
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ No class on November 7th (Election Day)
§ Lectures 13 (Advanced Topics in GNNs) to 17 (Link

Prediction and Causality) will be pushed back by one
class

§ Lecture 18 (Frontiers of GNN Research) will be
skipped

¡ First assignments released on course website:
Colab 0 and Colab 1
§ Links can be found under the Schedule section of

the website

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

¡ Colab 0 will be released today by 9PM on our
course website

¡ Colab 0:
§ Overview of NetworkX and PyTorch Geometric
§ Does not need to be handed in
§ TAs will hold a recitation session to walk you

through Colab 0:
§ Time: Friday (09/29), 3-4pm PT
§ Location: Zoom, link will be posted on Ed
§ Session will be recorded

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

¡ Colab 1 will be released today by 9PM on our
course website

¡ Colab 1:
§ Will cover material from Lectures 1-2,

so you can get started right away!
§ Due on Thursday 10/12 (2 weeks from today)
§ Submit written answers and code on Gradescope

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

7

Input
Graph

Structured
Features

Learning
Algorithm

Downstream
prediction task

Feature engineering
(node-level, edge-level, graph-

level features)

Given an input graph, extract node, link
and graph-level features, then learn a
model (SVM, neural network, etc.) that
maps features to labels.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu11/14/23

Prediction

8

Input
Graph

Structured
Features

Learning
Algorithm Prediction

Downstream
prediction task

Feature
Engineering

Representation Learning --
Automatically

learn the features

Graph Representation Learning alleviates
the need to do feature engineering every
single time.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu11/14/23

Goal: Efficient task-independent feature
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

vectornode

𝑓: 𝑢 → ℝ!

ℝ!
Feature representation,

embedding

𝑢

11/14/23

¡ Task: Map nodes into an embedding space
§ Similarity of embeddings between nodes indicates

their similarity in the network. For example:
§ Both nodes are close to each other (connected by an edge)

§ Encode network information
§ Potentially used for many downstream predictions

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Vec

ℝ!embeddings

• Node classification
• Link prediction
• Graph classification
• Anomalous node detection
• Clustering
• ….

Tasks

¡ 2D embedding of nodes of the Zachary’s
Karate Club network:

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

Example

� �ĂĐŚĂƌǇ͛Ɛ�<ĂƌĂƚĞ�EĞƚǁŽƌŬ͗

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.

https://arxiv.org/pdf/1403.6652.pdf

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Assume we have an (undirected) graph G:
§ V is the vertex set.
§ A is the adjacency matrix (assume binary).
§ For simplicity: No node features or extra

information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 1311/14/23

1

4
3

2

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

0111
1000
1001
1010

AV: {1, 2, 3, 4}

¡ Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 1411/14/23

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

Goal:

Need to define!

11/14/23

in the original network Similarity of the embedding
similarity 𝑢, 𝑣 	≈ 	 𝐳"#𝐳$

1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a

measure of similarity in the original network)
3. Decoder 𝐃𝐄𝐂 maps from embeddings to the

similarity score
4. Optimize the parameters of the encoder so

that:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 1611/14/23

in the original network Similarity of the embedding

similarity 𝑢, 𝑣 	≈ 	 𝐳"#𝐳$

𝐃𝐄𝐂(𝐳!"𝐳#)

¡ Encoder: maps each node to a low-dimensional
vector

¡ Similarity function: specifies how the
relationships in vector space map to the
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

Similarity of 𝑢 and 𝑣 in
the original network

dot product between node
embeddings

11/14/23

Decoder

ENC 𝑣 = 𝐳!

similarity 𝑢, 𝑣 	≈ 	 𝐳"#𝐳$

node in the input graph

d-dimensional
embedding

Simplest encoding approach: Encoder is just an
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

matrix, each column is a node
embedding [what we learn /
optimize]
indicator vector, all zeroes
except a one in column
indicating node v

11/14/23

ENC 𝑣 = 𝐳𝒗 = 𝐙 ⋅ 𝑣

𝚭 ∈ ℝ!× 𝒱

𝑣 ∈ 𝕀 𝒱

Simplest encoding approach: encoder is just an
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

Dimension/size
of embeddings

one column per node

embedding
matrix

embedding vector for a
specific node

11/14/23

𝐙 =

Simplest encoding approach: Encoder is just an
embedding-lookup

Each node is assigned a unique
embedding vector

(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

¡ Encoder + Decoder Framework
§ Shallow encoder: Embedding lookup
§ Parameters to optimize: 𝐙 which contains node

embeddings 𝐳' for all nodes 𝑢 ∈ 𝑉
§ We will cover deep encoders in the GNNs

§ Decoder: based on node similarity.
§ Objective: maximize 𝐳()𝐳' for node pairs (𝑢, 𝑣)

that are similar

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

¡ Key choice of methods is how they define node
similarity.

¡ Should two nodes have a similar embedding if
they…
§ are linked?
§ share neighbors?
§ have similar “structural roles”?

¡ We will now learn node similarity definition that uses
random walks, and how to optimize embeddings for
such a similarity measure.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

¡ This is unsupervised/self-supervised way of
learning node embeddings.
§ We are not utilizing node labels
§ We are not utilizing node features
§ The goal is to directly estimate a set of coordinates

(i.e., the embedding) of a node so that some aspect
of the network structure (captured by DEC) is
preserved.

¡ These embeddings are task independent:
§ They are not trained for a specific task but can be

used for any task.
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Vector 𝐳!:
§ The embedding of node 𝑢 (what we aim to find).

¡ Probability 𝑃 𝑣 𝐳!) :
§ The (predicted) probability of visiting node 𝑣 on

random walks starting from node 𝑢.

¡ Softmax function:
§ Turns vector of 𝐾 real values (model predictions) into
𝐾 probabilities that sum to 1: 𝑆(𝒛)[𝑖] = "𝒛[#]

∑%&'
("𝒛[%]

¡ Sigmoid function:
§ S-shaped function that turns real values into the range of (0, 1).

Written as 𝜎 𝑥 =)
)*+!"

.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

Non-linear functions used to produce predicted probabilities

Our model prediction based on 𝐳#

1

4

3

2

5
6

7

9
10

8

11

12

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Given a graph and a starting
point, we select a neighbor of
it at random, and move to this
neighbor; then we select a
neighbor of this point at
random, and move to it, etc.
The (random) sequence of
points visited this way is a
random walk on the graph.

Step 1 Step 2

Step 3 Step 4

Step 5

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

probability that u
and v co-occur on
a random walk over

the graph

11/14/23

𝐳!"𝐳# ≈

1. Estimate probability of visiting node 𝒗 on a
random walk starting from node 𝒖 using
some random walk strategy 𝑹

2. Optimize embeddings to encode these
random walk statistics:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2811/14/23

Similarity in embedding space (Here:
dot product=cos(𝜃)) encodes random walk “similarity”

1. Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node 𝑢
visits 𝑣 with high probability, 𝑢 and 𝑣 are
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2911/14/23

¡ Intuition: Find embedding of nodes in
𝑑-dimensional space that preserves similarity

¡ Idea: Learn node embedding such that nearby
nodes are close together in the network

¡ Given a node 𝑢, how do we define nearby
nodes?
§ 𝑁. 𝑢 … neighbourhood of 𝑢 obtained by some

random walk strategy 𝑅

30Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu11/14/23

¡ Given 𝐺 = (𝑉, 𝐸),
¡ Our goal is to learn a mapping 𝑓: 𝑢 → ℝ$:
𝑓 𝑢 = 𝐳%

¡ Log-likelihood objective:

argmax
/

3
' ∈1

log P(𝑁2(𝑢)| 𝐳')

§ 𝑁$(𝑢) is the neighborhood of node 𝑢 by strategy 𝑅

¡ Given node 𝑢, we want to learn feature
representations that are predictive of the nodes
in its random walk neighborhood 𝑁&(𝑢).

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

1. Run short fixed-length random walks
starting from each node 𝑢 in the graph using
some random walk strategy R.

2. For each node 𝑢 collect 𝑁&(𝑢), the multiset*
of nodes visited on random walks starting
from 𝑢.

3. Optimize embeddings according to: Given
node 𝑢, predict its neighbors 𝑁'(𝑢).

arg max
(

I
$ ∈*

log P(𝑁'(𝑢)| 𝐳$)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32
*𝑁!(𝑢) can have repeat elements since nodes can be visited multiple times on random walks

11/14/23

Maximum likelihood
objective

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

• Intuition: Optimize embeddings 𝒛$ to minimize
the negative log-likelihood of random walk
neighborhoods 𝑁(𝑢).

• Parameterize 𝑃(𝑣|𝐳𝑢) using softmax:

11/14/23

Why softmax?
We want node 𝑣 to be
most similar to node 𝑢
(out of all nodes 𝑛).
Intuition: ∑" exp 𝑥" ≈
max
"
exp(𝑥")

𝑃 𝑣 𝐳$ =
exp(𝐳$+𝐳")

∑,∈* exp(𝐳$+𝐳,)

argmin
4
ℒ = .

5∈7

.
8∈9'(5)

−log(𝑃(𝑣|𝐳5))

Equivalently,

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

Putting it all together:

sum over all
nodes 𝑢

sum over nodes 𝑣
seen on random

walks starting from 𝑢

predicted probability of 𝑢
and 𝑣 co-occuring on

random walk

Optimizing random walk embeddings =

Finding embeddings 𝐳𝒖 	that minimize L
11/14/23

ℒ = #
!∈#

#
	%∈&3(!)

−	log(
exp(𝐳!)𝐳%)

∑*∈# exp(𝐳!)𝐳*)
)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

But doing this naively is too expensive!

Nested sum over nodes gives
O(|V|2)	complexity!

11/14/23

ℒ = #
!∈#

#
	%∈&3(!)

−log(
exp(𝐳!)𝐳%)

∑*∈# exp(𝐳!)𝐳*)
)

ℒ = #
!∈#

#
	%∈&3(!)

−log(
exp(𝐳!)𝐳%)

∑*∈# exp(𝐳!)𝐳*)
)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

The normalization term from the softmax is
the culprit… can we approximate it?

11/14/23

But doing this naively is too expensive!

¡ Solution: Negative sampling

Instead of normalizing w.r.t. all nodes, just
normalize against 𝑘 random “negative samples” 𝑛.
¡ Negative sampling allows for quick likelihood calculation.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

sigmoid function
(makes each term a “probability”

between 0 and 1)

random distribution
over nodes

11/14/23

Why is the approximation valid?
Technically, this is a different objective. But
Negative Sampling is a form of Noise
Contrastive Estimation (NCE) which approx.
maximizes the log probability of softmax.

New formulation corresponds to using a
logistic regression (sigmoid func.) to
distinguish the target node 𝑣 from nodes 𝑛!
sampled from background distribution 𝑃".

More at https://arxiv.org/pdf/1402.3722.pdf

≈ log 𝜎 𝐳'4𝐳(+ ∑5678 log 𝜎 −𝐳'4𝐳9! , 𝑛5~𝑃1

−log(
exp 𝐳'4𝐳(

∑9∈1 exp 𝐳'4𝐳9
)

https://arxiv.org/pdf/1402.3722.pdf

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

random distribution
over nodes

§ Sample 𝑘 negative nodes 𝑛. 	each with prob.
proportional to its degree.

§ Two considerations for 𝑘 (# negative samples):
1. Higher 𝑘 gives more robust estimates
2. Higher 𝑘 corresponds to higher bias on negative events
In practice 𝑘 =5-20.

11/14/23

≈ log 𝜎 𝐳'4𝐳(+3
567

8
log 𝜎 −𝐳'4𝐳9! , 𝑛5~𝑃1

log(
exp 𝐳'4𝐳(

∑9∈1 exp 𝐳'4𝐳9
)

Can negative sample be any node or only the nodes not on the
walk? People often sample any node (for efficiency).

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

§ After we obtained the objective function, how do
we optimize (minimize) it?

§ Gradient Descent: a simple way to minimize ℒ	:

§ Initialize 𝑧$ at some randomized value for all nodes 𝑢.

§ Iterate until convergence:

§ For all 𝑢, compute the derivative $ℒ
$&&

.

§ For all 𝑢, make a step in reverse direction of derivative: 𝑧# ← 𝑧# − 𝜂
$ℒ
$&&

.
11/14/23

ℒ =)
:∈<

)
=∈>$(:)

−log(𝑃(𝑣|𝐳:))

𝜂: learning rate

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

§ Stochastic Gradient Descent: Instead of evaluating
gradients over all examples, evaluate it for each
individual training example.

§ Initialize 𝑧! at some randomized value for all nodes 𝑢.

§ Iterate until convergence:

§ Sample a node 𝑢, for all 𝑣 calculate the gradient %ℒ
(?)

%'@
.

§ For all	𝑣, update:𝑧(← 𝑧(− 𝜂
%ℒ(?)

%'@
.

11/14/23

ℒ(#) = A
!∈*'(#)

−log(𝑃(𝑣|𝐳#))

1. Run short fixed-length random walks starting
from each node on the graph

2. For each node 𝑢 collect 𝑁&(𝑢), the multiset of
nodes visited on random walks starting from 𝑢.

3. Optimize embeddings 𝑍 using Stochastic
Gradient Descent:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

We can efficiently approximate this using
negative sampling!

11/14/23

ℒ = 0
%∈5

0
6∈7&(%)

−log(𝑃(𝑣|𝐳%))

¡ So far we have described how to optimize
embeddings given a random walk strategy R

¡ What strategies should we use to run these
random walks?
§ Simplest idea: Just run fixed-length, unbiased

random walks starting from each node (i.e.,
DeepWalk from Perozzi et al., 2013)
§ The issue is that such notion of similarity is too constrained

¡ How can we generalize this?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4211/14/23

Reference: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.

https://arxiv.org/abs/1403.6652
https://arxiv.org/pdf/1403.6652.pdf

¡ Goal: Embed nodes with similar network
neighborhoods close in the feature space.

¡ We frame this goal as a maximum likelihood
optimization problem, independent to the
downstream prediction task.

¡ Key observation: Flexible notion of network
neighborhood 𝑁&(𝑢) of node 𝑢 leads to rich node
embeddings

¡ Develop biased 2nd order random walk 𝑅 to
generate network neighborhood 𝑁&(𝑢) of node 𝑢

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

Reference: Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Idea: use flexible, biased random walks that can
trade off between local and global views of the
network (Grover and Leskovec, 2016).

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes

u

s3

s2
s1

s4

s8

s9

s6

s7

s5

BFS

DFS

Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-

11/14/23

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Two classic strategies to define a neighborhood
𝑵𝑹 𝒖 of a given node 𝒖:

Walk of length 3 (𝑁& 𝑢 of size 3):

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

𝑁012 𝑢 = {	𝑠3, 𝑠4, 𝑠5}

𝑁612 𝑢 = {	𝑠7, 𝑠8, 𝑠9}
Local microscopic view
Global macroscopic view

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes

u

s3

s2
s1

s4

s8

s9

s6

s7

s5

BFS

DFS

Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-

11/14/23

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

BFS:
𝑁&(⋅) will provide
a micro-view of
neighbourhood

u

DFS:
𝑁&(⋅)	will provide a

macro-view of
neighbourhood

11/14/23

Biased fixed-length random walk 𝑹 that given a node
𝒖 generates neighborhood 𝑵𝑹 𝒖
¡ Random walk has two parameters:

§ Return parameter 𝒑:
§ Return back to the previous node

§ In-out parameter 𝒒:
§ Moving outwards (DFS) vs. inwards (BFS) from the previous node
§ Intuitively, 𝑞 is the “ratio” of BFS vs. DFS

¡ Next, we specify how a single step of biased
random walk is performed.

¡ Random walk is then just a sequence of these steps.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4711/14/23

Define the random walk by specifying the walk
transition probabilities on edges adjacent to the
current node 𝑤:

§ Rnd. walk just traversed edge (𝑠7, 𝑤) and is now at 𝒘
§ We specify edge transition probs. out of node 𝒘
§ Insight: Neighbors of 𝑤 can only be:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

s1

s2

w
s3

u
Back to 𝒔𝟏

Same distance to 𝒔𝟏

Farther from 𝒔𝟏

11/14/23

¡ Walker came over edge (𝐬𝟏, 𝐰) and is now at 𝐰.
How to set edge transition probabilities?

¡ 𝑝, 𝑞 model transition probabilities
§ 𝑝 … return parameter
§ 𝑞 … ”walk away” parameter

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

1

1/𝑞
1/𝑝

1/𝑝, 1/𝑞, 1 are
unnormalized
probabilitiess1

s2

w
s3

u

11/14/23

s4

1/𝑞

¡ Walker came over edge (𝐬𝟏, 𝐰) and is at 𝐰.
How to set edge transition probabilities?

§ BFS-like walk: Low value of 𝑝
§ DFS-like walk: Low value of 𝑞

𝑁&(𝑢) are the nodes visited by the biased walk
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

w →
s1
s2
s3
s4

1/𝑝
1
1/𝑞
1/𝑞

Unnormalized
transition prob.
segmented based
on distance from 𝑠!

11/14/23

Dist. (𝒔𝟏, 𝒕)

 0
 1
 2
 2

1

1/𝑞
1/𝑝s1

s2

w
s3

u s4

1/𝑞
Target	𝒕 Prob.

¡ 1) Compute edge transition probabilities:
§ For each edge (𝑠7, 𝑤) we compute edge walk

probabilities (based on 𝑝, 𝑞) of edges (𝑤,⋅)
¡ 2) Simulate 𝑟 random walks of length 𝑙 starting

from each node 𝑢
¡ 3) Optimize the node2vec objective using

Stochastic Gradient Descent

¡ Linear-time complexity
¡ All 3 steps are individually parallelizable

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5111/14/23

¡ Different kinds of biased random walks:
§ Based on node attributes (Dong et al., 2017).
§ Based on learned weights (Abu-El-Haija et al., 2017)

¡ Alternative optimization schemes:
§ Directly optimize based on 1-hop and 2-hop random walk

probabilities (as in LINE from Tang et al. 2015).

¡ Network preprocessing techniques:
§ Run random walks on modified versions of the original

network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al.
2016’s HARP).

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845
https://arxiv.org/abs/1706.07845

¡ Core idea: Embed nodes so that distances in
embedding space reflect node similarities in
the original network.

¡ Different notions of node similarity:
§ Naïve: Similar if two nodes are connected
§ Random walk approaches (covered today)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5311/14/23

¡ So, what method should I use..?
¡ No one method wins in all cases….
§ E.g., node2vec performs better on node classification

while alternative methods perform better on link
prediction (Goyal and Ferrara, 2017 survey).

¡ Random walk approaches are generally more
efficient.

¡ In general: Must choose definition of node
similarity that matches your application.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5411/14/23

https://arxiv.org/abs/1705.02801

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Goal: Want to embed a subgraph or an entire
graph 𝐺. Graph embedding: 𝐳𝑮.

¡ Tasks:
§ Classifying toxic vs. non-toxic molecules
§ Identifying anomalous graphs

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

𝒛(

Simple (but effective) approach 1:
¡ Run a standard graph embedding

technique on the (sub)graph 𝐺.
¡ Then just sum (or average) the node

embeddings in the (sub)graph 𝐺.

¡ Used by Duvenaud et al., 2016 to classify
molecules based on their graph structure

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

𝒛𝑮 = #
#∈%

𝒛#

11/14/23

https://arxiv.org/abs/1509.09292

¡ Approach 2: Introduce a “virtual node” to
represent the (sub)graph and run a standard
graph embedding technique

¡ Proposed by Li et al., 2016 as a general
technique for subgraph embedding

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5811/14/23

https://arxiv.org/abs/1511.05493

We discussed 3 ideas to graph embeddings:

¡ Approach 1: Embed nodes and sum/avg them

¡ Approach 2: Create super-node that spans the
(sub) graph and then embed that node.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

¡ DiffPool: We can also hierarchically cluster
nodes in graphs, and sum/avg the node
embeddings according to these clusters.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Recall: encoder as an embedding lookup

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

Dimension/size
of embeddings

one column per node

embedding
matrix

embedding vector for a
specific node

𝐙 =

Objective: maximize 𝐳!)𝐳$ for node pairs (𝑢, 𝑣) that are similar

¡ Simplest node similarity: Nodes 𝑢, 𝑣 are
similar if they are connected by an edge

¡ This means: 𝐳"#𝐳$ = 𝐴$,"
which is the (𝑢, 𝑣) entry of the graph
adjacency matrix 𝐴

¡ Therefore, 𝒁=𝒁 = 𝐴

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

1

4
3

2

×

𝒁* 𝒁

𝐳$ 𝐳!

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

0111
1000
1001
1010

A

¡ The embedding dimension 𝑑 (number of rows in 𝒁)
is much smaller than number of nodes 𝑛.

¡ Exact factorization 𝐴 = 𝒁𝑻𝒁 is generally not possible
¡ However, we can learn 𝒁 approximately
¡ Objective:min

𝐙
∥ A − 𝒁<𝒁 ∥=

§ We optimize 𝒁 such that it minimizes the L2 norm
(Frobenius norm) of A − 𝒁)𝒁

§ Note today we used softmax instead of L2. But the goal to
approximate A with 𝒁)𝒁 is the same.

¡ Conclusion: Inner product decoder with node
similarity defined by edge connectivity is
equivalent to matrix factorization of 𝐴.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

¡ DeepWalk and node2vec have a more
complex node similarity definition based on
random walks

¡ DeepWalk is equivalent to matrix
factorization of the following complex matrix
expression:

§ Explanation of this equation is on the next slide.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18

𝑙𝑜𝑔 𝑣𝑜𝑙(𝐺)
1
𝑇
	:

+,-

*
(𝐷.-𝐴)+ 𝐷.- − log 𝑏

https://keg.cs.tsinghua.edu.cn/jietang/publications/WSDM18-Qiu-et-al-NetMF-network-embedding.pdf

¡ Node2vec can also be formulated as a matrix
factorization (albeit a more complex matrix)

¡ Refer to the paper for more details:

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18

Power of normalized
adjacency matrix

context window size
See Lec 3 slide 30:
𝑇 = |𝑁& 𝑢 |

Number of
negative samples

Diagonal matrix 𝐷
𝐷#,# = deg(𝑢)

log 𝑣𝑜𝑙(𝐺)
1
𝑇
	A

+,-

.
(𝐷/-𝐴)+ 𝐷/- − log 𝑏

Volume of graph

𝑣𝑜𝑙 𝐺 =>
(

>
)

𝐴(,)

¡ How to use embeddings 𝒛𝒊 of nodes:
§ Clustering/community detection: Cluster points 𝒛𝒊
§ Node classification: Predict label of node 𝑖 based on 𝒛𝒊
§ Link prediction: Predict edge (𝑖, 𝑗) based on (𝒛𝒊, 𝒛𝒋)

§ Where we can: concatenate, avg, product, or take a difference
between the embeddings:
§ Concatenate: 𝑓(𝒛(, 𝒛))= 𝑔([𝒛(, 𝒛)])
§ Hadamard: 𝑓(𝒛(, 𝒛))= 𝑔(𝒛(∗ 𝒛)) (per coordinate product)
§ Sum/Avg: 𝑓(𝒛(, 𝒛))= 𝑔(𝒛(+ 𝒛))
§ Distance: 𝑓(𝒛(, 𝒛))= 𝑔(||𝒛(− 𝒛𝒋||+)

§ Graph classification: Graph embedding 𝒛𝑮 via aggregating
node embeddings or virtual-node.
Predict label based on graph embedding 𝒛9.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

We discussed graph representation learning, a way to
learn node and graph embeddings for downstream
tasks, without feature engineering.

¡ Encoder-decoder framework:
§ Encoder: embedding lookup
§ Decoder: predict score based on embedding to match

node similarity

¡ Node similarity measure: (biased) random walk
§ Examples: DeepWalk, Node2Vec

¡ Extension to Graph embedding: Node embedding
aggregation

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

Limitations of node embeddings via matrix
factorization and random walks
§ Transductive (not inductive) method: Cannot

obtain embeddings for nodes not in the training
set. Cannot apply to new graphs, evolving graphs.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

1

4
3

2
5

Training set

A newly added node 5 at test time
(e.g., new user in a social network)

Cannot compute its embedding
with DeepWalk / node2vec. Need to
recompute all node embeddings.

¡ Cannot capture structural similarity:

§ Node 1 and 11 are structurally similar – part of one
triangle, degree 2, …

§ However, they have very different embeddings.
§ It’s unlikely that a random walk will reach node 11 from node 1.

¡ DeepWalk and node2vec do not capture
structural similarity.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

1

3
4

2
5 10

11

13

12

¡ Cannot utilize node, edge and graph features

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

1

4
3

2
5

Feature vector
(e.g. protein properties in a
protein-protein interaction graph)

DeepWalk / node2vec
embeddings do not incorporate
such node features

Solution to these limitations: Deep Representation
Learning and Graph Neural Networks
(To be covered in depth next)

