Given an input graph, extract node, link and graph-level features, learn a model (SVM, neural network, etc.) that maps features to labels.

Feature engineering (node-level, edge-level, graph-level features)
Graph Representation Learning alleviates the need to do feature engineering every single time.

Diagram:

- **Input Graph** → **Structured Features** → **Learning Algorithm** → **Prediction**

- **Feature Engineering** crossed out

- **Representation Learning** -- Automatically learn the features

- **Downstream prediction task**
Goal: Efficient task-independent feature learning for machine learning with graphs!
Task: Map nodes into an embedding space

- Similarity of embeddings between nodes indicates their similarity in the network. For example:
 - Both nodes are close to each other (connected by an edge)
- Encode network information
- Potentially used for many downstream predictions

Tasks:
- Node classification
- Link prediction
- Graph classification
- Anomalous node detection
- Clustering
- ...
2D embedding of nodes of the Zachary’s Karate Club network:

Stanford CS224W: Node Embeddings: Encoder and Decoder
Assume we have a graph G:

- V is the vertex set.
- A is the adjacency matrix (assume binary).
- **For simplicity: No node features or extra information is used**

\[V: \{1, 2, 3, 4\} \]

\[A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \]
Goal is to encode nodes so that **similarity in the embedding space** (e.g., dot product) approximates **similarity in the graph**.
Goal: \textit{similarity}(u, v) \approx z_v^T z_u

Similarity of the embedding

\textit{Need to define!}
1. **Encoder** maps from nodes to embeddings
2. Define a node similarity function (i.e., a measure of similarity in the original network)
3. **Decoder** DEC maps from embeddings to the similarity score
4. Optimize the parameters of the encoder so that:

$$\text{similarity}(u, v) \approx z_v^T z_u$$

in the original network

Similarity of the embedding
Two Key Components

- **Encoder**: maps each node to a low-dimensional vector

 \[\text{ENC}(v) = z_v \]

 node in the input graph

- **Similarity function**: specifies how the relationships in vector space map to the relationships in the original network

 \[\text{similarity}(u, v) \approx z_v^T z_u \]

 Similarity of \(u \) and \(v \) in the original network

 dot product between node embeddings

 Decoder
Simplest encoding approach: **Encoder is just an embedding-lookup**

\[
\text{ENC}(v) = z_v = Z \cdot v
\]

- \(Z \in \mathbb{R}^{d \times |\mathcal{V}|} \) matrix, each column is a node embedding \([\text{what we learn } / \text{ optimize}]\)
- \(\nu \in \mathbb{I}^{|\mathcal{V}|} \) indicator vector, all zeroes except a one in column indicating node \(v \)
“Shallow” Encoding

Simplest encoding approach: **encoder is just an embedding-lookup**

- **Embedding matrix**
- **Embedding vector for a specific node**
- **Dimension/size of embeddings**
- **One column per node**
Simplest encoding approach: **Encoder is just an embedding-lookup**

Each node is assigned a unique embedding vector
(i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec
Encoder + Decoder Framework

- Shallow encoder: embedding lookup
- Parameters to optimize: Z which contains node embeddings z_u for all nodes $u \in V$
- We will cover deep encoders (GNNs) in Lecture 6

- Decoder: based on node similarity.
- Objective: maximize $z_v^T z_u$ for node pairs (u, v) that are similar
Key choice of methods is **how they define node similarity.**

Should two nodes have a similar embedding if they...

- are linked?
- share neighbors?
- have similar “structural roles”?

We will now learn node similarity definition that uses **random walks**, and how to optimize embeddings for such a similarity measure.
Note on Node Embeddings

- This is **unsupervised/self-supervised** way of learning node embeddings.
 - We are **not** utilizing node labels
 - We are **not** utilizing node features
 - The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved.

- These embeddings are **task independent**
 - They are not trained for a specific task but can be used for any task.
Notation

- **Vector** \mathbf{z}_u:
 - The embedding of node u (what we aim to find).

- **Probability** $P(\nu \mid \mathbf{z}_u)$:
 - The (predicted) probability of visiting node ν on random walks starting from node u.
 - Our model prediction based on \mathbf{z}_u.

Non-linear functions used to produce predicted **probabilities**

- **Softmax** function:
 - Turns vector of K real values (model predictions) into K probabilities that sum to 1:
 \[
 \sigma(\mathbf{z})[i] = \frac{e^{z[i]}}{\sum_{j=1}^{K} e^{z[j]}}
 \]

- **Sigmoid** function:
 - S-shaped function that turns real values into the range of $(0, 1)$.
 - Written as $S(x) = \frac{1}{1+e^{-x}}$.
Given a graph and a starting point, we select a neighbor of it at random, and move to this neighbor; then we select a neighbor of this point at random, and move to it, etc. The (random) sequence of points visited this way is a random walk on the graph.
Random-Walk Embeddings

\[z_u^T z_v \approx \text{probability that } u \text{ and } v \text{ co-occur on a random walk over the graph} \]
1. Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R

2. Optimize embeddings to encode these random walk statistics:

Similarity in embedding space (Here: dot product $= \cos(\theta)$) encodes random walk “similarity”
1. **Expressivity**: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information

 Idea: if random walk starting from node u visits v with high probability, u and v are similar (high-order multi-hop information)

2. **Efficiency**: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks
Intuition: Find embedding of nodes in d-dimensional space that preserves similarity.

Idea: Learn node embedding such that nearby nodes are close together in the network.

Given a node u, how do we define nearby nodes?

- $N_R(u)$... neighbourhood of u obtained by some random walk strategy R
Feature Learning as Optimization

- Given $G = (V, E)$,
- Our goal is to learn a mapping $f: u \rightarrow \mathbb{R}^d$:
 $$f(u) = z_u$$
- Log-likelihood objective:
 $$\max_f \sum_{u \in V} \log P(N_R(u) | z_u)$$
 - $N_R(u)$ is the neighborhood of node u by strategy R
- Given node u, we want to learn feature representations that are predictive of the nodes in its random walk neighborhood $N_R(u)$.
1. Run **short fixed-length random walks** starting from each node \(u \) in the graph using some random walk strategy \(R \).

2. For each node \(u \) collect \(N_R(u) \), the multiset\(^*\) of nodes visited on random walks starting from \(u \).

3. Optimize embeddings according to: Given node \(u \), predict its neighbors \(N_R(u) \).

\[
\max_f \sum_{u \in V} \log P(N_R(u) | z_u) \quad \Rightarrow \quad \text{Maximum likelihood objective}
\]

\(^*N_R(u)\) can have repeat elements since nodes can be visited multiple times on random walks.
Random Walk Optimization

Intuition:
Optimize embeddings z_u to maximize the likelihood of random walk co-occurrences.

Parameterize $P(v|z_u)$ using softmax:

$$P(v|z_u) = \frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)}$$

Why softmax?
We want node v to be most similar to node u (out of all nodes n).
Intuition: $\sum_i \exp(x_i) \approx \max_i \exp(x_i)$
Putting it all together:

\[
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} \text{sum over nodes } v \text{ that are seen on random walks starting from } u - \log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right) \text{ predicted probability of } u \text{ and } v \text{ co-occurring on random walk}
\]

Optimizing random walk embeddings =

Finding embeddings \(z_u \) that minimize \(\mathcal{L} \)
Random Walk Optimization

But doing this naively is too expensive!

\[\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right) \]

Nested sum over nodes gives \(O(|V|^2) \) complexity!
The normalization term from the softmax is the culprit... can we approximate it?
Solution: Negative sampling

$$\log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)$$

$$\approx \log \left(\sigma(z_u^T z_v) \right) - \sum_{i=1}^{k} \log \left(\sigma(z_u^T z_{n_i}) \right), n_i \sim P_V$$

Negative sampling allows for quick likelihood calculation.

Why is the approximation valid?
Technically, this is a different objective. But Negative Sampling is a form of Noise Contrastive Estimation (NCE) which approx. maximizes the log probability of softmax.

New formulation corresponds to using a logistic regression (sigmoid func.) to distinguish the target node v from nodes n_i sampled from background distribution P_v.

Instead of normalizing w.r.t. all nodes, just normalize against k random “negative samples” n_i
Negative Sampling

\[\log\left(\frac{\exp (z_u^T z_v)}{\sum_{n \in V} \exp (z_u^T z_n)} \right) \]

\[\approx \log \left(\sigma (z_u^T z_v) \right) - \sum_{i=1}^{k} \log \left(\sigma (z_u^T z_{n_i}) \right), \ n_i \sim P_V \]

- Sample \(k \) negative nodes each with prob. proportional to its degree

- Two considerations for \(k \) (# negative samples):
 1. Higher \(k \) gives more robust estimates
 2. Higher \(k \) corresponds to higher bias on negative events

In practice \(k = 5-20 \).

Can negative sample be any node or only the nodes not on the walk? People often use any nodes (for efficiency). However, the most “correct” way is to use nodes not on the walk.
After we obtained the objective function, how do we optimize (minimize) it?

\[
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|z_u))
\]

Gradient Descent: a simple way to minimize \(\mathcal{L} \):

- Initialize \(z_u \) at some randomized value for all nodes \(u \).
- Iterate until convergence:
 - For all \(u \), compute the derivative \(\frac{\partial \mathcal{L}}{\partial z_u} \).
 - For all \(u \), make a step in reverse direction of derivative: \(z_u \leftarrow z_u - \eta \frac{\partial \mathcal{L}}{\partial z_u} \).

\(\eta \): learning rate
Stochastic Gradient Descent

- **Stochastic Gradient Descent**: Instead of evaluating gradients over all examples, evaluate it for each **individual** training example.

 - Initialize z_u at some randomized value for all nodes u.

 - Iterate until convergence:
 - Sample a node u, for all v calculate the derivative $\frac{\partial \mathcal{L}(u)}{\partial z_v}$.
 - For all v, update: $z_v \leftarrow z_v - \eta \frac{\partial \mathcal{L}(u)}{\partial z_v}$.

\[
\mathcal{L}(u) = \sum_{v \in N_R(u)} -\log(P(v|z_u))
\]
Random Walks: Summary

1. Run **short fixed-length** random walks starting from each node on the graph.

2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u.

3. Optimize embeddings using Stochastic Gradient Descent:

 $$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|z_u))$$

 We can efficiently approximate this using negative sampling!
So far we have described how to optimize embeddings given a random walk strategy R.

What strategies should we use to run these random walks?

- Simplest idea: Just run fixed-length, unbiased random walks starting from each node (i.e., DeepWalk from Perozzi et al., 2013).

 - The issue is that such notion of similarity is too constrained.

How can we generalize this?

Goal: Embed nodes with similar network neighborhoods close in the feature space.

We frame this goal as a maximum likelihood optimization problem, independent to the downstream prediction task.

Key observation: Flexible notion of network neighborhood $N_R(u)$ of node u leads to rich node embeddings.

Develop biased 2nd order random walk R to generate network neighborhood $N_R(u)$ of node u.

Reference: Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.
node2vec: Biased Walks

Idea: use flexible, biased random walks that can trade off between local and global views of the network (Grover and Leskovec, 2016).
Two classic strategies to define a neighborhood \(N_R(u) \) of a given node \(u \):

- **BFS (breadth-first search)**:
 \[N_{BFS}(u) = \{ s_1, s_2, s_3 \} \]
 Local microscopic view

- **DFS (depth-first search)**:
 \[N_{DFS}(u) = \{ s_4, s_5, s_6 \} \]
 Global macroscopic view
BFS vs. DFS

BFS: Micro-view of neighbourhood

DFS: Macro-view of neighbourhood
Biased fixed-length random walk R that given a node u generates neighborhood $N_R(u)$

- Two parameters:
 - **Return parameter p:**
 - Return back to the previous node
 - **In-out parameter q:**
 - Moving outwards (DFS) vs. inwards (BFS)
 - Intuitively, q is the “ratio” of BFS vs. DFS
Biased Random Walks

Biased 2nd-order random walks explore network neighborhoods:

- Rnd. walk just traversed edge \((s_1, w)\) and is now at \(w\)
- **Insight:** Neighbors of \(w\) can only be:

 - Same distance to \(s_1\)
 - Farther from \(s_1\)
 - Back to \(s_1\)

Idea: Remember where the walk came from
Walker came over edge \((s_1, w)\) and is at \(w\). Where to go next?

- \(p, q\) model transition probabilities
 - \(p\) ... return parameter
 - \(q\) ... ”walk away” parameter

\(1/p, 1/q, 1\) are unnormalized probabilities
Walker came over edge \((s_1, w)\) and is at \(w\).

Where to go next?

- **BFS-like** walk: Low value of \(p\)
- **DFS-like** walk: Low value of \(q\)

\(N_R(u)\) are the nodes visited by the biased walk
node2vec algorithm

1) Compute random walk probabilities
2) Simulate r random walks of length l starting from each node u
3) Optimize the node2vec objective using Stochastic Gradient Descent

- **Linear-time complexity**
- All 3 steps are individually parallelizable
Different kinds of biased random walks:
- Based on node attributes (Dong et al., 2017).
- Based on learned weights (Abu-El-Haija et al., 2017)

Alternative optimization schemes:
- Directly optimize based on 1-hop and 2-hop random walk probabilities (as in LINE from Tang et al. 2015).

Network preprocessing techniques:
- Run random walks on modified versions of the original network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al. 2016’s HARP).
Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.

Different notions of node similarity:
- Naïve: similar if two nodes are connected
- Neighborhood overlap (covered in Lecture 2)
- Random walk approaches (covered today)
So what method should I use? No one method wins in all cases.

- E.g., node2vec performs better on node classification while alternative methods perform better on link prediction (Goyal and Ferrara, 2017 survey).
- Random walk approaches are generally more efficient.

In general: Must choose definition of node similarity that matches your application.
Goal: Want to embed a subgraph or an entire graph G. Graph embedding: Z_G.

Tasks:
- Classifying toxic vs. non-toxic molecules
- Identifying anomalous graphs
Simple (but effective) approach 1:

- Run a standard graph embedding technique on the (sub)graph G.
- Then just sum (or average) the node embeddings in the (sub)graph G.

\[Z_G = \sum_{v \in G} Z_v \]

- Used by Duvenaud et al., 2016 to classify molecules based on their graph structure.
- **Approach 2:** Introduce a “virtual node” to represent the (sub)graph and run a standard graph embedding technique.

- Proposed by [Li et al., 2016](http://cs224w.stanford.edu) as a general technique for subgraph embedding.
States in anonymous walks correspond to the index of the first time we visited the node in a random walk
Approach 3: Anonymous Walk Embeddings

- Agnostic to the identity of the nodes visited (hence anonymous)

Example: Random walk w_1:

- **Step 1:** node A \rightarrow node 1
- **Step 2:** node B \rightarrow node 2 (different from node 1)
- **Step 3:** node C \rightarrow node 3 (different from node 1, 2)
- **Step 4:** node B \rightarrow node 2 (same as the node in step 2)
- **Step 5:** node C \rightarrow node 3 (same as the node in step 3)

Note: Random walk w_2 gives the same anonymous walk:
Number of anonymous walks grows exponentially:

- There are 5 anon. walks \(w_i \) of length 3:
 \[w_1 = 111, \ w_2 = 112, \ w_3 = 121, \ w_4 = 122, \ w_5 = 123 \]
Simulate anonymous walks w_i of l steps and record their counts.

Represent the graph as a probability distribution over these walks.

For example:
- Set $l = 3$
- Then we can represent the graph as a 5-dim vector
 - Since there are 5 anonymous walks w_i of length 3: 111, 112, 121, 122, 123
 - $z_G[i] = \text{probability of anonymous walk } w_i \text{ in graph } G$.

$\text{Simple Use of Anonymous Walks}$
Sampling anonymous walks: Generate independently a set of m random walks.

Represent the graph as a probability distribution over these walks.

How many random walks m do we need?

We want the distribution to have error of more than ε with prob. less than δ:

$$m = \left\lceil \frac{2}{\varepsilon^2} \left(\log(2^\eta - 2) - \log(\delta) \right) \right\rceil$$

where: η is the total number of anon. walks of length l.

For example:
There are $\eta = 877$ anonymous walks of length $l = 7$. If we set $\varepsilon = 0.1$ and $\delta = 0.01$ then we need to generate $m=122,500$ random walks.
New idea: Learn Walk Embeddings

Rather than simply representing each walk by the fraction of times it occurs, we **learn embedding** z_i **of anonymous walk** w_i.

- Learn a graph embedding Z_G together with all the anonymous walk embeddings z_i

$Z = \{z_i: i = 1 \ldots \eta\}$, where η is the number of sampled anonymous walks.

How to embed walks?

- **Idea:** Embed walks s.t. the next walk can be predicted.
Learn Walk Embeddings

- Output: A vector z_G for input graph G
 - The embedding of entire graph to be learned
- Starting from node 1: Sample anonymous random walks, e.g.

- Learn to predict walks that co-occur in Δ-size window (e.g., predict w_3 given w_1, w_2 if $\Delta = 2$)
- Objective:
 $$\max_{z_G} \sum_{t=\Delta+1}^{T} \log P(w_t|w_{t-\Delta}, \ldots, w_{t-1}, z_G)$$
 - Where T is the total number of walks
Run T different random walks from u each of length l:

$$N_R(u) = \{w_1^u, w_2^u, \ldots, w_T^u\}$$

Learn to predict walks that co-occur in Δ-size window

Estimate embedding z_i of anonymous walk w_i.

Let η be number of all possible walk embeddings.

Objective:

$$\max_{z_i, z_G} \frac{1}{T} \sum_{t=\Delta}^T \log P(w_t|\{w_{t-\Delta}, \ldots, w_{t-1}, z_G\})$$

- $P(w_t|\{w_{t-\Delta}, \ldots, w_{t-1}, z_G\}) = \frac{\exp(y(w_t))}{\sum_{i=1}^{\eta} \exp(y(w_i))}$

- $y(w_t) = b + U \cdot \left(cat\left(\frac{1}{\Delta} \sum_{i=1}^{\Delta} z_i, z_G\right)\right)$

- $cat\left(\frac{1}{\Delta} \sum_{i=1}^{\Delta} z_i, z_G\right)$ means an average of anonymous walk embeddings z_i in the window, concatenated with the graph embedding z_G.

- $b \in \mathbb{R}, U \in \mathbb{R}^D$ are learnable parameters. This represents a linear layer.

We obtain the graph embedding Z_G (learnable parameter) after the optimization.

- Is Z_G simply the sum over walk embeddings Z_i? Or is Z_G the residual embedding next to Z_i?
- According to the paper, Z_G is a separately optimized vector parameter, just like other Z_i’s.

Use Z_G to make predictions (e.g., graph classification):

- **Option 1**: Inner product Kernel $Z_{G1}^T Z_{G2}$ (Lecture 2)
- **Option 2**: Use a neural network that takes Z_G as input to classify G.

Overall Architecture
We discussed 3 ideas to graph embeddings:

- **Approach 1**: Embed nodes and sum/avg them

- **Approach 2**: Create super-node that spans the (sub) graph and then embed that node.

- **Approach 3**: Anonymous Walk Embeddings
 - Idea 1: Sample the anon. walks and represent the graph as fraction of times each anon walk occurs.
 - Idea 2: Learn graph embedding together with anonymous walk embeddings.
We will discuss more advanced ways to obtain graph embeddings in Lecture 8.

We can **hierarchically** cluster nodes in graphs, and **sum/avg** the node embeddings according to these clusters.
How to Use Embeddings

- **How to use embeddings** z_i of nodes:
 - **Clustering/community detection:** Cluster points z_i
 - **Node classification:** Predict label of node i based on z_i
 - **Link prediction:** Predict edge (i, j) based on (z_i, z_j)
 - Where we can: concatenate, avg, product, or take a difference between the embeddings:
 - Concatenate: $f(z_i, z_j) = g([z_i, z_j])$
 - Hadamard: $f(z_i, z_j) = g(z_i * z_j)$ (per coordinate product)
 - Sum/Avg: $f(z_i, z_j) = g(z_i + z_j)$
 - Distance: $f(z_i, z_j) = g(||z_i - z_j||_2)$
 - **Graph classification:** Graph embedding z_G via aggregating node embeddings or anonymous random walks. Predict label based on graph embedding z_G.
We discussed **graph representation learning**, a way to learn **node and graph embeddings** for downstream tasks, **without feature engineering**.

- **Encoder-decoder framework:**
 - Encoder: embedding lookup
 - Decoder: predict score based on embedding to match node similarity

- **Node similarity measure:** (biased) random walk
 - Examples: DeepWalk, Node2Vec

- **Extension to Graph embedding:** Node embedding aggregation and Anonymous Walk Embeddings