Subgraphs are the building blocks of networks:

- They have the power to characterize and discriminate networks.
In many domains, recurring structural components determine the function or behavior of the graph.

Carboxyl group = Acidic
Plan for Today

1) Subgraphs and motifs
 - Defining Subgraphs and Motifs
 - Determining Motif Significance

2) Neural Subgraph Representations

3) Mining Frequent Motifs
Two ways to formalize "network building blocks"

- Given graph $G = (V, E)$:

Def 1. Node-induced subgraph: Take subset of the nodes and all edges induced by the nodes:

- $G' = (V', E')$ is a node induced subgraph iff
 - $V' \subseteq V$
 - $E' = \{(u, v) \in E \mid u, v \in V'\}$
 - G' is the subgraph of G induced by V'

- **Alternate terminology**: "induced subgraph"
Definition: Subgraph (2)

Two ways to formalize "network building blocks"

- Given graph \(G = (V, E) \):

Def 2. Edge-induced subgraph: Take subset of the edges and all corresponding nodes

- \(G' = (V', E') \) is an edge induced subgraph iff
 - \(E' \subseteq E \)
 - \(V' = \{ v \in V | (v, u) \in E' \text{ for some } u \} \)

- **Alternate terminology:** "non-induced subgraph" or just "subgraph"
Two ways to formalize "network building blocks"

- The best definition depends on the domain!

Examples:

- **Chemistry:** node-induced (functional groups)
- **Knowledge graphs:** Often edge-induced (focus is on edges representing logical relations)
The preceding definitions define subgraphs when $V' \subseteq V$ and $E' \subseteq E$, i.e. nodes and edges are taken from the original graph G.

What if V' and E' come from a totally different graph? Example:

We would like to say that G_1 is “contained in” G_2
Graph isomorphism problem: Check whether two graphs are identical:
- $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijection $f: V_1 \rightarrow V_2$ such that $(u, v) \in E_1$ iff $(f(a), f(b)) \in E_2$
- f is called the isomorphism:

We do not know if graph isomorphism is NP-hard, nor is any polynomial algorithm found for solving graph isomorphism.
Subgraph Isomorphism

- G_2 is **subgraph-isomorphic** to G_1 if some subgraph of G_2 is isomorphic to G_1
 - We also commonly say G_1 is a subgraph of G_2
 - We can use either the node-induced or edge-induced definition of subgraph
- **This problem is NP-hard**

A-B-C matches with X-Y-Z: There is a subgraph isomorphism between G1 and G2.
All non-isomorphic, connected, undirected graphs of size 4
All non-isomorphic, connected, directed graphs of size 3
Network Motifs

- **Network motifs**: “recurring, significant patterns of interconnections”

- **How to define a network motif**:
 - **Pattern**: Small (node-induced) subgraph
 - **Recurring**: Found many times, i.e., with high frequency
 - **Significant**: More frequent than expected, i.e., in randomly generated graphs?

 How to define frequency?

 How to define random graphs?
Motifs: Induced Subgraphs

Induced subgraph of interest (aka Motif):

No match! (not induced)

Match! (induced)
Why Do We Need Motifs?

- **Motifs:**
 - Help us understand how graphs work
 - Help us make predictions based on presence or lack of presence in a graph dataset

- **Examples:**
 - **Feed-forward loops:** found in networks of neurons, where they neutralize “biological noise”
 - **Parallel loops:** found in food webs
 - **Single-input modules:** found in gene control networks

- Feed-forward loop
- Parallel loop
- Single-input module
Subgraph Frequency (1)

- Let G_Q be a small graph and G_T be a target graph dataset.

- **Graph-level Subgraph Frequency Definition**
 Frequency of G_Q in G_T: number of unique subsets of nodes V_T of G_T for which the subgraph of G_T induced by the nodes V_T is isomorphic to G_Q.
Subgraph Frequency (2)

- Let G_Q be a small graph, v be a node in G_Q (the “anchor”) and G_T be a target graph dataset.

- **Node-level Subgraph Frequency Definition:**
 The number of nodes u in G_T for which some subgraph of G_T is isomorphic to G_Q and the isomorphism maps u to v.

- Let (G_Q, v) be called a node-anchored subgraph.

- Robust to outliers

![Diagram](image.png)
What if the dataset contains multiple graphs, and we want to compute frequency of subgraphs in the dataset?

Idea: Treat the dataset as a giant graph G_T with disconnected components corresponding to individual graphs.
To define significance we need to have a null-model (i.e., point of comparison)

Key idea: Subgraphs that occur in a real network much more often than in a random network have functional significance

Milo et. al., Science 2002
Erdős–Rényi (ER) random graphs

- $G_{n,p}$: undirected graph on n nodes where each edge (u, v) appears i.i.d. with probability p
- Can be disconnected:

Three random graphs drawn from $G_{5,0.6}$
Goal: Generate a random graph with a given **degree sequence** \(k_1, k_2, \ldots, k_N \)

Useful as a “null” model of networks:

- We can compare the real network \(G^{\text{real}} \) and a “random” \(G^{\text{rand}} \) which has the **same degree sequence** as \(G^{\text{real}} \)

Configuration model:

Nodes with spokes

Randomly pair up “mini”-nodes

Resulting graph

We ignore double edges and self-loops when creating the final graph.
Alternative for Spokes: **Switching**

- Start from a **given graph** \(G \)
- Repeat the **switching step** \(Q \cdot |E| \) times:
 - Select a pair of edges \(A \rightarrow B, C \rightarrow D \) at random
 - **Exchange** the endpoints to give \(A \rightarrow D, C \rightarrow B \)
 - Exchange edges only if no multiple edges or self-edges are generated

- **Result**: A randomly rewired graph:
 - Same node degrees, randomly rewired edges

- \(Q \) is chosen large enough (e.g., \(Q = 100 \)) for the process to converge
Motif Significance Overview

- **Intuition:** Motifs are overrepresented in a network when compared to random graphs:

- **Step 1:** Count motifs in the given graph (G^{real})

- **Step 2:** Generate random graphs with similar statistics (e.g. number of nodes, edges, degree sequence), and count motifs in the random graphs

- **Step 3:** Use statistical measures to evaluate how significant is each motif
 - Use Z-score
Z-score for Statistical Significance

- Z_i captures **statistical significance of motif i**:

 $$Z_i = \frac{(N_i^{\text{real}} - \overline{N}_i^{\text{rand}})}{\text{std}(N_i^{\text{rand}})}$$

 - N_i^{real} is #(motif i) in graph G^{real}
 - $\overline{N}_i^{\text{rand}}$ is average #(motifs i) in random graph instances

- **Network significance profile (SP):**

 $$SP_i = Z_i / \sqrt{\sum_j Z_j^2}$$

 - SP is a vector of **normalized Z-scores**
 - The dimension depends on number of motifs considered
 - SP emphasizes relative significance of subgraphs:
 - Important for comparison of networks of different sizes
 - Generally, larger graphs display higher Z-scores
Significance Profile

- **For each subgraph:**
 - z-score metric is capable of classifying the subgraph “significance”:
 - Negative values indicate **under-representation**
 - Positive values indicate **over-representation**

- We create a **network significance profile**:
 - A feature vector with values for all subgraph types

- **Next:** Compare profiles of different graphs with random graphs:
 - Regulatory network (gene regulation)
 - Neuronal network (synaptic connections)
 - World Wide Web (hyperlinks between pages)
 - Social network (friendships)
 - Language networks (word adjacency)
Example Significance Profile

Gene regulation networks

Neurons

Web and social

Word connectivity

Networks from the same domain have similar significance profiles

Milo et al., Science 2004
Summary: Detecting Motifs

- Count subgraphs i in G^{real}
- Count subgraphs i in random graphs G^{rand}:
 - **Null model**: Each G^{rand} has the same #(nodes), #(edges) and degree distribution as G^{real}
- Assign **Z-score** to motif i:
 - $Z_i = (N_i^{\text{real}} - \bar{N}_i^{\text{rand}})/\text{std}(N_i^{\text{rand}})$
 - **High Z-score**: Subgraph i is a network motif of G
Variations on the Motif Concept

Extensions:
- Directed and undirected
- Colored and uncolored
- Temporal and static motifs

Variations on the concept:
- Different frequency concepts
- Different significance metrics
- Under-Representation (anti-motifs)
- Different null models
Summary: Motifs

- Subgraphs and motifs are the **building blocks** of graphs
 - Subgraph isomorphism and counting are NP-hard
- Understanding which motifs are frequent or significant in a dataset gives insight into the unique characteristics of that domain
- Use **random graphs** as null model to evaluate the significance of motif via **Z-score**
Stanford CS224W: Neural Subgraph Matching
Plan for Today

1) Subgraphs and Motifs
 - Defining Subgraphs and Motifs
 - Determining Motif Significance

2) Neural Subgraph Representations

3) Mining Frequent Motifs
Subgraph Matching

Given:
- Large target graph (can be disconnected)
- Query graph (connected)

Decide:
- Is query graph a subgraph in the target graph?

- Node colors indicate the correct mapping of the nodes
Isomorphism as an ML Task

- Large target graph (can be disconnected)
- Query graph (connected)
- Use GNN to predict subgraph isomorphism

Intuition: Exploit the geometric shape of embedding space to capture the properties of subgraph isomorphism
Task Setup

- Consider a **binary prediction**: Return **True** if **query** is isomorphic to a subgraph of the **target graph**, else return **False**

Finding all pairs of correspondences is another challenging problem, which will not be covered in this lecture.
(1) We are going to work with node-anchored definitions:
(2) We are going to work with node-anchored neighborhoods:
Use GNN to obtain representations of u and v

Predict if node u’s neighborhood is isomorphic to node v’s neighborhood:

How to use embeddings to make predictions?
Recall node-level frequency definition: The number of nodes \(u \) in \(G_T \) for which some subgraph of \(G_T \) is isomorphic to \(G_Q \) and the isomorphism maps \(u \) to \(v \)

We can compute embeddings for \(u \) and \(v \) using GNN

Use embeddings to decide if neighborhood of \(u \) is isomorphic to subgraph of neighborhood of \(v \)

We not only predict if there exists a mapping, but also identify corresponding nodes (\(u \) and \(v \))!
Decomposing G_T into Neighborhoods

- For each node in G_T:
 - Obtain a **k-hop neighborhood** around the anchor
 - Can be performed using **breadth-first search** (BFS)
 - The depth k is a hyper-parameter (e.g. 3)
 - Larger depth results in more expensive model
- Same procedure applies to G_Q to obtain the neighborhoods

- We embed the neighborhoods using a GNN
 - By computing the **embeddings for the anchor** nodes in their respective neighborhoods
Order Embedding Space

Map graph A to a point z_A into a high-dimensional (e.g. 64-dim) embedding space, such that z_A is non-negative in all dimensions

Capture partial ordering (transitivity):

- We use \preceq to denote that the embedding of \blacklozenge is less than or equal to \blacklozenge in all of its coordinates
- If $\blacklozenge \preceq \blacklozenge$, $\blacklozenge \preceq \blacklozenge$ then $\blacklozenge \preceq \blacklozenge$

Intuition: subgraph is to the lower-left of its supergraph (in 2D)
By comparing the embedding, we find that \(\bullet \preceq \Box \) but \(\bullet \not\preceq \Box \), indicating that only query 1 is a subgraph of the neighborhood of \(t \).
Subgraph isomorphism relationship can be nicely encoded in order embedding space

- **Transitivity**: if G_1 is a subgraph of G_2, G_2 is a subgraph of G_3, then G_1 is a subgraph of G_3
- **Anti-symmetry**: if G_1 is a subgraph of G_2, and G_2 is a subgraph of G_1, then G_1 is isomorphic to G_2
- **Closure under intersection**: the trivial graph of 1 node is a subgraph of any graph
- All properties have their counter-parts in the order embedding space
Subgraph isomorphism relationship can be nicely encoded in order embedding space

- **Transitivity**: if \subseteq, \subseteq then \subseteq
- **Anti-symmetry**: if \subseteq and \subseteq, then \equiv
- **Closure under intersection**: the 0 embedding satisfies $0 \subseteq$ for any order embedding \subseteq since all dimensions of order embedding are non-negative

- Corollary: if \subseteq and \subseteq then \equiv has a valid embedding
Order Constraint (1)

- We use a GNN to learn to embed neighborhoods and preserve the **order embedding** structure.
- What **loss function** should we use, so that the learned order embedding reflects the subgraph relationship?
- We design loss functions based on the **order constraint**:
 - Order constraint specifies the ideal order embedding property that reflects subgraph relationships.
We specify the order constraint to ensure that the subgraph properties are preserved in the order embedding space.

\[\forall_{i=1}^{D} z_q[i] \leq z_u[i] \text{ iff } G_Q \subseteq G_T \]

Embedding dimension

Query embedding

Target embedding

Subgraph Relation

Embedding space

Subgraph anchored \(\square \) is subgraph of the one anchored at \(\blacksquare \)
GNN Embeddings are learned by minimizing a max-margin loss.

Define $E(G_q, G_t) = \sum_{i=1}^{D} (\max(0, z_q[i] - z_t[i]))^2$ as the “margin” between graphs G_q and G_t.

According to the order embedding, G_q is a subgraph of G_t!

According to the order embedding, G_q is not a subgraph of G_t!
Embeddings are learned by minimizing a **max-margin** loss

Let \(E(G_q, G_t) = \sum_{i=1}^{D} \left(\max(0, z_q[i] - z_t[i]) \right)^2 \) be the “margin” between graphs \(G_q \) and \(G_t \)

To learn the correct order embeddings, we want to learn \(z_q, z_t \) such that

- \(E(G_q, G_t) = 0 \) when \(G_q \) is a subgraph of \(G_t \)
- \(E(G_q, G_t) > 0 \) when \(G_q \) is **not** a subgraph of \(G_t \)
To learn such embeddings, **construct training examples** \((G_q, G_t)\) where half the time, \(G_q\) is a subgraph of \(G_t\), and the other half, it is not.

Train on these examples by minimizing the following **max-margin loss**:

- **For positive examples:** Minimize \(E(G_q, G_t)\) when \(G_q\) is a subgraph of \(G_t\).
- **For negative examples:**

 Minimize \(\max(0, \alpha - E(G_q, G_t))\)

 - Max-margin loss prevents the model from learning the degenerate strategy of moving embeddings further and further apart forever.
Training Example Construction

- Need to generate training queries G_Q and targets G_T from the dataset G
- Get G_T by choosing a random anchor v and taking all nodes in G within distance K from v to be in G_T
- Use **BFS sampling** to get G_Q. Sample induced subgraph of G_T:
 - Initialize $S = \{v\}$, $V = \emptyset$
 - Let $N(S)$ be all neighbors of nodes in S. At every step, sample 10% of the nodes in $N(S) \setminus V$ and place them in S. Place the remaining nodes of $N(S)$ in V.
 - After K steps, take the subgraph of G induced by S anchored at q
- For negative examples (G_Q not subgraph of G_T), “corrupt” G_Q by adding/removing nodes/edges so it’s no longer a subgraph
Training Details

- **How many training examples to sample?**
 - At every iteration, we sample new training pairs
 - **Benefit**: Every iteration, the model sees different subgraph examples
 - Improves performance and avoids overfitting – since there are exponential number of possible subgraphs to sample from

- **How deep is the BFS sampling?**
 - A hyper-parameter that trades off runtime and performance
 - Usually use 3-5, depending on size of the dataset
Subgraph Predictions on New Graphs

- **Given**: query graph G_q anchored at node q, target graph G_t anchored at node t
- **Goal**: output whether the query is a node-anchored subgraph of the target
- **Procedure**:
 - If $E(G_q, G_t) < \epsilon$, predict “True”; else “False”
 - ϵ is a hyper-parameter
- To check if G_Q is isomorphic to a subgraph of G_T, repeat this procedure for all $q \in G_Q$, $t \in G_T$. Here G_q is the neighborhood around node $q \in G_Q$.

2/18/21

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu
Summary: Neural Subgraph Matching

- Neural subgraph matching uses a machine learning-based approach to learn the NP-hard problem of subgraph isomorphism
 - Given query and target graph, it embeds both graphs into an order embedding space
 - Using these embeddings, it then computes $E(G_q, G_t)$ to determine whether query is a subgraph of the target
- Embedding graphs within an order embedding space allows subgraph isomorphism to be efficiently represented and tested by the relative positions of graph embeddings
Plan for Today

1) Subgraphs and Motifs
 - Defining Subgraphs and Motifs
 - Determining Motif Significance

2) Neural Subgraph Representations

3) Mining Frequent Subgraphs
Finding the most frequent size-k motifs requires solving two challenges:

1) **Enumerating** all size-k connected subgraphs
2) **Counting** #(occurrences of each subgraph type)

Possible size-3 motifs

count # of triangle motifs
Just knowing if a certain subgraph exists in a graph is a hard computational problem!
- Subgraph isomorphism is NP-complete

Computation time grows exponentially as the size of the subgraphs increases
- Feasible motif size for traditional methods is relatively small (3 to 7)
Finding frequent subgraph patterns is **computationally hard**
- **Combinatorial explosion** of number of possible patterns
- Counting **subgraph frequency** is NP-hard

Representation learning can tackle these challenges:
- **Combinatorial explosion** → organize the search space
- **Subgraph isomorphism** → prediction using GNN

![Diagram](image_url)
Problem Setup: Frequent Motif Mining

- Target graph (dataset) G_T, size parameter k
- Desired number of results r
- **Goal**: Identify, among all possible graphs of k nodes, the r graphs with the highest frequency in G_T.
- **We use the node-level definition**: The number of nodes u in G_T for which some subgraph of G_T is isomorphic to G_Q and the isomorphism maps u to v.

G_T: Star Subgraph

- Degree 100
- Frequency: 1

G_Q: Star Subgraph

- Anchor
SPMiner Overview

SPMiner: a neural model to identify frequent motifs

- **Decompose**: overlapping node-anchored neighborhoods
- **Encoder**: Embed subgraphs into order embedding space
- **Search Procedure**: find frequent subgraphs by growing patterns

Same as neural subgraph matching
SPMiner: Key Idea

- Decompose input graph G_T into neighborhoods
- Embed neighborhoods into an order embedding space

Key benefit of order embedding:
We can quickly find out the frequency of a given subgraph G_Q
Motif Frequency Estimation

- **Given:** Set of subgraphs ("node-anchored neighborhoods") G_{Ni} of G_T (sampled randomly)
- **Key idea:** Estimate frequency of G_Q by counting the number of G_{Ni} such that their embeddings z_{Ni} satisfy $z_Q \leq z_{Ni}$
- **Consequence of the order embedding space property**

Embedding Space

"Super-graph" region:
All points in the red shaded region correspond to neighborhoods in G_T that contain G_Q

Benefit: Super fast subgraph frequency counting!
Initial step: Start by randomly picking a starting node u in the target graph. Set $S = \{u\}$

Each point in the shaded region represents a neighborhood in the target graph that contains the motif pattern.

Initially, all neighborhoods contain the trivial subgraph.
Iteratively: Grow a motif by iteratively choosing a neighbor of a node in S, and adding that node to S. We want to grow motifs to find larger motifs!

Walk in Embedding Space

- Small motifs grow by adding neighbors
- Their embeddings correspond to red points on the left

Goal: maximize number of neighborhoods in red shaded area after k step!
Termination: Upon reaching a desired motif size, take the subgraph of the target graph induced by S.

Identified frequent motif of size 12: It has the largest number of blue points in super-graph region, among all embeddings of possible subgraphs of size 12.
How to pick which node to add at each step?

Total violation of a subgraph G: the number of neighborhoods that do not contain G.
- The number of neighborhoods G_{N_i} that do **not** satisfy $Z_Q \preceq Z_{N_i}$
- Minimizing total violation = maximizing frequency

Greedy strategy (heuristic): At every step, add the node that results in the **smallest total violation**
Results: Small Motifs

- **Ground truth:** find most frequent 10 motifs in dataset by brute-force exact enumeration (expensive)

- **Question:** Can the model identify frequent motifs?

- **Result:** The model identifies 9 and 8 of the top 10 motifs, respectively.
Experiments: Large motifs

- **Question**: how do the frequencies of the identified motif compare?
- **Result**: SPMiner identifies motifs that appear 10-100x more frequently than the baselines
Subgraphs and motifs are important concepts that provide insights into the structure of graphs. Their counts can be used as features for nodes and graphs.

We covered neural approaches to prediction subgraph isomorphism relationship.

Order embeddings have desirable properties and can be used to encode subgraph relations.

Neural embedding-guided search in order embedding space can enable ML model to identify motifs much more frequent than existing methods.