3a.
Reasoning with Horn Clauses

Review

Lecture 1: What is KR&R

— KR Hypothesis: Explicit representation of knowledge provides propositional account and
causal explanation for intelligent behavior

Lecture 2: Object-Oriented Representation

— Frames provide a way to organize knowledge
Lecture 3-5: Structured Descriptions

— Adding structure to the definition of objects; sound, complete and efficient reasoning
Lecture 6: Ontologies

— Engineering discipline of deciding which class, function and relation symbols to use in
representing a domain

Lecture 7: Knowledge Representation in Social Context
— KR&R concepts for the Web

Next Four Lectures

Frames and structured descriptions provide useful subsets of FOL
— Their expressive power, however, is limited

In lectures 8 through 11, we will study more expressive representations
— Reasoning with Horn Clauses
» Foundation for logic programming family of languages
— Procedural control of reasoning
* Negation as Failure - a practical alternative to classical negation
— Production Systems
« Foundation of expert systems / rule-based systems
— Advanced logics

« Combining rules with object-oriented and structured representations, higher order logic,
modal logic

— Non Monotonic Reasoning
» Representing default knowledge, answer set programming

Expressive Overlaps among KRs

First-Order
Logic

m

Programs

D¢scription
Logic

Horn Logic
Programs

Non-Monotonic
Reasoning

(Procedural

Attacw

Copyright 2009 by Vulcan Inc., Benjamin Grosof, Mike Dean, and Michael Kifer. All Rights Reserved.

Description
Logic
Programs

Reasoning with Horn Clauses

Definitions

SLD Resolution

Forward and Backward Chaining
Efficiency of reasoning with Horn Clauses
Horn FOL vs Horn LP

Definitions

Term

Formula
Atomic Formula
Sentence
Literal

Clause

Definitions

Term

— The set of terms of FOL is the least set satisfying these conditions:
* every variable is a term

o iftl..... tn are terms, and f is a function symbol of arity n, then f(tl tn) is a term
Formula
— The set of formulas of FOL is the least set satisfying these constraints:
o iftl..... tn are terms, and P is a predicate symbol of arity n, then P(t1 tn) is a formula;

« ift1 and t2 are terms, then tI=t2 is a formula;
« ifaand B are formulas, and x is a variable, then ~a, a \/ B, a /A B, [Ix a, and Exists a, are formulas.

Atomic Formula

— Formulas of first two types above
Sentence

— Any formula with no free variables
Literal

— Atomic formula or its negation
Clause

— Afinite set of literals

Resolution

For the premises (p => q) and (g =>r), we want to prove (p =>r)

1. {7p, q} Premise
2.{7q, } Premise

3. {p} Negated Goal
4. {~r} Negated Goal
5. {q} 3, 1

6. {4} 5, 2

7.0 6, 4

Horn clauses

Clauses are used two ways:
» as disjunctions: (rain v sleet)

« as implications: (—child v —male v boy)
Here focus on 2nd use

Horn clause = at most one +ve literal in clause

« positive / definite clause = exactly one +ve literal
e.g. v, »o - Py 4l

* negative clause = no +ve literals (also, referred to as integrity constraints)
e.g. [-»; v -, —,] andalso[]

Note: [—p, —p, ..., =, q] is arepresentation for
(—p, V—pP,V..V—=p,Vvg) OF [, Ap>A...AD,) D q]

socanreadas: If p,and p,and ...and p, theng

andwriteas: p,Ap-A..Ap, = g OF g & P, AD>A... AD,

KR&R © Brachman & Levesque 2005 a0

Resolution with Horn clauses

Only two possibilities:

Neg Pos Pos Pos

NS NS

Neg Pos

It is possible to rearrange derivations of negative clauses so that
all new derived clauses are negative

[—a., —g, p] [, 4] [—c. 2] [—a. —q. P]
N S
[—e.—p] [p—a.—b] e [~a.—C, —q] [=b. q]
~. A\ \
[—a, =b, —c] [—a, =b, —c]
derived positive

clause to eliminate

KR &R © Brachman & Levesque 2005 81

Further restricting resolution

Can also change derivations such that each derived clause is a

resolvent of the previous derived one (negative) and some
positive clause in the original set of clauses

» Since each derived clause is negative, one parent must be positive (and so
from original set) and one parent must be negative.

« Chain backwards from the final negative clause until both parents are from
the original set of clauses ¢

» Eliminate all other clauses not on this direct path o

new

o
-2

e T rrrrrr T
= [¥5]
—

-
=

KR &R © Brachman & Levesque 2005 82

KB

FirstGrade

FirstGrade > Child
Child A Male > Boy
Kindergarten > Child

Child A Female o> Gurl

Female

Example 1

Show that KB [~ Girl
[].:il'StGI'Elde] [_I(:hl]d —d\’[ale. BO}-’]

[—FirstGrade. Child] [-Kindergarten, Child]

[-Child. —Female, Gurl]

[Chld] [Female]

[Girl, —Female] [—Girl]

negation of
query

Derivation has
9 clauses, 4 new []

KR&R © Brachman & Levesque 2005 54

SLD version of Example 1

KB Show that KB |= Girl

FirstGrade

FllSTGl‘dde - C‘hlld [_'Ch"d, _'Female, GII’|] _|G|r|
Child A Male > Boy

Kindergarten > Child \,

Child A Female o> Gurl

Female [Female] [~Child, "Female]

\

[-FirstGrade, Child] [~Child]

\

[FirstGrade] [~FirstGrade]

— |

[]

SLD Resolution

An Sl D-derivation of a clause ¢ from a set of clauses S is a
sequence of clause ¢, ¢, ... ¢, such that ¢, = ¢, and

1. ¢, €S
2. ¢, 1saresolvent of c.and a clause in S

SLD means S(elected) literals

Write: S 85 C L(inear) form

D(efinite) clauses

Note: SLD derivation is just a special form of derivation
and where we leave out the elements of S (except ¢;)

In general, cannot restrict ourselves to just using SLD-Resolution

Proof: S={[p. ql. [p. —¢l. [-p. q] [-p. —¢]}. Then S —[].

Need to resolve some [p]and [p] to get [].
But S does not contain any unit clauses.

So will need to derive both [p]and [p] and then resolve them together.

KR &R © Brachman & Levesque 2005 83

Completeness of SLD

However, for Horn clauses, we can restrict ourselves to SLD-
Resolution

Theorem: SLD-Resolution is refutation complete for Horn
clauses: H —[] iff H3]]

SLD

So: Hisunsatisfiable iff H — []

This will considerably simplify the search for derivations

Note: in Horn version of SLD-Resolution, each clause in the
1, €y - €, Wil De negative

So clauses H must contain at least one negative clause, ¢,
and this will be the only negative clause of H used.

Typical case:
— KB is a collection of positive Horn clauses

— Negation of query is the negative clause

KR &R © Brachman & Levesque 2005

84

Example 1 (again)

SLD derivation alternate representation

KB [—Girl] god

Girl

FirstGrade _
[—=Child. —Female]

FirstGrade o Child
Child Female

Chlld A Male] BO}-" [—IChlld] solved
Kindergarten > Child ‘
Child A Female > Girl [—FirstGrade] FirstGrade
. solved
Female
(]
A goal tree whose nodes are atoms,
, L .o whose root is the atom to prove, and
Show KB u {-Girl} unsatisfiable whose leaves are in the KB

KR &R © Brachman & Levesque 2005 85

Back-chaining procedure

qq, S - 0 estaplisn conjunction of g,
Solvelq,, g, 1=/ toestablish conjunction of ¢, */

If =0 then return YES; /* empty clause detected */
Foreachd € KB do
If d=1[q,, <Py, =P s =Pl /* match first ¢ */
and /* replace ¢ by -ve lits */
Solvelp,, ps, -, Py 45 > q,] 1 recursively */
then return YES

end for; /* can't find a clause to eliminate ¢ */
Return NO

Depth-first, left-right, back-chaining
» depth-first because attempt p, before trying ¢,
* left-right because try ¢.in order, 1,2, 3, ...

» back-chaining because search from goal 4 to facts in KB p

This is the execution strategy of Prolog
First-order case requires unification etc.

KR &R © Brachman & Levesque 2005

87

Problems with back-chaining

Can go into infinite loop

tautologous clause: [p ., —p] (corresponds to Prolog program with p :- p).
Previous back-chaining algorithm is inefficient

Example: Consider 2» atoms, p,, ..., p,.1» 4o --» ¢,.; @Nnd 4n-4 clauses
@i, =) (@ = p) @i = q) (@ = q).
With goal p, the execution tree is like this

Pk

A Solve[p,] eventually

Tr fails after 2% stepsl!

NN

Pi2 k-2 Pr2 k-2

A TEA A A

|s this problem inherent in Horn clauses?

KR&R © Brachman & Levesque 2005

a8

Forward-chaining

Simple procedure to determine if Horn KB |= 4.
main idea: mark atoms as solved

1. If g is marked as solved, then return YES

2. Isthere a {p;,—p,,—p,} € KB such that
P, -, D, @re marked as solved, but the
positive lit p, is not marked as solved?

no: return NO
yes: mark p, as solved, and goto 1.
FirstGrade example: Note: FirstGrade gets marked since

all the negative atoms in the

Marks: FirstGrade. Child. Female, Girl then donel clause (none) are marked

Observe:
» only letters in KB can be marked, so at most a linear number of iterations

» not goal-directed, so not always desirable

« a similar procedure with better data structures will run in /inear time overall

KR &R © Brachman & Levesque 2005 89

First-order undecidability

Even with just Horn clauses, in the first-order case we still have

the possibility of generating an infinite branch of resolvents.

KB: [LessThan(0,0)]
LessThan(succ(x),y) = LessThan(x.y) x/0. /0
Query:

[-LessThan(1,0)]

_ As with full Resolution, o
LessThan(zero,zero) there is no way to detect l 1, 0
when this will happen
[wLessThan(2,0)]
There is no procedure that will test for the lrﬂf"-’-.ﬂo
satisfiability of first-order Horn clauses

the question is undecidable

As with non-Horn clauses, the best that we can do is to give
control of the deduction to the user

to some extent this is what is done in Prolog,
but we will see more in “Procedural Control”

KR&R © Brachman & Levesque 2005

90

Horn FOL vs Horn LP

In Horn LP, the conclusions are limited to ground atomic formulas.
For example:

— Suppose, we have':
DangerousTo(?x,?y) €< PredatorAnimal(?x) A Human(?y);
PredatorAnimal(?x) < Lion(?x)
Lion(Simba)
Human(Joey)
-- In Horn LP, we can derive
* 11 ={Lion(Simba), Human(Joey)}
* 12 = {PredatorAnimal(Simba),Lion(Simba), Human(Joey)}
+ 13 = {DangerousTo(Simba,Joey), PredatorAnimal(Simba),Lion(Simba), Human(Joey)}

— In Horn FOL, we will also derive:

DangerousTo(Simba,?y) < Human(?y)
—Human(?y) <= —DangerousTo(Simba,?y).

Horn LP is the foundation of logic programming and Prolog

1. Example adapted from Grosof, Kifer & Dean

Recommended Reading

« Chapter 5 of Brachman & Levesque textbook

