
CS227
Spring 2011

2. Object-Oriented Representation

What is Object-Oriented?

- Flat representation
- Each sentence is self-contained
- Can be independently understood
- Information about an entity is

scattered in multiple sentences

-Sentences are grouped
-Structured and organized
- Usually a correspondence

with the user interface
- Translatable to logic

vs

Outline

• Background
– Frames
– Semantic Networks
– Object-orientation

• An example object-oriented KR language
– Inheritance reasoning
– Other inference operations

• Applications

Frames

• When one encounters a new situation, one selects from memory a
structure called a Frame. This is a remembered framework to be
adapted to fit reality by changing details as necessary – Marvin
Minsky 1974

• Example: Birthday Party

DRESS ––––– SUNDAY BEST.
PRESENT ––– MUST PLEASE HOST. MUST BE BOUGHT AND
GIFT-WRAPPED.
GAMES ––––– HIDE AND SEEK. PIN TAIL ON DONKEY.
DECOR ––––– BALLOONS. FAVORS. CREPE-PAPER.
PARTY-MEAL–CAKE. ICE-CREAM. SODA. HOT DOGS.
CAKE ––––– CANDLES. BLOW-OUT. WISH.
SING BIRTHDAY SONG.
ICE-CREAM –– STANDARD THREE-FLAVOR.

Reasoning Operations on Frames

• Expectation: How to select an initial frame to meet some conditions
– Child’s birthday party

• Elaboration: How to select and assign sub-frames to represent
additional details
– North American birthday party vs an Asian Party

• Alteration: How to find a frame to replace one that does not fit well
– No gifts allowed

• Novelty: What to do if no acceptable frame can be found?
• Learning: What frames should be stored or modified as a result of

experience?

Semantic Network

• Directed labeled graphs used to represent concepts and the
relationships between them
– A concept refers to things in the application domain

• Animal, Vertebra, Cat, etc

Image adapted from Wikipedia: http://en.wikipedia.org/wiki/Semantic_network

Semantic Network

• Such representations have had a long distinguished history in
philosophy and science
– Prophyry’s tree (3rd AD)
– Charles Peirce’s existential graphs (1890’s) used in philosophy / logic
– O. Stelz’s concept hierarchies (1920’s) – psychology
– Ross Quillian’s associative memory model (1966) – Psychology /

computer science

Adapted from Alex Borgida and John Mylopoulos

Object-Oriented Languages

• Many modern programming languages support features such as
data abstraction and inheritance: Java

• Object databases represent information as objects and support
object-oriented programming

Observation

• Graphical representations have several features in common
– A hierarchy of classes
– Classes have properties that can inherit
– Facets provide further descriptors of values

• Such representations are pervasive in modern systems and have
been formalized in a variety of ways

• In this lecture we will consider one such representation language

An Example Object-Oriented KR Language

• Loosely based on Open Knowledge Base Connectivity
– Provides a knowledge model

• The knowledge model was developed based on extensive survey of object-
centered representation and reasoning systems under development in mid-
nineties [Karp ’92]

• It incorporates common features found across a broad range of those
systems

– Defines a set of knowledge base operations
• Define the basic inference operations that a object-oriented KR system must

support

• Even though this work is over 10 years old, its simplicity and
elegance is still compelling and relevant to modern systems

Knowledge Model

• A universe of discourse consists of all entities about which
knowledge is to be expressed

• The universe of discourse always includes all constants of the
following basic types:
– Integers
– Floating point numbers
– Strings
– Symbols
– Lists
– Classes

• The universe also includes logical constants: true and false

Class

• Classes are sets of entities
• All sets of entities are considered to be classes

– A class is equivalent to a unary relation

Example:
Person is a class and represents set of all people

Individual

• Each of the entities in a class is said to be an instance of that class
• An individual is an entity that is not a set

Examples:
• John is an individual, and is not a set, and is an instance of Person

instance-of

• The class membership relation instance-of holds between an
instance and a class is a binary relation that maps entities to classes

(<=> (holds ?C ?I) (instance-of ?I ?C))

• The relation type-of is defined as the inverse of relation instance-of

(<=> (type-of ?C ?I) (instance-of ?I ?C))

subclass-of

• A class CSub is a subclass of class CSuper if and only if all
instances of Csub are also instances of CSuper

(<=> (subclass-of ?Csub ?Csuper)
(forall ?I (=> (instance-of ?I ?Csub)

(instance-of ?I ?Csuper))))

Image adapted from Chris Riesbeck (notes for CS325 at NWU)

subclass-of

instance-of

subclass-of

• The subclass-of relationship is transitive
– If A is a subclass of B, and B is a subclass of C, A is a subclass of C

(=>
(and (subclass-of ?a ?b)

(subclass-of ?b ?c))
(subclass-of ?a ?c)))

Male-person is a
subclass of animate-thing

Meta Class

• A class can be an instance of another class
– A class that has another class as an instance is referred to as a meta

class

Example:
Linnaen Taxonomy

Animal, Ecysozoan, Eumetzoa, …
Biological Classification

Kingdom, Phylum, Order, …
The class Animal is an instance of class Kingdom

Animal is an instance of Kingdom
Cow is not an instance of Kingdom

Picture credit: http://en.wikipedia.org/wiki/Kingdom_(biology)

Own Slots

• An entity has associated with it a collection of own slots
– An own slot describes the direct properties of an entity

• If the age of John is 42, then the value of the own slot age of John is 42
– An own slot is equivalent to a binary relation

• (age John 42)
– Both classes and individuals can have own slots

• A class Person has an own slot average-age: average of the age of all the
instances of the class Person

Template Slots

• A class has associated with a collection of template slots
– Template slots describe properties of the instance of a class
– Own slots of a class describe the properties of the class itself

– The values of template slots are inherited to instances as values of the
corresponding own slot

Example:
Class: Blue-Eyed-Person
template slot: eye-color
template-slot-value: Blue

Individual: John
instance-of: Blue-Eyed-Person
own slot: eye-color
own slot value: Blue

Template Slots

• Formally, each value V of a template slot S of a class C represents
the assertion that the relation template-slot-value holds for the
relations S, the class represented by C, and the entity represented
by V

(template-slot-value S C V)

• The relation in turn holds between each instance I of class C and
value V

(S I V)

(=> (template-slot-value ?S ?C ?V)
(=> (instance-of ?I ?C) (holds ?S ?I ?V))

Necessary vs Sufficient Properties

• Necessary properties of a class are necessarily true

Example:
A Person has an age, a parent, a height, …

• Sufficient properties are properties sufficient to conclude the class
membership

Example:
A Blue-Eyed-Person is a Person with eye-color Blue
If an instance of unknown type had an age, it does not mean that it
is a Blue-Eyed-Person

Primitive vs Defined Classes

• Primitive class is a class that only has necessary properties

Example: Person

• Defined class is a class that can be defined in terms of another class
by giving it sufficient properties

Example: Blue-Eyed-Person
a Person with eye-color Red

Domain

• If a slot S has domain C, then every entity I that has a value for slot
S, must be an instance-of C

Example:
The domain of slot has-salary is class Employee

(=> (DOMAIN ?S ?C)
(=> (holds ?S ?F ?V) (instance-of ?F ?C))
(=> (template-slot-value ?S ?F ?V)

(or (= ?F ?C) (subclass-of ?F ?C))))

Range

• If a slot S has range C, then every entity I that has a value V for slot
S, V must be an instance-of C

Example:
The range of slot has-salary is class Amount-In-Dollars

(=> (range ?S ?C)
(=> (holds ?S ?F ?V) (instance-of ?V ?C))
(=> (template-slot-value ?S ?F ?V) (instance-of ?V ?C)))

Facets

• An own slot can have associated with it an own facet that provides
more information about that slots

Example:

John has exactly two Friends
John

own slots: has Friends
cardinality: 2

Facets

• An template slot can have associated with it template slots that
inherit like the template slot values

Example:

Person has exactly 1 Father
Person

template slot: has-Parent
cardinality: 1

Default Values

• Each slot can have two kinds of values
– Known true: values that are definitely known to be true
– Default: values that are generally true but could be overridden

Example:
Class: Stanford Student
template slot: residence-city
default value: Stanford

template slot: studies-at
known true: Stanford

Problems with Default Values

• When a class has more than one super class, its instances may
inherit values that conflict with each other

Example:
– Nixon/Diamond example:

• Nixon is a both Republican and Quaker, Republicans have a non-pacifist
policy, and Quakers have a pacifist policy. One of the two values must be
blocked from inheriting

Problems with Default Values

• When a class has more than one super class, its instances may
inherit values that conflict with each other

Example:
– Burgundy house example:

• A Red-House has template-slot-value for color as Red
• Burgundy House is a subclass of Red House
• We want the value color of the roof to be overridden to burgundy

Methods for Dealing with Conflicting Values

• Skeptical Inheritance
• Override Inheritance

Skeptical Inheritance

• Inherit values only when the inherited values do not lead to
contradiction
– In the Nixon Diamond example, neither pacifist nor non-pacifist value

will be inherited
– The problem of contradiction is avoided
– Nothing is done to resolve the contradiction

Override Inheritance

• A value specified at a more specific class overrides the value at a
more general class
– In the burgundy house example, the value of color specified for the

more specific class overrides the value inherited from the super class
– The values specified at a super-class are lost

Other Methods for Defaults

• Allow a designer to associate priorities with inherited values
• Provide heuristics to guess the correct value

– Textbook chapter on inheritance reasoning has examples

Accessing the Knowledge Base

• Two kinds of interfaces
– A set of function calls
– An interface based on a logical language

Systematic Design of Functions

• For each kind of knowledge, provide: add, delete, put, replace

add-class-subclass
delete-class-subclass
put-class-subclass
replace-class-subclass

add-slot-value
delete-slot-value
put-slot-value
replace-slot-value

add-instance-type
delete-instance-type
put-instance-type
replace-instance-type

add-facet-value
delete-facet-value
put-slot-value
Replace-slot-value

Mandatory vs Optional

• A reasoning system must support a set of core operations called
mandatory operations

• Rest of the operations can be defined in terms of the mandatory
operations

Example:
Mandatory operation: get-class-subclasses
Optional operation: subclass-of-p

Question:
What is the core set of operations for a reasoning system?

Logical Interface

• Basic operations: Tell, Untell and Ask
• Assertion language: instance-of, subclass-of, template-slot-value,

Controlling the Inference

• Inference Level
– Direct: return only the directly asserted values
– Taxonomic: return only the inherited values
– All-inferable: return all possible values

• Completeness
– Return true if all values have been computed with certainty

Reasoning Operations on Frames

• Expectation: How to select an initial frame to meet some conditions
– Child’s birthday party

• Sufficient properties

• Elaboration: How to select and assign sub-frames to represent additional
details

– North American birthday party vs an Asian Party
• Inheritance

• Alteration: How to find a frame to replace one that does not fit well
– No gifts allowed

• Defaults

• Novelty: What to do if no acceptable frame can be found?
– Not covered

• Learning: What frames should be stored or modified as a result of
experience?

– Not covered

Limitation of Object-Oriented Representation

• Since such representations rely heavily on binary relations, it is difficult to
represent ternary relations

– A is between B and C
• A standard workaround is to reify the binary relation

A has
own slot is-between: B, C

A has
own slot is-between: Between-Objects-1

Between-Objects-1 has
own slot objects: B, C

Limitations of Object Oriented Representation

• Negation cannot be represented uniformly
– Jim does not have pneumonia

• Disjunction cannot be represented naturally
– Jim has either Mumps or Rubella

• Quantification is not a part of the language
– All of Jim’s diseases are infectious

• The semantics of the relations (as in any logic) are not intrinsic to
the representation

Adapted from Mark Musen

Practical Uses

• The knowledge model introduced here is sufficient for several
practical systems in use today

Literature based curation

Literature-based curation of
the entire genome, and of
transcriptional regulation,
transporters, and metabolic
pathways.

www.ecocyc.org

Practical Uses

Practical Uses

Ingenuity Pathway Analysis

Search scientific literature

Analyze experimental data

Build dynamic pathway models

www.ingenuity.com

Contemporary Systems

• Representation languages based on description logics are popular
– Next three lectures will be devoted to representation and reasoning with

structured descriptions
• Next two lectures will be given by Ron Brachman

– A commonly used language that uses description logic is OWL
• A language called OWL (http://www.w3.org/TR/owl2-overview/)
• An API for accessing OWL knowledge (http://owlapi.sourceforge.net/)

Reading Material

• Required Reading
– Chapter 8 of B&L Textbook: Frames
– Chapter 10 of B&L Textbook: Inheritance

• Optional Reading
– OKBC: A Programmatic Foundation for Knowledge Base Interoperability

