efficiency

Data in a compute rich future

Open questions

Data bottlenecks open up interesting,
basic algorithms research for LLMs

… lim
𝐶→∞

Science of scaling laws for data efficiency Better foundational understanding of ensembling

Part 2: New horizons with synthetic data

Can we ‘create’ new data?
What would that mean and why would that work?

26

Part 1: Using data better Part 2: Making ‘new’ data

Synthetic continued pretraining [ICLR 2025] - Zitong Yang*, Neil Band*, Shuangping Li, Emmanuel Candès, Tatsunori Hashimoto

Synthetic bootstrapped pretraining [ArXiv preprint] - Zitong Yang*, Aonan Zhang*, Hong Liu, Tatsunori Hashimoto, Emmanuel Candès,
Chong Wang, Ruoming Pang

Synthetic data as a major, current bet for data efficiency

Many bets are currently being placed on ‘synthetic data’

Is creating new data in this way really viable?

But the status quo for open synthetic data work is messy

Synthetic data has often been studied in the context of distillation / post -training

Distillation effects from larger models Post-training / alignment of existing capabilities

* And sometimes people even refer to RL-like algorithms as synthetic data..

Synthetic data research poses new (scaling) challenges

There is a ‘critical’ threshold for synthetic data to start working
This makes naïve scaling down hard!

Changing the setting – continued pretraining

Given:

• A pretrained model 𝑓

• A small domain of knowledge that can be characterized by some corpus
(e.g. textbook for a specialized domain, proprietary corporate documents).

Goal:

• Modify the weights of 𝑓 such that

• The modified 𝑓 can perform a range of tasks – QA, summarization, as if it was
pretrained on a large corpus containing our specialized knowledge

Our challenge: learning from 10,000x less data

Can we adapt to knowledge that might be truly in the tail?
Few hundred books with 10,000x less data

Attempt 1 – Just do continued pretraining

Problems with standard continued pretraining

Standard continued pretraining: train directly on our documents

using the small domain-specific corpus to synthesize a large corpus

We propose to bridge this gap with synthetic continued pretraining:

Autoregressive LM

Autoregressive learning is data-inefficient (reversal curse)
In the autoregressive direction: “What does synthetic CPT do?”
In the reverse direction: “What method synthesizes a large corpus?”

Synthetic continued pretraining – augment the data

Synthetic continued pretraining: Train on LLM-transformed data

Goal – replicate the diversity of pretraining
• Vary content (topics)
• Vary style (how it’s presented)
• Data diversity for generalization

This is different from synthetic data or..
• compute / size efficiency (WRAP/Phi)
• fine-tuning (task-specific LMs)

LMaug

{ …

{

Autoregressive LM

{ …

{

Attempt 2 – Just paraphrase the data

What we get: Entity-centric augmentation (EntiGraph)

How do we get diversity? Use a knowledge graph to force diversity in content

1. Prompt LMaug for entities
in a knowledge graph.

2. Sample k-subgraphs of
the knowledge graph

3. LMaug synthesizes
descriptions of the
entities in the subgraph

New implicit fact as data (The Louvre contains many works by DaVinci..)

A random graph model for synthetic data generation

What’s the ‘mathematical model’?

What does this imply?

Explicit facts are connected edges between entities (vertices) on a random graph.
Implicit facts are paths within a connected component

EntiGraph ‘connects’ the whole connected component

A mixture-of-exponentials scaling law

(Closed-book) QA performance with EntiGraph

Predictable, scaling gains for QA performance without the text

Can we go beyond prompting a model?

We’ve validated a ‘scaled down’ idea with continued pretraining.

Can we get this to work in the “pure bootstrapping setting”? This means..

• No pre-trained teacher (we have to train our own)

• No strong hand-crafted prompts.

The first one is just a compute problem (‘train your own teacher’)
The second one is a bit more subtle – what is a ‘general purpose’ way to learn to augment data?

Synthetic data as data augmentation

Maini et al ‘24

Rephrasing is much like an label-invariant data augmentation
There is a deep literature on unsupervised learning of transformations

(i.e. generators of a lie algebra)

Rao and ruderman ‘99

Learning augmentations and smoothing kernels

We showed a while ago that “learn augmentations from neighbors” also works for language models.

This is a nonparametric language model where the kernel is learned [Guu, Hashimoto, Oren, Liang ‘18]
𝑃 𝑥 = 𝑃 𝑥 𝑥′ 𝑃 𝑥′ where 𝑃 𝑥 𝑥′ is an edit and 𝑃 𝑥′ is a prototype

Learning the augmentations from scratch

New synthetic data generation process: synthesizer trained on neighbor supervision

Synthetic data is a supervised task of transforming a document into its neighbor

Do these classic “transformation / lie group learning” methods translate to the pretraining setting?

Scaling up fast document nearest neighbor search

Scaling up nearest-neighbor search to pretraining scale (for both queries and keys)
requires careful handling of ANN indices

The overall procedure

The whole synthetic data / bootstrapping process is 3 simple steps given a base model

Step 1: Pair up nearest neighbors

Define a inner product metric 𝑑, pair up neighbors with inner product > 𝛼

Step 2: Learn the augmentation

Learn a conditional LM 𝑝(𝑥2|𝑥1) by continuing to train the base model

Step 3: Generate synth data and train on it

Sample new documents from 𝑝(𝑥2|𝑥1) for each document,
train a new model on a mix of synth + real data (1:3 and 1:8 ratios)

Initial steps at scaling

200 Billion token budget (deduplicated DCLM data) for a 3B model

Notes: 75B synthetic repeated once, 10B real data repeated 12.5 times

Results at 3B/1T

Gains (even at scale) capturing half the gains to having fresh data (oracle)

Qualitative evaluations of data quality across scales

Data quality failures (repetition, low diversity, etc) decrease with scale

Takeaways: synthetic data

1. Can we completely close the ICL to parametric learning gap with enough compute?

2. What are the limits to synthetic data based augmentation?

3. What about synthetic data for reasoning?

Powerful, new forms of augmentation
(and pretraining unlocks new, stronger gains from augmentations)

Thanks!

Language modeling may return to a foundational challenge – generalizing from limited data

In many ways, this is challenging

Algorithmic gains have been hard fought (and not that well understood)

But also it’s an exciting problem

Foundational problems (might) require more radical solutions

	Slide 1: Back to the future: Data efficient language modeling
	Slide 2: Roadblocks to progress in machine learning
	Slide 3: Data lies at the heart of recent advances
	Slide 4: Data lies at the heart of recent advances
	Slide 5: Data lies at the heart of recent advances
	Slide 6: Data scarcity problems on the horizon
	Slide 7: Statistical learning has much to say in this regime
	Slide 8: The problems of the future are those of the past
	Slide 9: What is there to do?
	Slide 10: Part 1: Algorithmic interventions for data efficiency
	Slide 11: Pretraining – hitting a wall?
	Slide 12: Existing approaches are quite bad for data efficiency
	Slide 13: Identifying simple, scalable data efficiency gains
	Slide 14: Developing algorithms for a compute rich future
	Slide 15: Scaling for performance prediction is not new
	Slide 16: Step 1: Fixing the ‘standard’ recipe for asymptotic losses
	Slide 17: Going beyond regularization
	Slide 18: Step 2: Ensembling as a new axis of scaling
	Slide 19: Subtleties – limits and hyperparameters
	Slide 20: Ensembles are surprisingly good
	Slide 21: Ensembles for larger dataset sizes
	Slide 22: Surprising observation: ensemble distillation and self-training
	Slide 23: Can we trust small-scale perplexity evaluations?
	Slide 24: Gains for continued pretraining
	Slide 25: Data in a compute rich future
	Slide 26: Part 2: New horizons with synthetic data
	Slide 27: Synthetic data as a major, current bet for data efficiency
	Slide 28: But the status quo for open synthetic data work is messy
	Slide 29: Synthetic data research poses new (scaling) challenges
	Slide 30: Changing the setting – continued pretraining
	Slide 31: Our challenge: learning from 10,000x less data
	Slide 32: Attempt 1 – Just do continued pretraining
	Slide 33: Problems with standard continued pretraining
	Slide 34: Synthetic continued pretraining – augment the data
	Slide 35: Attempt 2 – Just paraphrase the data
	Slide 36: What we get: Entity-centric augmentation (EntiGraph)
	Slide 37: A random graph model for synthetic data generation
	Slide 38: (Closed-book) QA performance with EntiGraph
	Slide 39: Can we go beyond prompting a model?
	Slide 40: Synthetic data as data augmentation
	Slide 41: Learning augmentations and smoothing kernels
	Slide 42: Learning the augmentations from scratch
	Slide 43: Scaling up fast document nearest neighbor search
	Slide 44: The overall procedure
	Slide 45: Initial steps at scaling
	Slide 46: Results at 3B/1T
	Slide 47: Qualitative evaluations of data quality across scales
	Slide 48: Takeaways: synthetic data
	Slide 49: Thanks!

