Back to the future:
Data efficient language modeling
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Roadblocks to progress in machine learning

Algorithms Data Compute
(better function classes) (lack of supervised data) (inability to process all the data)
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What is the major bottleneck to continued improvements in ML (and LLMs)?



Data lies at the heart of recent advances

Pretraining data

0 Meta

The Llama 3 Herd of Models
Llama Team, Al @ If-lle'l:a1 ]

We believe there are three key levers in the development of high-quality foundation models: data, scale, and
managing complexity. We seek to optimize for these three levers in our development process:

e Data. Compared to prior versions of Llama (Touvron et al., 2023a,b), we improved both the quantity and
quality of the data we use for pre-training and post-training. These improvements include the development
of more careful pre-processing and curation pipelines for pre-training data and the development of more
rigorous quality assurance and filtering approaches for post-training data. We pre-train Llama 3 on a
corpus of about 15T multilingual tokens, compared to 1.8T tokens for Llama 2.

e Scale. We train a model at far larger scale than previous Llama models: our flagship language model was
pre-trained using 3.8 x 102° FLOPs, almost 50x more than the largest version of Llama 2. Specifically,
we pre-trained a flagship model with 405B trainable parameters on 15.6T text tokens. As expected per

Known pretraining recipes all emphasize the important of the data mix



Data lies at the heart of recent advances

Instruction tuning / post-training

(0N
@ Meta

Text-davinci-003

LLaMA 7B

Supervised
Finetuning

Alpaca 7B

52K

175 Self- Modified Self-instruct Instruction-following

Instruct Instruction Generation examples
seed tasks
Example seed task Example Generated task

Instruction: Brainstorm a list of
possible New Year's resolutions.

Output:

- Lose weight

- Exercise more
- Eat healthier

Instruction: Brainstorm creative
ideas for designing a conference
room.

Output:

... incorporating flexible
components, such as moveable
walls and furniture ...

Simple algorithms with the ‘right’ data (for instruction-tuning /| RLHF)
gets you quite far for instruction tuning



Data lies at the heart of recent advances

Reasoning capabilities
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(a) Sequential scaling via budget forcing

(How many r in raspberry? Question)

/Let's break down the process of counting the letter 'r' in the\
word "raspberry" ...
* First letter: 'r' - This is an 'r', count = 1.
* Second letter: 'a' - Not an 'r', count remains 1 ...
* Sixth letter: 'e' - Not an 'r', count remains 1.
* Seventh letter: 'r' - This is an 'r', count = 2.
* Eighth letter:'y' - Not an 'r', count remains 2 ...
The number of 'r's in "raspberry" is 2.
Wait, let's re-read the question carefully. It asks "How many r
in raspberry?" ... *r-a-s-p-b-e-r-r-y..*First'r .. *
\Second 'r'...*Third 'r' ... Count =3 ... Reasoning trace /

My initial answer of 2 was incorrect due to a quick reading of
the word. Final Answer: The final answer is @ Response

Even something as complex as ‘long CoT reasoning’ can (to a suprising
extent) be unlocked with naive methods + the right data



Data scarcity problems on the horizon

Projections of the stock of public text and data usage Z EPOCHAI
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Thus far, data constraints have not been acute since internet data is vast
But compute has been growing much faster than data



Statistical learning has much to say in this regime

Data >> Compute Compute >> Data

(Pretraining / FM era) (Classical deep learning
.. and the future?)
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ChatGPT: Optimizing
Language Models
for Dialogue

One Billion Word Benchmnrk for Measuring Progress in

Modeli

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants
Google
1600 Amphitheatre Parkway
Mountain View, CA 94043, USA

Phillipp Koehn Tony Robinson
University of Edinburgh Cantab Research Ltd
10 Crichton Street, Room 4.19 St Johns Innovation Centre

Edinburgh, EH8 9AB, UK Cowley Road, Cambridge, CB4 OWS, UK




The problems of the future are those of the past

In a compute rich world,
understanding and engineering data becomes critical

Understanding generalization from data is a foundational question
in statistics and machine learning!



What is there to do?

Comparing scaling recipes with no compute constraints
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Part 1: Algorithmic interventions for data efficiency

Are there simple data efficiency interventions
that have been overlooked?

Comparing scaling recipes with no compute constraints

Part 1: Using data better Part 2: Making ‘new’ data

Pre-training under infinite compute [ArXiv preprint]

Konwoo Kim*, Suhas Kotha*, Percy Liang, Tatsunori Hashimoto



Pretraining - hitting a wall?

New, pretrained models - not quite as impressive

4 Preparedness Framework

tatlonal eﬂimency by more than 10x. Whi
improved writing ability, and refined per:

Discussions of the ‘end of pretraining’

Pre-training as we know it will end

Compute is growing:

- Better hardware
- Better algorithms
- Larger clusters

Data is not growing:

- We have but one internet
- The fossil fuel of Al

* Even if you think RL or continual learning are ‘ways out’ you still need data efficiency



Existing approaches are quite bad for data efficiency

What if we have infinite compute, and we just scale up epochs [e.g. Muenninghoff et al] and param size

Increasing epoch count Increasing parameter count
5.0 1 5.0
4.8 1 484
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Epochs Parameter count
Tuned H 1 8 128 Tuned H 150M 300M 600M 1.4B
Learning rate le-3 le-3 3e-3 Learning rate  3e-3  1le-3  le-3 3e4
Epoch count 8 8 4 4

We get no benefits past a point (600M params w/ 200M dataset) even with infinite compute
Note: overfitting is not benign in the LM pretraining case



Ide

ntifying simple, scalable data efficiency gains
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Q: if we had infinite compute, are there algorithms that would
give us significantly more data efficiency?



Developing algorithms for a compute rich future

How should we study the nearly infinite compute regime..
(without paying for infinite compute)

Scale down the ‘world’
(200M tokens, eval on perplexity)

Compare algorithms via
compute scaling asymptote

Check validity by scaling up the
‘world size’ (200M -> 1.7B)
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Scaling for performance prediction is not new

Learning Curves: Asymptotic Values and

Rate of Convergence

Corinna Cortes, L. D. Jackel, Sara A. Solla, Vladimir Vapnik,

and John S. Denker
AT&T Bell Laboratories
Holmdel, NJ 07733

Abstract

Training classifiers on large databases is computationally demand-
ing. It is desirable to develop efficient procedures for a reliable
prediction of a classifier’s suitability for implementing a given task,
so that resources can be assigned to the most promising candidates
or freed for exploring new classifier candidates. We propose such
a practical and principled predictive method. Practical because it
avoids the costly procedure of training poor classifiers on the whole
training set, and principled because of its theoretical foundation.
The effectiveness of the proposed procedure is demonstrated for
both single- and multi-layer networks.

A typical example of learning curves is shown in Fig. 2. The test error is always
larger than the training error, but asymptotically they reach a common value, a.
We model the errors for large sizes of the training set as power-law decays to the

c
Ctest =a+ 5 and Etrain = ¢~ 75

error

025! ¢ — points used for prediction

02 ===« predicted learning curves
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0.1
::x::;z:::g::::::.

0.05 f training error
0

2560 7680 15360
training set size, /




Step 1: Fixing the ‘standard’ recipe for asymptotic losses

With optimal (much higher) regularization + model scaling, we get clean scaling

Regularized parameter scaling
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Learning rate  3e-3 3e-3 le-3 le-3
Epoch count 16 16 8 8
Weight decay 0.8 1.6 32 32

§ 3.65 7 N . Re.gularized recipe

~ (Fit: 0.05/NA1.02 + 3.43)

3.60 -
.
~
3.55 - Taas
\ssh
3.50
3.45 - e
150M 300M 600M 1.4B

Parameter count

;

30x higher weight decay

This improves data efficiency and gives our first asymptotic loss baseline (~3.43)



Train Token Count

Going beyond regularization

Regularization is maybe too simple

are there other ways of ‘trading compute for data efficiency’?

&é
o (2) Penn TreeBank (b) WikiText-2

e Model | Weight + | Validation | | Test | Weight © | Validation | | Test |

QRNN (Bradbury et al., 2016) 0.00 60.38 58.43 0.00 69.23 66.61
. KnerserNey-5gram (Ney et al., 1994) 0.01 148.41 141.46 0.01 233.93 219.27
Fast Weights (Schlag et al., 2021) 0.11 58.49 56.45 0.03 69.51 66.49

EGRU (Subramoney et al., 2023) 0.15 61.21 57.18 0.22 69.40 67.20

9.5M AWD-LSTM-MOS (Yang et al., 2017) | 0.19 56.04 54.00 0.17 63.92 61.54

Transformer-XL (Dai et al., 2019) 0.20 57.93 55.41 0.16 67.41 64.85

AWD-LSTM-DOC (Takase et al., 2018) | 0.34 54.12 52.38 0.41 60.27 58.01

0

oo Ensemble of All | 1 | 48.92 | 47.31 1 | 55.40 | 53.73

5%

N 2
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X '\\l:{‘e* A
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Dataset

We have a wealth of theory and intuition for this regime

Ensembling, data augmentation and similar leaderboard interventions come back in play

[Herel and Mikolov 2023]



Step 2: Ensembling as a new axis of scaling

Ensemble member scaling
3751 @ — =~ Model scaling: (Fit: 0.05/NA1.02 + 3.43)
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Instead of bigger models, we could ensemble more models, fixing the total param count
Ensembles have far better asymptotes (~3.34)



Subtleties - limits and hyperparameters

Varying ensemble hyper-parameters

4.1 4 _ Bestasymptote: 32 epochs, 0.8 WD
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Getting smooth ensemble scaling is hard - the best hyper params change w/ ensemble count
This complicates the joint scaling problem of taking param + ensemble count to infinity

Single member loss
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Infinite member asymptote
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Ensembles are surprisingly good

We estimate the perf of ensembles under infinite compute via a joint limit:
First, ensemble count to infinity, then parameter count to infinity.

Taking member count K — oo, 200M tokens

Taking parameter count N — o, 200M tokens
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This gives much, much better asymptotes (3.17 vs 3.34)

[n.b. We found this to be the easiest order of the limits to estimate via scaling laws.]




Ensembles for larger dataset sizes

We were doing our analysis on small, fixed data (200M tokens, ~1.4B params).
Does this generalize to larger corpora?

Taking member count K — e Taking parameter count N — 0 Varying seed token count D
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Ensemble gains (left two panels) are consistent as we scale up the corpus (right)



Surprising observation: ensemble distillation and self-training

Even with infinite training compute, we
still care about inference compute

 Canwedistil bigensemblesinto
small models? (yes)

 Canother ‘ensemble like methods
like self-training also work? (yes)

[This has interesting implications for
data feedback loops / model collapse]
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Can we trust small-scale perplexity evaluations?

Validation loss
—— Epoched recipe
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Generally, yes (avg PIQA, ARC, SciQ)
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* Noisier but generally similar scaling trends across all models
* Pareto-dominant models are all ensembles at large compute targets




Gains for continued pretraining

CPT (4B tokens) K-ensembles
Benchmarks Llama 3B Default Lower BS Epoching (K =1) | K=2 K—4 K—8§ CPT (73B tokens)
GSMSK s-shot) 28.23 38.44 44.50 44.05 4928 51.80 52.99 49.51
MATH 4-hot) 6.90 14.38 17.64 19.74 21.84 23.04 23.50 23.40
MATHQA(S shot) 35.07 38.96 41.31 42.58 4512 46.06 45.26 44.79
Average 24.25 30.59 34.48 35.82 38.79 40.35 40.58 39.23

Gains on CPT [ Midtraining - this is a naturally data constrained setting

OctoThinker dataset / evaluations
The “data efficient” recipes (batch size, epochs) help

Ensembles help a lot for data efficiency



Data in a compute rich future

Data bottlenecks open up interesting,
basic algorithms research for LLMs

Open questions
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Distilling a 300M student (200M seed tokens)

=== Regularized recipe (Fit: 0.05/N"1.02 + 343)
== 300M ensembles (Fit: 0.44/K"1.03 + 3.27)
= Distilling from teacher to student
¢ S-ensemble distill: 3.36
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Better foundational understanding of ensembling




Part 2: New horizons with synthetic data

Can we ‘create’ new data?
What would that mean and why would that work?
” :\\\_——4
i
Part 1: Using data better Part 2: Making ‘new’ data

Synthetic continued pretraining [ICLR 2025] - Zitong Yang*, Neil Band*, Shuangping Li, Emmanuel Candes, Tatsunori Hashimoto

Synthetic bootstrapped pretraining [ArXiv preprint] - Zitong Yang”, Aonan Zhang*, Hong Liu, Tatsunori Hashimoto, Emmanuel Candeés,
Chong Wang, Ruoming Pang



Synthetic data as a major, current bet for data efficiency

KiM1 K2: OPEN AGENTIC INTELLIGENCE

What comes next? TECHNICAL REPORT OF Kim1 K2

Pre-training as we know it will end
e “Agents"??

Compute is growing: e “Synthetic data”

- Better hardware e Inference time compute ~ O1
Better algorithms

Kimi Team

Knowledge Data Rephrasing Pre-training on natural, knowledge-intensive text presents a trade-off: a single epoch
is insufficient for comprehensive knowledge absorption, while multi-epoch repetition yields diminishing returns and
increases the risk of overfitting. To improve the token utility of high-quality knowledge tokens, we propose a synthetic
Data is not growing rephrasing framework composed of the following key components:

Larger clusters

We have but one intemet

The fossil fuel of Al * Style- and perspective-diverse prompting: To enhance linguistic diversity while maintaining factual integrity, we

apply a range of carefully engineered prompts. These prompts guide a large language model to generate faithful
rephrasings of the original texts in varied styles and from different perspectives.

Chunk-wise autoregressive generation: To preserve global coherence and avoid information loss in long
documents, we adopt a chunk-based autoregressive rewriting strategy. Texts are divided into segments, rephrased
individually, and then stitched back together to form complete passages. This method mitigates implicit output
length limitations that typically exist with LLMs. An overview of this pipeline is presented in Figure 4.

Fidelity verification: To ensure consistency between original and rewritten content, we perform fidelity checks
that compare the semantic alignment of each rephrased passage with its source. This serves as an initial quality
control step prior to training.

Many bets are currently being placed on ‘synthetic data’
Is creating new data in this way really viable?



But the status quo for open synthetic data work is messy

Text- davlncl 003

175 Self- : Modified
Instruct

seed tasks

Meta

LLaMA 78

Supervnsed
Finetuning Alpaca 7B

Example seed task

Instruction: Brainstorm a list of
possible New Year's resolutions.

- Lose weight
- Exercise more
- Eat healthier

Example Generated task

Instruction: Brainstorm creative
ideas for designing a conference

room.
Output:

... incorporating flexible
components, such as moveable
walls and furniture ...

B
Model

Generate Responses

l

Generate Responses
to "Red Teaming”
Prompts Eliciting
Pairs of Samples

Distillation effects from larger models

Synthetic data has often been studied in the context of distillation / post-training

3 Finetunad
10 "Red Teaming” / ; sL-cal
Froms iy i
Harmful Samples
Constitutional Al Feedback
for Self-improvement

Cf—

Post-training / alignment of existing capabilities

* And sometimes people even refer to RL-like algorithms as synthetic data..




Synthetic data research poses new (scaling) challenges

0.36

0.34

Test Overall Accuracy

0.24

0.22

There is a ‘critical’ threshold for synthetic data to start working
This makes naive scaling down hard!
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Changing the setting - continued pretraining

Given:
* A pretrained model f

* Asmalldomain of knowledge that can be characterized by some corpus
(e.g. textbook for a specialized domain, proprietary corporate documents).

Goal:
* Modify the weights of f such that

* The modified f can perform a range of tasks - QA, summarization, as if it was
pretrained on a large corpus containing our specialized knowledge



Our challenge: learning from 10,000x less data

Study Domain Model Parameter Count Total Unique CPT Tokens
Minerva (Lewkowycz et al., 2022) STEM 8B, 62B, 540B 26B-38.5B
MediTron (Chen et al., 2023) Medicine 7B, 70B 46.7B

Code Llama (Roziére et al., 2024) Code 7B, 13B, 34B 520B-620B
Llemma (Azerbayev et al., 2024) Math 7B, 34B 50B-55B
DeepSeekMath (Shao et al., 2024) Math 7B 500B
SaulLM-7B (Colombo et al., 2024b) Law 7B 30B
SaulLM-{54, 141}B (Colombo et al., 2024a) Law 54B, 141B 520B

HEAL (Yuan et al., 2024a) Medicine 13B 14.9B

Our setting Articles & Books 7B 1.3M

Can we adapt to knowledge that might be truly in the tail?
Few hundred books with 10,000x less data



Attempt 1 - Just do continued pretraining
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Problems with standard continued pretraining

Standard continued pretraining: train directly on our documents

EE using the small domain-specific corpus to synthesize a large corpus
v

Autoregressive LM

EE We propose to bridge this gap with synthetic continued pretraining:
v

Autoregressive learning is data-inefficient (reversal curse)
In the autoregressive direction: “What does synthetic CPT do?”
In the reverse direction: “What method synthesizes a large corpus?”



Synthetic continued pretraining - augment the data

Synthetic continued pretraining: Train on LLM-transformed data

Goal - replicate the diversity of pretraining
* Vary content (topics)

* Vary style (how it’s presented)

« Datadiversity for generalization

This is different from synthetic data or..
* compute/ size efficiency (WRAP/Phi)
* fine-tuning (task-specific LMs)




Attempt 2 - Just paraphrase the data

57.5 1

55.0 1

QA Accuracy
5 3 8 Y
o wn o wn

B
N
(%2}

40.0

375

| = GPT-4 (51.30%) = Rephrase CPT
| == GPT-3.5(44.81%) === Llama 3 8B Base (39.49%)
= Raw CPT (38.15%)

10° 10t
Number of synthetic tokens (in Millions)



What we get: Entity-centric augmentation (EntiGraph)

How do we get diversity? Use a knowledge graph to force diversity in content

1. Prompt LM, for entities aazimcron |1y ]
in a knowledge graph.

2. Sample k-subgraphs of
the knowledge graph

ul pa1ed0] S! NG

3. LM,,zsynthesizes
descriptions of the
entities in the subgraph

Jan 11984

New implicit fact as data (The Louvre contains many works by DaVinci..)



A random graph model for synthetic data generation

What’s the ‘mathematical model’?

Explicit facts are connected edges between entities (vertices) on a random graph.
Implicit facts are paths within a connected component

EntiGraph ‘connects’ the whole connected component

What does this imply?

A mixture-of-exponentials scaling law

SA-1 o k t :
ACC(Mt) ~ p + C)\ (1 - Z )\e-i-l Z pE(k) (1 - m) ) Z:Z: _* Empirical obsrvaton an QUALTY experments
£= 0 itted Curve =

100 200 300 400 500
Number of synthetic tokens (in Millions)

EntiGraph Accura
s o o




(Closed-book) QA performance with EntiGraph

T {
=== GPT-4 (51.30%) == EntiGraph CPT
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Predictable, scaling gains for QA performance without the text



Can we go beyond prompting a model?

We’ve validated a ‘scaled down’ idea with continued pretraining.

Can we get this to work in the “pure bootstrapping setting”? This means..

* No pre-trained teacher (we have to train our own)
* Nostrong hand-crafted prompts.

The first one is just a compute problem (‘train your own teacher’)
The second one is a bit more subtle - what is a ‘general purpose’ way to learn to augment data?



Synthetic data as data augmentation

For the following paragraph give me a
paraphrase of the same in high quality English

Sii Transk and Scaling
. . P M i i ®

language as in sentences on Wikipedia - -
Rephrase | ) S e g T TTO
Model £ x4 .. w=h F— Simultaneous Translation and Hyperbolic Rotation
x=8 x=—8
A <
Synth ° x=12 " x=—12
8 - Arbitrary combination of
= x=16 il all 6 transformation Iypes
— g ®
c
=1

Figure 1: Analytically derived Lie operators and example transformations.

Maini et al ‘24 Rao and ruderman ‘99

Rephrasing is much like an label-invariant data augmentation
Thereis a deep literature on unsupervised learning of transformations
(i.e. generators of a lie algebra)



Learning augmentations and smoothing kernels

We showed a while ago that “learn augmentations from neighbors” also works for language models.

Owverpriced , overrated , and tasteless food . Prototype: The food is mediocre and not worth the ridiculous price.
The food here is ok but not worth the price .
I definitely recommend this restanrante .

Sample from
the training set Training set targets:
Edit Vector Prototype
(OOODO) (ﬂl&fﬂﬂdhﬂﬁiﬂﬂkhﬂt]ﬂtw&rﬂlﬂlﬁpﬁm ) Tlle food is good but not .
Edit using worth the horrible customer service.
attention
Generation The food here is not worth the drama.
( The food is mediocre and not worth the ridiculous price. ]
The food is .[ufll bt not wor e !.llll:-ll Il.;l.i.llll_.;::l::;!_.:':I_I-‘II service The fOOd iS not WOl'th the pl‘ice.
The food is not worth the price . Jaccard Distance < 0.7

This is a nonparametric language model where the kernel is learned [ Guu, Hashimoto, Oren, Liang ‘18]
P(x) = P(x|x")P(x") where P(x|x") is an edit and P(x") is a prototype



Learning the augmentations from scratch

New synthetic data generation process: synthesizer trained on neighbor supervision

Synthetic data is a supervised task of transforming a document into its neighbor

transformer paper synthesized notes on the paper

w

), the Harry movie review L.z language

% Potter book of HP mllng tutorial —@ ./
3 a lesser .\
[(}]

of attention blogpost about the paper

Step 1: nearest neighbor pairing  Step 2: synthesizer-tuning  Step 3: synthesis at scale

Do these classic “transformation / lie group learning” methods translate to the pretraining setting?



Scaling up fast document nearest neighbor search

]

ScaNN searcher

ScaNN searcher
8-bit quantized index tree

Pretraining data :
60M documents
\4 T
Value sharding ScaNN searcher
Split into 32 shards 8-bit quantized index tree

Scaling up nearest-neighbor search to pretraining scale (for both queries and keys)
requires careful handling of ANN indices



The overall procedure
The whole synthetic data / bootstrapping process is 3 simple steps given a base model

Step 1: Pair up nearest neighbors
Define a inner product metric d, pair up neighbors with inner product > «

Step 2: Learn the augmentation
Learn a conditional LM p(x,|x;) by continuing to train the base model

Step 3: Generate synth data and train on it
Sample new documents from p(x,|x4) for each document,
train a new model on a mix of synth + real data (1:3 and 1:8 ratios)

synthesized notes on the paper

transformer paper
the Harry movie review

....... language
Potter book ‘mling tutorial —@® .‘/
of HP B a lesser
q\sym.‘hes.ized

./ .\ pytorch code known paper
of attention blogpost about the paper

Step 3: synthesis at scale

embeddings

Step 1: nearest neighbor pairing  Step 2: synthesizer-tuning



Initial steps at scaling

200B-scale
Benchmark Baseline SBP  Oracle
Perplexity on held-out data |,
OpenWebText2 574  -0.53 -1.02
LAMBADA 6.87 -0.85 -1.86
Five-shot MMLU 3.83  -0.36 -0.51
QA accuracy T
ARC-Challenge -shon 3532 +1.28  +2.82
ARC-Easy o-shar) 68.94 +2.65 +4.29
S¢1Q w-shot) 90.50 +1.00 +2.40
Winogrande (o-shoy 60.14 +1.90  +5.53
TriviaQA (1-shon 2251 +3.36 +7.37
WebQS (1-shoy 856 +3.74 +10.83
Average QA accuracy 47.66 +2.32  +5.54

Test loss (OpenWebText2)

N
N

N
o

[N
(@]

N
=~

N
w

200 Billion token budget (deduplicated DCLM data) for a 3B model

~
] : “~0
=mmm Baseline ~
~
== 1 Qracle .
25 50 100

Compute (in billions of tokens)

Notes: 75B synthetic repeated once, 10B real data repeated 12.5 times



Results at 3B/1T
200B-scale 1T-scale
Benchmark Baseline SBP Oracle Baseline SBP Oracle
Perplexity on held-out data |
OpenWebText2 574 033 -1.02 451 -0.02 0.12
LAMBADA 6.87 -0.85 -1.86 433 -0.03 0.22
Five-shot MMLU 383 -036 -0.51 317  -0.06 -0.05
QA accuracy t
ARC-Challenge -shety 3532 +1.28  +2.82 4266 +1.62  +3.84
ARC-Easy -shoty 68.94 +2.65 +4.29 7563 +042  +2.11
SciQ iw-shor 90.50 +1.00 4240 93.20 +0.80  +0.50
‘Winogrande (o-sheo 60.14 +1.90 +5.53 65.19 +1.42  +2.92
TriviaQA (1-shor) 2251 +3.36  +7.37 36.07 +0.25  +0.59
WebQS (1sho 856 +3.74 +10.83 19.34  +0.54  +0.44
Average QA accuracy 47.66 +2.32 4554 55.35 +0.84  +1.73

Gains (even at scale) capturing half the gains to having fresh data (oracle)



Qualitative evaluations of data quality across scales

Repetition | Duplicate@1M | Non-factual | Pair-irrelevance | Pair-copying |
200B-scale 4.3% 0.8% 15.1% 25.6% 0.1%
1T-scale 3.9% 0.8% 8.7% 7.8% 0.9%
Real data 1.8% 0.7% 1.8% n.a. n.a.

Data quality failures (repetition, low diversity, etc) decrease with scale

HOME > Chowhound > California >
Coffeehouses in SD

I am always looking for good coffeehouses in San
Diego. I am looking for coffechouses with (obvi-
ously) excellent coffeebeans, baristas who know
their business (good microfoam, good crema, they
should know the different ratios for steamed milk,

foamed milk eenrecen for the cannuccinn  latte

Coffee = Love

On a recent trip to San Diego, one thing I wanted
to find was coffee. I was worried it might be dif-
ficult with the huge decrease in Asian flavors, but
I was pleasantly surprised. Many of the Mexican,
Italian, and Cuban flavors that are pretty common
in California are now in the mix. While I did find
a few highly recommended spots, the majority of

Discuss as:
Coffeehouses: San Diego. The best?

Café Lestat, by far, is a stand-out.
Thomas Moriarty)

If the coffee scene in San Diego sounds like the
one in New York, there’s a reason. The upper
echelons of NYC’s drink scene are the same ones

(photo by




Takeaways: synthetic data

Powerful, new forms of augmentation
(and pretraining unlocks new, stronger gains from augmentations)

1. Canwe completely close the ICL to parametric learning gap with enough compute?
2. What are the limits to synthetic data based augmentation?

3. What about synthetic data for reasoning?



Thanks!

Language modeling may return to a foundational challenge - generalizing from limited data

In many ways, this is challenging
Algorithmic gains have been hard fought (and not that well understood)
But also it’s an exciting problem

Foundational problems (might) require more radical solutions
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