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Intro to Causality for Computer Scientists

Instructor and Copyright: Bruno Ribeiro

Causality vs Data-driven Modeling

Introduction to Structural Causal Modeling

Understanding What Probabilities Really Are

In this course, we have often used libraries to sample random variables

import numpy as np

[...]

ramdom_exp_values = np.random.exponential(my_lambda)

ramdom_normal_values = np.random.normal(average,std)

But how do these libraries work?

Data Generation Process (i)

Inversion transform sampling method

Wikipedia example for exponential distribution  with inverse

:

This is the most fundamental technique for generating sample values of random variables

It uses the cumulative distribution function (CDF) of the random variable

The method depends on the fact that, for any random variable X, the CDF, , is a non-

decreasing function of  that outputs a number in the interval [0,1]

Let  be the inverse of , i.e., .

Let  be a random uniform value in the interval [0,1]

P(X ≤ x) = FX(x) = 1 − e−λx

x = F −1
X (r) = − ln(1 − r)1

λ

FX(x) = P(X ≤ x)

x

F −1
X FX x = F −1

X (FX(x))

r ∼ Uniform(0, 1)

https://www.cs.purdue.edu/homes/ribeirob/
https://en.wikipedia.org/wiki/Inverse_transform_sampling
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This is obtained by a pseudorandom number generator

Then,

is a random sample with distribution .

Data Generation Process (ii)

Any probability distribution

can be described as the data generated by the inverse transform sampling

where

and

is some independent uniform random noise.

Notation:  means  is "sampled from distribution" 

Data Generation Process (iii)

Conditional Distributions

Any conditional probability distribution

can be described as

for

Data Generation Process & Simpson's Paradox

Consider the following supervised learning task. Doctors prescribe two different treatments (A and B) to patients with

kidney stones. Our goal is to predict which treatment we should ascribe to a patient (even a Na ̈ıve Bayes classifier can

do this simple task). Let  denote the prescribed treatment. And let  be the success (1) or failure

(0) of the treatment. In our dataset, we have 700 patients ascribed treatment, equally balanced between A and B.

xsample = F −1
X

(r)

P(X = x)

P(Y)

Y = F −1
Y

(U),

F −1
Y  is a deterministic function

U ∼ Uniform(0, 1)

a ∼ b a b

P(Y |X = x)

Y = F −1
Y |X

(x,U)

U ∼ Uniform(0, 1).

T ∈ {A,B} Y ∈ {0, 1}

https://en.wikipedia.org/wiki/Pseudorandom_number_generator
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Which treatment is more effective: A or B?

Alice, the person in charge of applying machine learning at the hospital, investigated the data a little further and

identified that doctors find treatment A more invasive and tend to only prescribe it in more severe cases. Her new data

shows the following

Which treatment is more effective: A or B?

Now treatment A seems to be more effective

Describing Joint Probability Distributions

Let  be three binary random variables.

Consider the following interpretation.

 = treatment positive outcome {0,1}

 = treatment {A,B}

 = kidney stone size.

Suppose we use hospital information as training data for our statistical model:  for each patient .

The chain rule of probability) states

Hence, the joint probability distribution of  is

and can be decomposed as

or

or

or ...

On the Data Generation Process

A joint probability distribution is simply a way to assign probabilities to joint events

Q: Should we use conditional distributions to interpret how the data was generated?

A: Never, because for any of the following data generation processes describes the training data equally well:

Y ,T ,S ∈ {0, 1}

Y

T

S

D = {(yi, ti, si)}n
i=1

i

P(A,B) = P(A|B)P(B) = P(B|A)P(A).

(Y ,T ,S)

P(Y ,T ,S)

P(Y |T ,S)P(T |S)P(S)

P(S|Y ,T )P(Y |T )P(T )

P(S|T ,Y )P(T |Y )P(Y )

https://en.wikipedia.org/wiki/Chain_rule_(probability
https://en.wikipedia.org/wiki/Chain_rule_(probability
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�. A data generation process based on the decomposition :

where  are uniform variables sampled indepedently.

�. A data generation process based on the decomposition :

where  sampled indepedently.

�. A data generation process based on the decomposition  that assumes :

where  sampled indepedently.

Hence, we cannot predict what happens if we force  in the data generation process (force treatment to be "A"):

do()  notation: The DO notation asks what would happen if we forced a variable to have a certain value. This is the

notation developed by Judea Pearl (Turin Award Winner 2011).

Alternative notation: An alternative notation for  is

which is the notation used by Guido Imbens (Nobel Prize Winner 2021).

�. In the data generation process

the "do" operation is forcing , hence the data is generated as

�. In a different data generation process, the "do(T=A)" operation gets the following data

�. In yet another data generation process, the "do(T=A)" operation gets the following data

P(Y |T ,S)P(T |S)P(S)

S = F −1
S (US),

T = F −1
T

(S,UT ),

Y = F −1
Y

(T ,S,UY ),

(1)

(2)

(3)

US,UT ,UY ∼ Uniform(0, 1)

P(Y |T ,S)P(S|T )P(T )

T = F −1
T

(UT ),

S = F −1
S

(T ,US),

Y = F −1
Y (T ,S,UY ),

(4)

(5)

(6)

US,UT ,UY ∼ Uniform(0, 1)

P(Y |T ,S)P(S)P(T ) P(S|T ) = P(S)

T = F −1
T (UT ),

S = F −1
S (US),

Y = F −1
Y

(T ,S,UY ),

(7)

(8)

(9)

US,UT ,UY ∼ Uniform(0, 1)

T = A

P(Y ,S|do(T = A))

P(Y ,S|do(T = A))

P(Y (T = A),S(T = A))

S = F −1
S (US),

T = F −1
T

(S,UT ),

Y = F −1
Y

(T ,S,UY ),

(10)

(11)

(12)

T = A

S = F −1
S

(US),

T = A,

Y = F −1
Y

(T ,S,UY ).

(13)

(14)

(15)

T = A,

S = F −1
S

(T ,US),

Y = F −1
Y

(T ,S,UY ).

(16)

(17)

(18)
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Q: Which data generation process is more likely to describe our hospital data?

The Dangers of Data-driven Machine Learning

In our data, we found that given treatment B ( ), patients are more likely to recover ( ) than with treatment

:

Is the above enough evidence to say that treatment B is better than A?

The "Simple Statistical Model" fallacy

In another hospital, it is possible that  and , which would allow us to

build a simple predictive model

Still, even under this scenario, we could still have .

Using model simplicity to justify our classifier's decisions is an example of associational machine learning

Occam's raisor: the simplest explanation is likely the true explanation

Occam's raisor is a misleading principle for explaining cause and effect

Causal Execution Directed Acyclic Graph

We could describe the data generation process of this problem using the following random variables:

 = Kidney stone size

 = Treatment type

 = Treatment outcome

where  are independent variables.

The above data generation can be described by an execution graph, called the causal Directed Acyclic Graph (DAG):

T = A,

S = F −1
S

(US),

Y = F −1
Y (T ,S,UY ).

(19)

(20)

(21)

T = B Y = 1

T = A

P(Y = 1|T = B) > P(Y = 1|T = A)

P(Y = 1|T = B) ≈ 1 P(Y = 1|T = A) ≈ 0

P(Y = 1|do(T = B)) ≈ 0

S

T

Y

S = F −1
S

(Ustone size),

T = F −1
T (S,Utreatment),

Y = F −1
C

(T ,S,Uoutcome),

(22)

(23)

(24)

Ustone size,Utreatment,Uoutcome ∈ [0, 1]



11/30/23, 7:56 AM Intro_Causality

file:///Users/ribeirob/Dropbox/Purdue/Teaching/CS58700-Bruno/11-causality/Intro_Causality.html 6/12

Confounder variables

We say kidney stone size  ( ) is a confounder variable, which is a common cause for both Treatment  and

outcome 

Another data generation process for :

where  a decision of the Greek god Zeus.

Q: From data alone, can we tell which data generation process is the correct one?

No. From data alone, we cannot tell which data generation process is the correct one

Causal Directed Acyclic Graph (Causal DAG)

The DAG graph notation is as follows:

Structural Causal Models (SCMs)

Structural Causal Modeling (SCM) is a formal way to describe what we know about the data generation process.

Structural Causal Modeling is a combination of data generation equations and their graphical representation

S T

Y

P(Y ,T ,S)

S = F −1
S (UZeus),

T = F −1
T (UZeus),

Y = F −1
Y

(UZeus),

(25)

(26)

(27)

UZeus ∼ Uniform(0, 1)
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Think of SCM as a description of the code that generated the data

(Galles & Pearl (1998)) shows that any data generation process can be described through a causal DAG.

The variables  are the endogenous variables

Endogenous variables are real quantities that one could measure

The variables  are called exhogenous variables, .

Exhogenous variables are not explicitly modeled in our task (often they cannot be measured)

Directed Acyclic Graph (DAG)  with endogenous variables as vertices 

May also include exhogenous variables  as vertices

Semantics: Parents = direct causes

 are the parents of variable  in the causal DAG (described next).

We define a vertex  as

where  are denoted as noise variable (or just exhogenous variables)

Independence between Cause and Mechanism (ICM) (Lemeire & Dirkx 2006), (Janzing & Scholkopf
2010)

Independence between Cause and Mechanism (ICM) generally assumes that:

�. The mechanisms  do not depend on the exhogeneous variables 

�. The exhogeneous variables  are independent.

Causal Effects

What happens with  if we force , i.e., we "force" treatment B on patients (regardless of their kidney stone

condition).

This "forcing" is called:

An intervention if it is done before our data is collected (e.g., to a new person).

Example: Clinical trials. Volunteers in the trial are forced to either take the drug or take the placebo.

Counterfactual reasoning if it is done after the data is collected. That is, we consider an alternative reality that

goes against some fact in our data.

Consider the SCM:

where  a decision of the Greek god Zeus.

Now let's see what happens to  if we set :

Q: Under this data generation process, does forcing treatment B changes the probability of a favorable outcome?

A: No.

Now consider another data generation process (SCM) that could generate the same
data:

X1, … ,Xn

U1, … ,Um m ≥ n

G X1, … ,Xn

U1, … ,Um

PA(H) H

Xi

Xi := fi(PA(Xi),Ui), i ∈ {1, … ,n}

Ui

{fi}
n
i=1 U1, … ,Um

U1, … ,Um

T do(T = B)

S = F −1
S

(UZeus),

T = F −1
T (UZeus),

Y = F −1
Y (UZeus),

(28)

(29)

(30)

UZeus ∼ Uniform(0, 1)

Y do(T = B)

S = F −1
S

(UZeus),

T = B,

Y = F −1
Y

(UZeus).

(31)

(32)

(33)

https://link.springer.com/article/10.1023/A:1009602825894
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Q: Could forcing treatment B (that is, ) change the probability of patient outcome?

A: Yes.

Structural Causal Models

(Galles & Pearl (1998)) shows that any data generation process can be described through a causal DAG.

In our previous equations, the variables  are called exhogenous variables

Exhogenous variables are not explicitly modeled in our task (often they cannot be measured)

The variables  are the endogenous variables

Endogenous variables are real quantities that one could measure

 are the parents of variable  in the causal DAG (described next).

Causal Directed Acyclic Graph (Causal DAG)

A simple way to describe the above data generation process is through its "execution" graph (Causal DAG):

Example of the Causal DAG from

The solid arrows indicate a variable dependence in the SCM.

The solid arrows must form a Directed Acyclic Graph (DAG) over the described variables.

The dashed arrows show how the variables are related through undescribed variables

We could also include all variables in the causal DAG:

DAG nodes have two colors:

Gray means observed variables

White means unobserved variables

S = F −1
S

(UZeus),

T = F −1
T (UZeus),

Y = F −1
Y (T ,UZeus).

(34)

(35)

(36)

do(T = B)

S = F −1
S

(UZeus),

T = B,

Y = F −1
Y (T ,UZeus).

(37)

(38)

(39)

UZeus,UY ,UT ,US

S,T ,Y

PA(Y ) Y

S = F −1
S

(UZeus),

T = F −1
T (UZeus),

Y = F −1
Y (T ,UZeus).

(40)

(41)

(42)

https://link.springer.com/article/10.1023/A:1009602825894
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Expanding the Causal Model DAG

(Galles & Pearl (1998)) shows that any data generation process can always be represented by a DAG:

We can ALWAYS add exoghenous variables to make the data generation process directed.

U = np.random.uniform(0,1)
Chiken = F_Chiken(Egg, U) 
Egg = F_Egg(Chiken, U)

E.g., dinosaurs already layed eggs way before chickens appeared on Earth. Can be described as

U_Dino = np.random.uniform(0,1)
Dinosaur = F_Dino(U_Dino)
U = np.random.uniform(0,1)
Egg = F_Egg(Dinosaur, U)
Chiken = F_Chiken(Egg, U)

Predicting Causal Effects

Goal: We want to predict 

That is, we want to predict what happens to the probability distribution of  if we force .

Causal Adjustment Formula (Adjustment for Direct Causes, Theorem 3.2.2 of (Pearl 2009)):

Suppose  is any set of random variables disjoint with , where  includes all direct parents

of  on the causal DAG.

Then,

Note the difference bettween the adjustment formula above and a standard conditional probability statement:

P(Y |do(X = x))

Y X = x

Y (X ∪ C) C = PA(X)

X

P(Y = y|do(X = x)) = ∑
c

P(Y = y|C = c,X = x)P(C = c), ∀y ∈ Y

P(Y = y|X = x) = ∑
c

P(Y = y|C = c,X = x)P(C = c|X = x).

https://link.springer.com/article/10.1023/A:1009602825894
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Causal Adjustment Formula Example:

T = Treatment

Y = Treatment outcome

S = Kidney stone size Let's assume the following causal DAG:

Let's compare  against , .

The difference between conditional and interventional distributions:

Example 2 (COVID in Israel, Aug 2021)

Covid-19 hospitalizations in Israel (Aug 17. 2021)

Data from Israeli government data dashboard

Data collected by Jeffrey Morris

Efficacy defined as

P(Y = 1|do(T = t)) P(Y = 1|T = t) t ∈ {A,B}

P(Y = 1|T = A) = 0.78

P(Y = 1|T = B) = 0.83

P(Y = 1|do(T = A)) = ∑s∈{small,large} P(Y = 1|S = s,T = A)P(S = s) = 0.93 × 0.51 + 0.73 × 0.49 = 0.832

P(Y = 1|do(T = B)) = ∑s∈{small,large} P(Y = 1|S = s,T = B)P(S = s) = 0.87 × 0.51 + 0.69 × 0.49 = 0.7818

Efficacy = .
(severe cases Fully Vax per 100k)

(All severe cases)
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Covid Causal Graph

COVID vulnerability determines disease severity

More vulnerable individuals more likely to have the vaccine

Older people are more vulnerable

Age

Severe
Covid

Vax
Status

Data from Israeli government data dashboard

Data collected by Jeffrey Morris

Age-conditional efficacy defined as

Zillow Home Purchase Case

See slides

References

(Pearl 2009) Judea Pearl, Causality : models, reasoning, and inference, ISBN 0-521-77362-8, Cambridge University

Press, 2009

Efficacy | Age = .
(severe cases Fully Vax per 100k | Age)

(All severe cases| Age)

In [ ]:  
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