
11.

Answer Set Programming

Outline

• Different Approaches to Deal with Defaults
• Answer Set Semantics
• Answer Set Programming

Comparing Classical Approaches to Defaults

Approach Advantage Disadvantage

Closed World Simplicity for
propositional case

Minimizes all predicates

Circumscription Minimizes selected
predicates

Forces to talk about
abnormality

Default Logic Add only selected
negative literals

Cannot reason about
defaults

Auto epistemic Logic Represents defaults &
consistent beliefs

Practicality

Why Answer Set Semantics

• Logic programming community has searched for a simple, clean and
computationally elegant ways to handle default negation

• There are two approaches that have been most popular
– Well founded semantics
– Answer set semantics

Semantics of Logic Programs

• Well Founded Semantics
– 3-valued models: true, false, undefined
– Every KB has a unique well founded model
– Well founded model (for datalog1) poly-computable

• Answer Set Semantics
– Classical 2-valued models
– KB may have 0 or more stable models
– Stable model (for datalog) NP-complete

• We will consider this in more detail

1. Datalog: function free horn logic programs

Answer Set Semantics

• Basic definitions
• Interpretations
• Positive programs
• General programs

Some Complexity Results

• Answer set checking: Decide whether X is an answer set
– Polynomial with no disjunction, Co-NP with disjunction

• Answer set existence: Decide whether there is an answer set
– NP

• Brave/Credulous reasoning: Decide whether there is an answer set
containing a specific atom
– NP

• Cautious/Skeptical reasoning: Decide whether a specific atom is in
all the answer sets
– Co-NP

Answer Set Programming

• Solving computational problems by reducing them to computing
answers sets of logic programs is called answer set programming

• Useful for problems such as
– Space shuttle and computer configuration
– Solving puzzles and games (e.g., Sudoku)

• We will illustrate the process using an example

Computing Hamiltonian Paths using ASP

• Given a directed graph G and an initial vertex v0, find a path from v0
to v0 which visits each vertex exactly once

A

B

C

D

E

A, B, C, D, E, A is a Hamiltonian path

Answer Set Programming Formulation

Represent the graph as ground facts

vertex(A)
vertex(B)
vertex(C)
………..
edge(A,B)
edge(B,C)
………….
init(A)

Represent the Hamiltonian path by statements of form

in(v0,v1),…,in (vk, v0)

Defining Hamiltonian Path (1)

• P visits each vertex at most once

1.  vertex(V1), vertex(V2), vertex (V),
in (V1,V),
in (V2, V)
V1!=V2

2.  vertex(V1), vertex(V2), vertex (V),
in (V,V1),
in (V, V2)
V1!=V2

Defining Hamiltonian Path (2)

• P visits every vertex of the graph

3. reached(V2)  vertex(V1), vertex(V2),
init(V1),
in(V1, V2)

4. reached (V2)  vertex (V1), vertex(V2),
reached (V1),
in(V1, V2)

Defining Hamiltonian Path (3)

• Every vertex is reached

5.  vertex(V), naf reached (V).

Defining Hamiltonian Path (4)

• Generate the collection of candidate paths

6. in (V1, V2) \/ ¬in (V1, V2)  edge (V1, V2)

Answer Set Solvers

• DLV – A disjunctive datalog system
– http://www.dbai.tuwien.ac.at/proj/dlv/

• SMODELS (the front end is lparse)
– See http://www.tcs.hut.fi/Software/smodels

• CLASP – A conflict driven nogood learning answer set solver
– See http://www.cs.uni-potsdam.de/clasp/

Also see Answer Set Planning Competition
http://www.cs.kuleuven.be/~dtai/events/ASP-competition/index.shtml

Suggested Readings

• Knowledge Representation, Reasoning, and the Design of Intelligent
Agents, by Michael Gelfond and Yulia Kahl, Chapters 2 and 6

