CS229A - Review Session

Younes Bensouda Mourri
Algorithms Covered

- Linear regression
- Logistic Regression
- Softmax
- Neural Networks
- Support Vector Machines
- Principal Component Analysis
- Bias vs. Variance Trade off
- K-Means Clustering
- Make sure you are familiar with the problem sets
Biggest Tips

- Know the formulas well enough and be able to derive them
- Know how to write the vectorized implementations
- The gradient of a weight matrix W is the same dimension as W
- Understand the Bias vs. Variance tradeoff.
Cheatsheet

Assume that $\theta \in \mathbb{R}^n$, $a \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times d}$, and A is symmetric. Then,

\[
\begin{align*}
\frac{\partial a^T \theta}{\partial \theta} &= a \\
\frac{\partial \theta^T A \theta}{\partial \theta} &= 2A \theta
\end{align*}
\]

(V1)

(V2)

Assume that $x \in \mathbb{R}^n$, $W \in \mathbb{R}^{d \times n}$, $f : \mathbb{R} \rightarrow \mathbb{R}$ element-wise function, and $\delta \in \mathbb{R}^d$. Then,

\[
\begin{align*}
\frac{\partial x}{\partial x} &= 1_{n \times n} \text{ with } 1_{n \times n} \text{ the identity matrix} \\
\frac{\partial W x}{\partial x} &= W \\
\frac{\partial W}{\partial x} &= \delta x^T \\
\frac{\partial f(x)}{\partial W} &= \delta x \\
\frac{\partial f(x)}{\partial x} &= \text{Diag} \{ f'(x_1), \ldots, f'(x_n) \}
\end{align*}
\]

(B1)

(B2)

(B3)

(B4)

Assume that $y \in \mathbb{R}^K$, a one-hot vector, and $z \in \mathbb{R}^K$. If

\[
\begin{align*}
\hat{y} &= \text{Softmax}(z) \\
J &= \text{CE}(y, \hat{y})
\end{align*}
\]

with

\[
\text{Softmax}(z) = \left(\frac{1}{Z} e^{z_1}, \frac{1}{Z} e^{z_2}, \ldots, \frac{1}{Z} e^{z_K} \right) \quad (Z \text{ the normalization constant})
\]

and

\[
\text{CE}(y, \hat{y}) = -\sum_{k=1}^{K} y_k \log(\hat{y}_k)
\]

Then,

\[
\frac{\partial J}{\partial z} = (\hat{y} - y)^T
\]

(B5)

Cost function of linear regression (with regularization):

\[
J(\theta) = \frac{1}{2n} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2 + \frac{\lambda}{2n} \sum_{j=1}^{n} \theta_j^2
\]

Cost function of logistic regression (with regularization):

\[
J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log \left(h_\theta(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_\theta(x^{(i)}) \right) \right) + \frac{\lambda}{2n} \sum_{j=1}^{n} \theta_j^2
\]

Sigmoid function:

\[
\sigma(z) = \frac{1}{1 + e^{-z}}
\]
Linear Regression

- Understand how the cost function works
- Understand how the gradient descent works
- Understand how the normal equations work
Logistic Regression

\[J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_\theta(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_\theta(x^{(i)}))] \]

Repeat \{
\[\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} \]
\[\theta_j := \theta_j - \alpha \left[\left(\frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \right) + \frac{\lambda}{m} \theta_j \right] \]
\} \quad j \in \{1, 2, \ldots, n\}

Vectorized Implementation of the cost function:

\[h = g(X\theta) \]
\[J(\theta) = \frac{1}{m} \cdot (-y^T \log(h) - (1 - y)^T \log(1 - h)) \]
\[\theta := \theta - \frac{\alpha}{m} X^T (g(X\theta) - \bar{y}) \]
Neural Networks

- Know how to use your identities
- Understand how Backpropagation works
- Be familiar with the softmax/sigmoid functions
Diagnosing Bias vs. Variance

In this section we examine the relationship between the degree of the polynomial d and the underfitting or overfitting of our hypothesis.

- We need to distinguish whether bias or variance is the problem contributing to bad predictions.
- High bias is underfitting and high variance is overfitting. We need to find a golden mean between these two.

The training error will tend to decrease as we increase the degree d of the polynomial.

At the same time, the cross validation error will tend to decrease as we increase d up to a point, and then it will increase as d is increased, forming a convex curve.
Choosing M the order of polynomials. How can we tell which parameters Θ to leave in the model (known as "model selection")?

There are several ways to solve this problem:

- Get more data (very difficult).
- Choose the model which best fits the data without overfitting (very difficult).
- Reduce the opportunity for overfitting through regularization.

Intuition for the bias-variance trade-off:

- Complex model => sensitive to data => much affected by changes in X => high variance, low bias.
- Simple model => more rigid => does not change as much with changes in X => low variance, high bias.

One of the most important goals in learning: finding a model that is just right in the bias-variance trade-off.

Regularization Effects:

- Small values of λ allow model to become finely tuned to noise leading to large variance => overfitting.
- Large values of λ pull weight parameters to zero leading to large bias => underfitting.
Bias Vs. Variance

Model Complexity Effects:

- Lower-order polynomials (low model complexity) have high bias and low variance. In this case, the model fits poorly consistently.
- Higher-order polynomials (high model complexity) fit the training data extremely well and the test data extremely poorly. These have low bias on the training data, but very high variance.
- In reality, we would want to choose a model somewhere in between, that can generalize well but also fits the data reasonably well.

A typical rule of thumb when running diagnostics is:

- More training examples fixes high variance but not high bias.
- Fewer features fixes high variance but not high bias.
- Additional features fixes high bias but not high variance.
- The addition of polynomial and interaction features fixes high bias but not high variance.
- When using gradient descent, decreasing lambda can fix high bias and increasing lambda can fix high variance (lambda is the regularization parameter).
- When using neural networks, small neural networks are more prone to under-fitting and big neural networks are prone to over-fitting. Cross-validation of network size is a way to choose alternatives.
Support Vector Machines

\[J(\theta) = C \sum_{i=1}^{m} y^{(i)} \text{cost}_1(\theta^T x^{(i)}) + (1 - y^{(i)}) \text{cost}_0(\theta^T x^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \Theta_j^2 \]

\[\min_{\Theta} C \sum_{i=1}^{m} y^{(i)} \text{cost}_1(\Theta^T f^{(i)}) + (1 - y^{(i)}) \text{cost}_0(\theta^T f^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \Theta_j^2 \]

Choosing \(C \) (recall that \(C = 1/\lambda \))

- If \(C \) is large, then we get higher variance/lower bias
- If \(C \) is small, then we get lower variance/higher bias
Support Vector Machines

\[
\begin{align*}
\min_{w,b} & \quad \frac{1}{2} ||w||^2 \\
\text{s.t.} & \quad y^{(i)}(w^T x^{(i)} + b) \geq 1,
\end{align*}
\]

Diagram showing a linear decision boundary with support vectors A and B.
K-Means

The K-Means Algorithm is the most popular and widely used algorithm for automatically grouping data into coherent subsets.

1. Randomly initialize two points in the dataset called the *cluster centroids*.
2. Cluster assignment: assign all examples into one of two groups based on which cluster centroid the example is closest to.
3. Move centroid: compute the averages for all the points inside each of the two cluster centroid groups, then move the cluster centroid points to those averages.
4. Re-run (2) and (3) until we have found our clusters.

Clustering is good for:

- Market segmentation
- Social network analysis
- Organizing computer clusters
- Astronomical data analysis

$$J(c^{(i)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - \mu_{c^{(i)}}\|^2$$
PCA

Given two features, x_1 and x_2, we want to find a single line that effectively describes both features at once. We then map our old features onto this new line to get a new single feature.

The same can be done with three features, where we map them to a plane.

PCA is not linear regression

- In linear regression, we are minimizing the squared error from every point to our predictor line. These are vertical distances.
- In PCA, we are minimizing the shortest distance, or shortest orthogonal distances, to our data points.

- Feature Normalize
- Compute Covariance matrix Σ
- Compute "eigenvectors" of covariance matrix Σ
- Take the first k columns of the U matrix and compute z
Error Analysis

The recommended approach to solving machine learning problems is:

- Start with a simple algorithm, implement it quickly, and test it early.
- Plot learning curves to decide if more data, more features, etc. will help
- Error analysis: manually examine the errors on examples in the cross validation set and try to spot a trend.

For example: In predicting a cancer diagnoses where 0.5% of the examples have cancer, we find our learning algorithm has a 1% error. However, if we were to simply classify every single example as a 0, then our error would reduce to 0.5% even though we did not improve the algorithm.

For this we can use Precision/Recall.

- Predicted: 1, Actual: 1 --- True positive
- Predicted: 0, Actual: 0 --- True negative
- Predicted: 0, Actual, 1 --- False negative
- Predicted: 1, Actual: 0 --- False positive

Precision: of all patients we predicted where \(y=1 \), what fraction actually has cancer?

\[
\frac{\text{True Positives}}{\text{Total number of predicted positives}} = \frac{\text{True Positives}}{\text{True Positives} + \text{False positives}}
\]

Recall: Of all the patients that actually have cancer, what fraction did we correctly detect as having cancer?

\[
\frac{\text{True Positives}}{\text{Total number of actual positives}} = \frac{\text{True Positives}}{\text{True Positives} + \text{False negatives}}
\]