Problem 1

In Neural Network Learning (Week 5 in Coursera) we asked you to compute the backpropagation of a model with two layers. At each layer, we used the sigmoid function as our activation function. Those activations were then used as an input to the next layer. The architecture of the model you will be working with is defined below. You have 20 training examples and 5 features.

• Input layer
• Hidden layer 1 (dim = 3)
• Hidden layer 2 (dim = 4)
• Output layer (dim = 2)

Note 1: Use the same notation as defined in section. σ denotes the sigmoid function.

Note 2: Consider a single training example input x, represented as a column vector. The associated feed forward notation is $z = W x + b$ (where W is your weight matrix, corresponding to the Θ matrix without the bias).
1. (1 point) What is the dimension of X, the matrix that stacks example inputs (excluding bias), that you are going to feed into your neural network?

X has shape $(5, 20)$

2. (3 points) What are the dimensions of W_1, W_2, W_3 (do not include the bias!)?

W_1 has shape $(3, 5)$
W_2 has shape $(4, 3)$
W_3 has shape $(2, 4)$

3. (3 points) What are the dimensions of b_1, b_2, b_3 (follow the method explained in section)?

b_1 has shape $(3, 1)$
b_2 has shape $(4, 1)$
b_3 has shape $(2, 1)$

4. (2 points) Using the same notations as in section, what are the dimensions of a_1, a_2, where a_i corresponds to the output of hidden layer i.

a_1 has shape $(3, 1)$
a_2 has shape $(4, 1)$

5. (1 point) How many parameters are we training in our model? **Hint**: do not forget the bias!

Number of trainable model parameters:
- Hidden layer 1: $3 \times 5 + 3 = 18$
- Hidden layer 2: $4 \times 3 + 4 = 16$
- Output layer: $2 \times 4 + 2 = 10$
- Total number of trainable parameters $= 18 + 16 + 10 = 44$

6. (4 points) Write the feed-forward equations of this neural network for a single training example vector x, from the beginning to the cost function J. Make sure your dimensions match. No coding! **Note**: assume that the activation function is the sigmoid, σ, for the first and second layer. For the last layer, use a softmax function. **Hint**: do not forget the bias!

\[
\begin{align*}
 z_1 &= W_1 x + b_1 \\
 a_1 &= \sigma(z_1) \\
 z_2 &= W_2 a_1 + b_2 \\
 a_2 &= \sigma(z_2) \\
 z_3 &= W_3 a_2 + b_3 \\
 \hat{y} &= \text{Softmax}(z_3) \\
 J &= \text{CE}(\hat{y}, y) \text{ with CE the cross-entropy function}
\end{align*}
\]

For $z \in \mathbb{R}^d$, Softmax is defined as $\text{Softmax}(z) = \frac{e^{z_1}}{Z}, \frac{e^{z_2}}{Z}, \ldots, \frac{e^{z_d}}{Z}$ with Z being a normalization constant

7. So far, we only used the sigmoid function as an activation function. However, there are other popular functions.
(a) (2 points) A similar function to the sigmoid is the hyperbolic tangent:

\[
\tanh (x) \mapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}
\]

Prove that tanh is bounded by 1, i.e.

\[
\forall x, \vert \tanh(x) \vert < 1
\]

(b) (3 points) Compute the derivative of tanh. We proved that the derivative of the sigmoid, \(\sigma\), is \(\sigma(1 - \sigma)\). In a similar way, you should be able to find an expression of the derivative of tanh that only depends on tanh.

\[
\frac{|e^x - e^{-x}|}{|e^x + e^{-x}|} \leq |e^x - e^{-x}| \leq |e^x| + |e^{-x}| = 1
\]

Inequality is obtained by triangle inequality.

(c) (10 points) You already computed backpropagation using the sigmoid function in previous assignments/section. This time, let’s use hyperbolic tangent as the activation function in the two hidden layers. Write the vectorized backpropagation equations of this modified neural network, for a single training example vector \(x\). Specifically, compute \(\frac{\partial J}{\partial W_3}, \frac{\partial J}{\partial W_2}, \frac{\partial J}{\partial W_1}\). Mention explicitly the vectorized differentiation rules that you use and how you use them. Note: \(\frac{\partial J}{\partial W}\) is defined as in section, it has the same shape as \(W\). Hint: we still use the softmax for the last layer (so there is nothing to modify in that step).

For justification, we refer to the identities studied in section and referenced in the midterm’s cheat sheet.

\[
\frac{\partial J}{\partial W_3} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial W_3} \\
\frac{\partial J}{\partial z_3} = (\hat{y} - y)^T \quad \text{(S1)} \\
\frac{\partial J}{\partial W_3} = (\hat{y} - y)^T \frac{\partial z_3}{\partial W_3} = (\hat{y} - y)^T W_3 \text{Diag(tanh}'(z_2)) = \delta_2^T \quad \text{(B2), (B4)}
\]

\[
\frac{\partial J}{\partial W_2} = \delta_2^T \frac{\partial W_2 a_1 + b_2}{\partial W_3} = \delta_2 a_1^T \quad \text{(B3)}
\]

\[
\frac{\partial J}{\partial W_1} = \delta_1^T \frac{\partial W_1 x + b_1}{\partial W_1} = \delta_1 x^T \quad \text{(B3)}
\]
8. (1 point) Why do not you regularize the bias term when regularizing the neural network?

The intercept captures a property of the true distribution. Regularizing it would lead to failing to capture this property.

Problem 2: Bias-Variance trade-off

1. (5 points) You have a neural network that predicts really well on the validation set. How does increasing the number of hidden units affect the training error? The validation error? Why?

Increasing the number of units decreases the training error. It will however increase the validation error because you will be overfitting.

2. (1 point) Remember that the regularized form of a cost function is:

\[\text{Regularized Cost} = \text{Cost} + \lambda \times \text{Penalty}, \lambda > 0 \]

How does the regularization penalty change with the value of \(\lambda \)?

The higher the \(\lambda \) is, the more regularization there is.

3. (4 points) You fit a logistic regression for a classification problem. The training error is good but the validation error is bad. How does regularizing affect the variance? The bias?

In this case you are overfitting. Increasing regularization will solve your problem: weights will be decreased and the model will be less overfitting. Therefore, bias will increase but variance will decrease and the validation error should decrease. Note: we use "should" as this is true in the general case but not always.

4. (5 points) Adding regularization creates a new hyperparameter: \(\lambda \). Give one method to tune \(\lambda \). Note: there are several.

• Use the validation set
• Use cross-validation
• Use bootstrap
• DO NOT use the training set
• DO NOT use the testing set

Problem 3: Principal Component Analysis

1. Choose True/False. No justification needed.

(a) (2 points) The goal of PCA is to interpret the underlying structure of the data in terms of the principal components that are best at predicting the output variable.

False. PCA has nothing to do with the prediction task, it only relates to your input features.
(b) (2 points) The sum of the PCA eigenvalues is equal to the sum of the variances of the variables.

True. It is always a good fact to remember.

(c) (2 points) Principal component analysis (PCA) can be used with variables of any mathematical types: quantitative, qualitative, or a mixture of these types.

False. It is algebra therefore all the variables need to be quantitative. Note: if your qualitative variables are represented by numbers in the X matrix, you can compute the PCA of the matrix. However, all the useful interpretation about the variance is false therefore it does not make sense.

2. Choose True/False. No justification needed.
Remember that PCA is computed as follow:

Step 1: Compute the covariance matrix: $\Sigma = \frac{1}{m}X^TX$
Step 2: Compute the SVD of Σ: $[U, S, V] = \text{SVD}(\Sigma)$
Step 3: Compute $U_{\text{reduce}} = U[:, 1: k]$ with k the number of principal components chosen
Step 4: Compute the projections: $Z = Xu_{\text{reduce}}$

(a) (2 points) Removing columns of U will still result in an approximation of X, but this will never be better than X

True. It still remains an approximation (probably not good) and we can still compute the projections.

(b) (2 points) In the case where $U_{\text{reduce}} = U$, then $ZZ^T = XX^T$. Hint: think about the properties of U.

True. $UU^T = I$

3. Given a data set, explain how you would use PCA. Specifically, answer these five questions:

(a) (1 point) Why would you like to use feature normalization?

To compare all features on the same scale.

(b) (1 point) What is each matrix of SVD representing?

- U: Matrix of eigenvectors
- S: Diagonal matrix of eigenvalues
- V: Orthornormal matrix. Think of it as the matrix to get back on your feet so that $[U, S, V] = \text{SVD}(\Sigma)$

(c) (1 point) What do the eigenvectors represent?

Eigenvectors represent the direction of the principal components, i.e. the vectors containing the most information.

(d) (1 point) What do the eigenvalues represent?

Eigenvalues represent the amount of information, measured by variance, carried along the eigenvectors.
(e) (1 point) How do you choose the number of principal components?

Use the variance retained by the first k eigenvectors:

$$
\sum_{i=1}^{k} \lambda_i
$$

4. (2 points) Give one pro and one con of PCA.

- Pro: dimensionality reduction. You project the data into a lower dimension space in which you can do all sorts of computations impossible in higher dimensions (mostly because of time).
- Con: loss of information. You lose information when you project the data.

5. (3 points) How can PCA be used to speed up supervised learning?

Use PCA on the features to reduce the number of features

Problem 4: Support Vector Machine

1. One of the most used kernel in SVM is the Gaussian RBF kernel:

$$
k(x_i, x_j) = e^{-\frac{||x_i - x_j||^2}{2\sigma^2}}
$$

Prove the following properties:

(a) (1 point) k is symmetric, i.e. $\forall i, j \ k(x_i, x_j) = k(x_j, x_i)$

$$
k(x_i, x_j) = e^{-\frac{||x_i - x_j||^2}{2\sigma^2}} = e^{-\frac{||x_j - x_i||^2}{2\sigma^2}} = k(x_j, x_i)
$$

(b) (1 point) k is bounded, i.e. $\forall i, j \ 0 < k(x_i, x_j) \leq 1$

$$
k(x_i, x_j) = e^{-\frac{||x_i - x_j||^2}{2\sigma^2}} \leq e^{0} = 1
$$

Lower-bound is given by property of the exponential i.e. $\forall x, e^x > 0$

(c) (1 point) k is a similarity, i.e. $\forall i, j \ k(x_i, x_j) = 1 \iff x_i = x_j$

$$
k(x_i, x_j) = 1 \iff \frac{||x_i - x_j||^2}{2\sigma^2} = 0 \iff ||x_i - x_j||^2 = 0 \iff x_i = x_j
$$

2. (2 points) Suppose we have three points z_1, z_2, x such that z_1 is very close to x (euclidean-distance), and z_2 is very far from x (euclidean-distance). What can you deduct about $k(z_1, x)$ and $k(z_2, x)$? Choose one of the following. No justification needed.
(i) $k(z_1, x)$ will be close to 1 and $k(z_2, x)$ will be close to 0
(ii) $k(z_1, x)$ will be close to 0 and $k(z_2, x)$ will be close to 1
(iii) $k(z_1, x)$ will be close to c_1, s.t. $c_1 > 1$ and $k(z_2, x)$ will be close to c_2 s.t. $c_2 < 0$
(iv) $k(z_1, x)$ will be close to c_1, s.t. $c_1 < 0$ and $k(z_2, x)$ will be close to c_2 s.t. $c_2 > 1$

Choice (i)

3. (5 points) When are SVMs most effective? (1 case) Why? (2 reasons)

SVMs are most effective when the number of features, n is small and the number of samples, m is intermediate. It works well because:

- It is a linear program therefore it avoids the problems seen with other algorithms when there are more features than samples. The use of kernel makes them very powerful and flexible

4. (2 points) Assume you are building a SVM model on a one vs. all classification problem with 3 classes. How many times do you have to run a SVM?

3 times, one for every class

5. (3 points) What is the point of using a kernel in SVMs? How do these kernels work?

Kernels map low dimension feature-spaces to high dimension feature-spaces where it is easier to separate the data. Kernels work as similarity functions.

Problem 5: K-means algorithm

Suppose we have the following points in one dimension:

$$x_1 = 0, x_2 = 2, x_3 = 3, x_4 = 8, x_5 = 10$$

Run the 2-means clustering until convergence with the following initialization:

$$\mu_1 = -1, \mu_2 = 5$$

Note: in the case of a tie, assign the point to the class with a lower number (i.e. if one point is tied between class 1 and class 2, assign it to class 1).

1. (2 points) Draw a number line to help you visualize what is happening.

Successive iterations are drawn below. Dots represent points, squares centroids. Red corresponds to the first class, green the second.

![Figure 2: Iteration 0](image)
2. (2 points) How many iterations did you perform? *Note:* do not double count! Therefore if iterations n and $n + 1$ give the same result, the algorithm converges in n iterations.

2 iterations were performed

3. (5 points) What is the final assignment?

- Class 1: x_1, x_2, x_3
- Class 2: x_4, x_5

4. (5 points) What are the final centroids?

$$\mu_1 = \frac{5}{3}, \mu_2 = 9$$

5. (5 points) Remember that the loss in the K-means algorithm is given by:

$$\text{Loss} = \sum_{i=1}^{m} ||x_i - \mu_{z_i}||^2$$ with z_i the cluster of point i

Compute the final loss.

$$\text{Loss} = \frac{20}{3}$$

6. (1 point) In the general case, does the K-means algorithm converge to the global minimum?

In the general case, the algorithm is not guaranteed to converge to the global minimum because it is a greedy algorithm (i.e. it optimizes the objective at each step) rather than finding the global minimum.