
Homework 2
CS229T/STATS231 (Winter 2014–2015)

Please structure your writeups hierarchically: convey the overall plan before diving into details. You should
justify with words why something’s true (by algebra, convexity, etc.). There’s no need to step through a long
sequence of trivial algebraic operations. Be careful not to mix assumptions with things which are derived.
Up to two additional points will awarded for especially well-organized and elegant solutions.

Due date: Wednesday, Feb. 11 (at the beginning of class)

1. Improved generalization in low error regimes (10 points)
Recall that in the realizable setting (where the expected risk minimizer h∗ satisfies L(h∗) = 0), we

obtained excess risk bounds of O(1/n), but in the unrealizable setting, we had O(
√

1/n). What if the learning
problem is almost realizable, in that L(h∗) is small? Can we obtain bounds that gracefully interpolate
between the two? This problem explores this possibility.

To start out, let’s revisit Hoeffding’s inequality, which was used to prove generalization bounds in the
unrealizable setting. Recall that Hoeffding’s inequality states that if X1, . . . , Xn are independent random
variables such with µ = E[Xi], and a ≤ Xi ≤ b with probability 1 for each i, then

P

[
1

n

n∑
i=1

Xi − µ ≥ ε

]
≤ exp

(
−2nε2

(b− a)2

)
. (1)

Since Hoeffding’s inequality only depends on the upper and lower bounds a and b of Xi, it can be very loose
when the Xi has low variance. For example, compare (i) Xi = −1 or Xi = +1, each with probability 1

2 ; and
(ii) Xi = 0 with probability 0.98 and Xi = −1 or Xi = +1, each with probability 0.01. Example (ii) should
intuitively enjoy a sharper bound because it has smaller variance. In this problem, we will derive better
generalization bounds that depend on variance.

Instead of using Hoeffding’s inequality, we will use Bernstein’s inequality. The setup is the same as in
Hoeffding’s inequality, except that we also define σ2 = Var[Xi]. The bound is as follows:

P

[
1

n

n∑
i=1

Xi − µ ≥ ε

]
≤ exp

(
−nε2

2(σ2 + (b− a)ε/3)

)
. (2)

(a) We first consider hypotheses with expected risk that is bounded above by a constant
E. (The existence of a small upper bound E is what makes the problem almost realizable.) Equipped
with Bernstein’s inequality, we prove a concentration bound, relating empirical and expected risk for such
hypotheses.

Assume our loss function is bounded as follows: `(y, p) ∈ [0, 1]. Suppose that we have a fixed predictor
h : X → R that achieves expected risk at most E; that is, L(h) ≤ E, where

L(h)
def
= E(x,y)∼p∗ [`(y, h(x))].

Recall that we defined the empirical risk as the random variable:

L̂(h) :=
1

n

n∑
i=1

`(y(i), h(x(i))).

Show that

P[L̂(h)− L(h) ≥ ε] ≤ exp

(
−nε2

2(E + ε/3)

)
.
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Remark: When E = 0, the exponent behaves like O(−nε), which is much better than the usual O(−nε2)
when ε is small.

(b) Next, we will prove a sort of converse to the above. Consider hypotheses with expected risk
that is at least some amount E′ + ε. (If such an amount is large, these hypotheses are far from “realizing”
the minimum expected problem.) We will show that, as ε increases from zero, it is increasingly unlikely for
the empirical risk of such a hypothesis to fall below the risk threshold E′.

Formally, suppose that instead we now have another fixed predictor h′ with expected risk at least E′+ ε:

L(h′) ≥ E′ + ε.

Show that it is unlikely that the empirical risk L̂(h′) is less than E′:

P[L̂(h′) ≤ E′] ≤ exp

(
−nε2

2(E′ + 4ε/3)

)
.

(c) We now bound the excess risk in terms of the smallest valid expected risk bound, E = L(h∗).
Suppose that our hypothesis class H is finite with |H| elements. Use the preceding parts to conclude that

the empirical risk minimizer ĥ achieves:

P[L(ĥ)− L(h∗) ≥ 2ε] ≤ |H| exp

(
− nε2

2(L(h∗) + 7ε/3)

)
.

(d) In the previous part, we proved a generalized excess risk bound with the dependencies
that we had originally desired. The bound applies beyond the realizable setting, instead depending on the
“extent of realizability” L(h∗).

Compare this bound with (i) the bound we have for the realizable case and (ii) the usual bound one
obtains with Hoeffding’s inequality. Comment on the relationship between them. (Hint: you may want to
have a discussion on the risk threshold E.)

2. Complexity of hypothesis classes (15 points)
Generalization bounds for the empirical risk minimizer (ERM) depend on the complexity of the hypothesis

class that the ERM is defined over. Recall that there are several ways to measure the complexity of H. In
this problem, we will compute the VC dimensions or Rademacher complexity of certain hypothesis classes,
in order to develop an intuition for the difficulty of learning these hypothesis classes.

(a) Let the input space be X = Rp for p ≥ 2 and consider hypotheses consisting of all convex
sets:

H = {hS(x) = I[x ∈ S] : S convex}.

Compute the VC dimension of H.

(b) A decision tree T is a binary tree that classifies points in Rd. Each internal node (non-leaf
node) v in T has an attribute jv ∈ {1, 2, . . . , d} and a threshold tv ∈ R. Each leaf node is labeled with one
of the two classes, +1 or -1. Given a point x ∈ Rd, we start from the root, and every time we encounter
an internal node v, we check the condition I[xjv ≥ tv]. We go to the left child if the condition is not met,
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and the right child otherwise. We repeat such process until we reach a leaf node, and classifies the point
according to the label of the node.

Show that the VC dimension of the hypothesis class corresponding to all depth-k decision trees defined
above is Ω(2k log d).

(c) Recall that the Rademacher complexity of a class of functions F is defined as

Rn(F) = E

[
sup
f∈F

1

n

n∑
i=1

σif(Zi)

]
,

where Z1, . . . , Zn are drawn i.i.d. from some distribution p∗ and σ1, . . . , σn are Rademacher variables drawn
i.i.d. from {−1, 1} with equal probability of +1 and −1.

Let f : X → R be a function, and let F := {−f, f} be a function class containing only two functions.
Upper bound Rn(F) using a function of n and E[f(X)2].

(d) In applications such as natural language processing, we often have sparse feature vectors.
Suppose that x ∈ {0, 1}d has only k non-zero entries. For example, in document classification, one feature
might be “x17 = 1 iff the document contains the word cat.”

Define the class of linear functions whose coefficients have bounded L∞ norm:

F = {x 7→ w · x : ‖w‖∞ ≤ B}.

Compute an upper bound on the Rademacher complexity Rn(F). Express your answer as a function of
B, k, d, n. Note that this allows us to effectively control the complexity of learning using L∞ regularization.

(e) Consider a prediction problem from x ∈ R to y ∈ {0, . . . , k}. For every parameter vector

θ ∈ Rk, define the prediction function hθ(x) =
∑k
i=1 I[x ≥ θi] (monotonically increasing piecewise constant

functions). Define the loss function to be `(y, p) = |y − p|, yielding the following loss class:

A = {(x, y) 7→ `(y, hθ(x)) : θ ∈ Rk}.

Compute an upper bound on the Rademacher complexity of A.

(f) Let F be the class of all continuous functions f : [0, 1] → [0, 1] with at most k local
maxima. Find an upper bound of the Rademacher complexity of F .

3. Online-to-batch conversion in high probability (5 points)
In online learning, the learner receives a sequence of convex functions f1, . . . , fT , and returns a sequence

of weight vectors w1, . . . , wT , where wt only depends on f1, . . . , ft−1. Assume that all weight vectors have

bounded norm: w ∈ S, where S
def
= {w : ‖w‖2 ≤ B}. Furthermore, assume that all the functions ft have

bounded subgradients: for all w ∈ S, we have each zt ∈ ∂ft(w) satisfying ‖zt‖2 ≤ L. In class, we proved a
regret bound, namely for all u ∈ S:

Regret(u) =

T∑
t=1

[ft(wt)− ft(u)] ≤ BL
√
T . (3)
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To perform online-to-batch conversion, we assume all the ft’s are i.i.d. with L(w) = E[ft(w)] and let

ŵ
def
= 1

T

∑T
t=1 wt. In class, we showed a generalization bound in expectation, but ideally, we’d like a result

that holds with high probability. Let w∗ ∈ arg minw∈S L(w). Show that with probability at least 1− δ,

L(ŵ) ≤ L(w∗) +

√
B2L2

T
+

√
8B2L2 log(1/δ)

T
.

(a)

4. Feedback (0 points)

(a) On a scale of 1 to 10, how difficult was this assignment?

(b) On a scale of 1 to 10, how useful was this assignment?

(c) Any other comments?
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