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[begin lecture 1] (1)

1 Overview

1.1 What is this course about? (Lecture 1)

• Machine learning has become an indispensible part of many application areas, ranging
from science (biology, neuroscience, psychology, astronomy, etc.) to engineering (nat-
ural language processing, computer vision, robotics, etc.). But machine learning is not
one coherent approach, but rather consists of a dazzling array of seemingly disparate
frameworks and paradigms spanning classification, regression, clustering, matrix fac-
torization, graphical models, probabilistic programming, etc.

• This course tries to uncover the common statistical principles underlying this diverse
array of techniques, using theoretical analysis as the main tool for understanding. We
will try to answer two questions:

– When do learning algorithms work (or fail)? Anyone with hands-on machine
learning experience will probably know that learning algorithms rarely work the
first time. When they don’t, a deeper theoretical understanding can offer a new
perspective and can aid in troubleshooting.

– How do we make learning algorithms better? Theoretical analyses often point
to weaknesses in current algorithms, and suggest new algorithms to address the
limitations of existing ones. For example, is it possible to combine weak classifiers
into a strong classifier? This theoretical challenge eventually led to the develop-
ment of AdaBoost in the mid 1990s, a beautifully simple and practical algorithm
with strong theoretical guarantees.

– In a more recent example, Google’s latest 22-layer convolutional neural network
that won the 2014 ImageNet Visual Recognition Challenge was in part inspired
by a theoretically-motivated algorithm for learning deep neural networks with
sparsity structure. Although there is very often still a gap between theory and
practice, the transfer of ideas can be nonetheless fruitful.

• Example: text classification

– Suppose we want to build a classifier to predict the topic of a document (e.g.,
sports, politics, technology, etc.).

– We train an SVM on bag-of-words features and obtain 8% training error on 1000
training documents, test error is 13% on 1000 documents. Now what? Here are
several questions which could be useful in figuring out what’s going on.

∗ How reliable are these numbers? If we reshuffled the data, would we get the
same answer?
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∗ How much should we expect the test error to change if we double the number
of examples?

∗ What if we double the number of features? What if our features or parameters
are sparse?

∗ What if we double the regularization?

∗ Should we change the learning algorithm altogether?

– In this class, we develop tools to tackle some of these questions. Our goal isn’t to
give precise quantitative answers (just like analyses of algorithms doesn’t tell you
how exactly many hours a particular algorithm will run). Rather, the analyses will
reveal the relevant quantities (e.g., dimension, regularization strength, number of
training examples), and reveal how they influence the final test error.

– Also, we will use prediction as the primary motivation, but much of the techniques
we will cover in this class can be applied to estimation, hypothesis testing, etc.

• Error decomposition

– How do we even begin to analyze or even formalize the machine learning enter-
prise, which seems to have so many moving parts?

– It will be conceptually useful to break the error of the classifier (more generally,
predictor1) returned by the learning algorithm into two parts: approximation
error and estimation error: A learning algorithm can be viewed as operating

oracle

H

h∗ ĥ

approximation estimation

Figure 1: Cartoon showing error decomposition into approximation and estimation errors.

on a hypothesis class H, which governs what kind of predictions it can make.

– Approximation error is error made by the best predictor in H. If the approxima-
tion error is large, then the hypothesis class is probably too small.

– Estimation error is the difference between the error of the learner and the error
of the best predictor. If the estimation error is large, then the hypothesis class is
probably too large for the given amount of data.

– We should strive to balance these two errors so that the sum is minimized. Of
course, this is not a one-dimensional problem, for there is a lot of wiggle room in
choosing H based on knowledge about the learning task at hand.

1Note that in statistics, predictor is synonymous with feature. In this class, we use predictor in the
machine learning sense.
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• In the next sections, we give a brief overview of the various topics in this course: online
learning, uniform convergence, direct analysis, kernel methods, and latent-variable
models. Very roughly speaking, the first half of the class will focus mostly on estimation
error, and the second half focuses on approximation error. The class will also tend
to proceed from learning settings with very few assumptions (data can be generated
completely adversarially) to ones with more (data can be generated i.i.d. from a known
parametric family). As we make more assumptions, we have more to work with and
can prove stronger results.

1.2 Online learning (Lecture 1)

• Online learning is a nice place to start since it leads directly to many simple and
efficient algorithms which are used heavily in practice, while at the same time offering
a remarkably clean theory and sharp results.

• The goal of online learning is to solve a prediction task: given input x ∈ X (e.g.,
{0, 1}d), predict output y ∈ Y (e.g., {+1,−1} in classification or R in regression).
Data arrives at the learner’s doorstep in real-time and the learner must also make
predictions on-the-fly.

• We will cast online learning as the following game between a learner and nature:

Learner

x1

p1

y1

...

xT

pT

yT

Nature

Figure 2: Online learning game.

– Iterate t = 1, . . . , T :

∗ Learner receives input xt ∈ X
∗ Learner outputs prediction pt ∈ Y
∗ Learner receives true label yt ∈ Y
∗ (Learner updates model parameters)

• How do we evaluate?

– Loss function: `(yt, pt) ∈ R
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– Let H be a set of fixed expert predictors.

– Regret: cumulative difference between learner’s loss and best expert’s loss (low
regret is good).

• We will prove statements of the following form:

Regret ≤ SomeFunction(H, T ). (1)

For example, for finite H, we will be able to prove:

Regret ≤ O(
√
T log |H|). (2)

Things to note:

– The average regret goes to zero (in the long run, we’re doing as well as the best
expert).

– The bound only depends logarithmically on the number of experts, which means
that the number of experts |H| can be exponentially larger than the number of
data points T .

– We make zero assumptions about the examples—could be generated by an ad-
versary!

– Regret gets at estimation error. We are only comparing with the fixed set of
experts; it says nothing about how well the learner is doing in absolute terms.

– The algorithms that achieve these results, as we’ll see later, are dirt simple and
as efficient as one could hope for.

• Main mathematical tool: convexity

1.3 Uniform convergence (Lecture 1)

• Next, we turn to the batch setting, where a learner gets a set of training examples,
does some learning, and then is evaluated on generalization (test) error.

• We will study the empirical risk minimizer (known as an M-estimator in statistics):

ĥERM ∈ arg min
h∈H

L̂(h), (3)

where L̂(h) is the empirical risk of h, the average loss over n i.i.d. training examples;
in other words, the training error. Empirical risk minimization includes maximum
likelihood for the special case where the loss is the negative log-likelihood. We won’t
worry about how the ERM is computed; if the loss is convex, then this can be readily
done via standard convex optimization.
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• We assume all examples are drawn i.i.d. from some unknown distribution p∗(x, y) but
make no further assumptions about p∗.

• We will derive two types of generalization bounds. The first compares generalization
and training error:

L(ĥERM)︸ ︷︷ ︸
generalization error

≤ L̂(ĥERM)︸ ︷︷ ︸
training error

+Op

(√
Complexity(H)

n

)
. (4)

The second relates the empirical risk minimizer to the best h∗ ∈ H (this bounds the
estimation error):

L(ĥERM) ≤ L(h∗) +Op

(√
Complexity(H)

n

)
. (5)

• For a fixed h ∈ H, the training error L̂(h) converges to generalization error L(h) by
Hoeffding’s inequality or the central limit theorem.

• However, the key point is that ĥERM is random, so plain convergence isn’t enough. We
need to get uniform convergence over all functions h ∈ H, which ensures convergence
for L(ĥERM) as well.

• The rate of convergence is governed by the complexity of H, so we will devote a good
deal of time computing the complexity of various function classes H. VC dimension,
covering numbers, and Rademacher complexity are different ways of measuring how
big a set of functions is. For example, for finite H, the right measure of complexity is
log |H|, which agrees with the online learning bound we saw earlier.

• Generalization bounds are in some sense the heart of statistical learning theory. But
along the way, we will develop generally useful concentration inequalities whose
applicability extends beyond machine learning (e.g., showing convergence of eigenvalues
in random matrix theory).

• Main mathematical tool: probability

1.4 Direct analysis (Lecture 1)

• Uniform convergence only gives us upper bounds, so we can’t directly compare the
generalization error of two algorithms. Also, it is worst case over all distributions p∗,
so it lacks sensitivity to the exact problem structure.

• In simplified settings, we can actually perform a direct analysis to get sharper results
which are exact. Here, the goal will not be to obtain the most general results, but to
obtain intuition about problem structure for certain cases.
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• For example, for linear regression, we can see that the expected estimation error is
exactly:

E[L(ĥERM)] = L(h∗) +
dσ2

n− d− 1
, (6)

where d is the dimensionality, n is the number of examples, and σ2 is the variance of
the noise. Note that the expectation is taken over random training sets.

• For non-linear loss functions, we can’t compute the error directly. But we can appeal
to asymptotics, a common tool used in statistics. Assuming twice differentiability, we
can perform a Taylor expansion of the expected risk to obtain:

L(ĥERM) = L(h∗) +
SomeFunction(p∗, h∗)

n
+ · · · (7)

The asymptotics approach is fairly lightweight and gives equality up to the first-order,
which allows us to compare different estimators, at least in the asymptotic sense.

• Main mathematical tool: Taylor expansion

1.5 Kernel methods (Lecture 1)

• Now we turn our attention from estimation error to approximation error. Real-world
data is complex, so we need expressive models. Kernels provide a rigorous mathemat-
ical framework to build complex, non-linear models based on the machinery of linear
models.

• For concreteness, suppose we’re trying to solve a regression task: predicting y ∈ R
from x ∈ X .

• There are three ways to think about kernels:

Feature map φ(x)

Kernel k(x, x′) RKHS H with ‖ · ‖H

unique

unique

Figure 3: The three key mathematical concepts in kernel methods.

• Feature view: define functions via features φ(x):

– φ(x) = (1, x) yields linear functions
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– φ(x) = (1, x, x2) yields quadratic functions

– This is the usual way of approaching machine learning.

• Kernel view: define positive semidefinite kernel k(x, x′), which captures “similar-
ity” between x and x′.

– Kernels allow us to construct complex non-linear functions (e.g., Gaussian ker-

nel k(x, x′) = exp(−‖x−x
′‖2

2σ2 )) that are universal, in that it can represent any
continuous function (and with enough data, it will learn it).

– For strings, trees, graphs, etc., can define kernels that exploit dynamic program-
ming for efficient computation.

• Function view: directly study the class of functions, known as an reproducing kernel
Hilbert space (RKHS). This provides a mathematically more elegant way at getting
hold of the object we actually care about.

• One point is that kernels and RKHSes are in one-to-one correspondence, and are at the
core of linear models. On the other hand, there could be many feature functions that
yield the same kernel, so one can choose the one based on computational convenience.

• Kernel methods generally require O(n2) time (n is the number of training points) to
even compute the kernel matrix. Approximations based on sampling offer efficient
solutions. For example, by generating lots of random features of the form cos(ω ·x+b),
we can approximate any shift-invariant kernel.

• Main mathematical tool: functional analysis

1.6 Latent-variable models (Lecture 1)

• So far, we have focused mostly on prediction with fixed data representations (fixed
features, kernels). This only works well when the representations are good. The
natural question to ask is whether these representations can be learned automatically.
We will consider several types of methods that learn representations in an unsupervised
way by factorizing the data.

• One main challenge with such endeavors is that it is easy to run into non-convex
optimization problems. We will show that convex relaxations, while optimizing a
different objective, can produce the same solutions statistically. In practice, alternating
minimization is used, which can get stuck in local minima. However, with the right
statistical assumptions, we can show that these approaches can provably work too for
problems such as matrix completion.

• Next, we consider parameter estimation in probabilistic latent-variable models such as
mixtures of Gaussians, hidden Markov models, and latent Dirichlet allocation. Again,
these models are difficult to estimate, and traditional methods such as EM get stuck
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in local optima. We can sidestep this issue via the method of moments, which leads
to simple algorithms based on tensor decomposition which (i) do not have problems
with local optima and (ii) reveal additional insight into the model.

• Main mathematical tools: linear algebra
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2 Online learning

We will first discuss the online learning framework, focusing on prediction. Then, we will
cast online learning as online convex optimization and develop several algorithms and prove
regret bounds for these algorithms. Finally, we will look at multi-armed bandit problems,
where the learner obtains partial feedback. Throughout this section, there will be very little
probability (since we will be working mostly in the adversarial setting), but we will draw
quite a bit from convex analysis.

2.1 Introduction (Lecture 1)

• Framework

– Prediction task: we want to map inputs x ∈ X to outputs y ∈ Y .

– The online learning setting can be thought of as the following game between a
learner and nature:

Learner

x1

p1

y1

...

xT

pT

yT

Nature

Figure 4: Online learning game.

∗ Iterate t = 1, . . . , T :

· Learner receives input xt ∈ X
· Learner outputs prediction pt ∈ Y
· Learner receives true label yt ∈ Y
· (Learner updates model parameters)

• Example 1 (online binary classification for spam filtering)

– Inputs: X = {0, 1}d are boolean feature vectors (presence or absence of a word).

– Outputs: Y = {+1,−1}: whether a document is spam or not spam.

– Zero-one loss: `(yt, pt) = I[yt 6= pt] is whether the prediction was incorrect.

• Remarks
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– The typical training phase (setting model parameters) and testing phase (making
predictions for evaluation) are interleaved in online learning.

– Note that the the online learning setting leaves completely open the time and
memory usage of the algorithms that operate in this setting. Technically, we
could just train an SVM on all the data that we’ve seen so far, and predict on the
next example. However, the spirit of online learning suggests that the amount of
work an algorithm does per iteration should not grow with t. In practice, online
learning algorithms update parameters after each example, and hence tend to be
faster than traditional batch optimization algorithms such as Newton’s method.

– The real world is complex and constantly-changing, but online learning algorithms
have the potential to adapt (although we will not analyze their adapative capa-
bilities in this course).

– In some applications such as spam filtering, the inputs could be generated by an
adversary. In our analyses, we will make no assumptions about the input/output
sequence.

• Evaluation: how good is a learner?

– Let H be a set of experts, where each expert is a function h : X → Y that
predicts h(x) on input x ∈ X . Note that the learner can adapt whereas the
experts are fixed.

– Definition 1 (regret)

∗ The regret of a learner with respect to an expert h is the cumulative difference
between the loss incurred by the learner and the loss incurred by expert h:

Regret(h) =
T∑
t=1

[`(yt, pt)− `(yt, h(xt))]. (8)

∗ The regret with respect to a class of experts H is the maximum regret (at-
tained by best expert):

Regret = max
h∈H

Regret(h). (9)

Note that Regret depends on H, T , the sequences x1:T , y1:T , and of course the
algorithm itself; but we’re eliding the dependence in the notation.

– Intuition: having fixed experts makes it possible to compete in an adversarial
setting. If the adversary tries to screw over the learner, it will probably screw
over the experts too.

• Objective: minimize regret. We want to obtain a result of the form: for allH, T, x1:T , y1:T ,
we have:

Regret ≤ SomeFunction(H, T ). (10)

13



– Low regret is good. Usually, we want the regret to be sublinear in T , which means
that the average regret goes to zero.

– Aside: note that regret can be negative in online learning (since the learner can
adapt but the experts cannot).

2.2 Warm-up (Lecture 1)

We will give two examples, one where online learning is impossible and one where it is
possible.

• Example 2 (negative result)

– Assume binary classification: y ∈ {−1,+1}
– Assume zero-one loss: `(yt, pt) = I[yt 6= pt]

– Assume the learner is fully deterministic.

– Claim: there exists an H and input/output sequence x1:T , y1:T such that:

Regret ≥ T/2 [awful!] (11)

– Key point: adversary (having full knowledge of learner) can choose yt to be
always different from pt.

– Learner’s cumulative loss: T (make mistake on every example).

– We’re not done yet, because remember regret is the difference between learner’s
cumulative loss and the best expert’s, so we have to check how well the experts
do in this case.

– Consider two experts, H = {h−1, h+1}, where hy always predicts y.

– The sum of the cumulative losses of the experts equals T because `(yt, h−1(xt)) +
`(yt, h+1(xt)) = 1, so one of the experts must achieve loss ≤ T/2.

– Therefore, the difference between T and ≤ T/2 is ≥ T/2.

– It is perhaps not surprising that no learner can do well because nature is too
powerful here (it can choose any sequence with full knowledge of what the learner
will do). So we will need assumptions to get positive results.

• Example 3 (positive result (learning with expert advice))

– Assume zero-one loss: `(yt, pt) = I[yt 6= pt].

– Clearly, we need to make some assumptions to make progress. Here, we will make
a fairly strong assumption just to get some intuition.
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– Assumption 1 (realizable)

Assume the best expert h∗ ∈ H obtains zero cumulative loss (`(yt, h
∗(xt)) = 0 for

all t = 1, . . . , T ); or equivalently, since we’re dealing with zero-one loss, yt = h∗(xt)
for all t. This assumption places a joint restriction on H, x1:T , y1:T .

– We will design an algorithm that queries the experts on each example xt, and try
to combine their predictions in some way; this setting is called learning with
expert advice.

– Algorithm 1 (majority algorithm)

∗ Maintain a set Vt ⊆ H of valid experts (those compatible with the first t− 1
examples).

∗ On each iteration t, predict pt to be the majority vote over predictions of
valid experts {h(xt) : h ∈ Vt}.
∗ Keep experts which were correct: Vt+1 = {h ∈ Vt : yt = h(xt)}.

– Analysis:

∗ On each mistake, at least half of the experts are eliminated.

∗ So 1 ≤ |VT+1| ≤ |H|2−M , where M is the number of mistakes (equal to Regret
since the best expert has zero loss).

∗ Note that the lower bound is due to the realizability assumption.

∗ M is the exactly the regret here.

∗ Take logs and rearrange:

Regret ≤ log2 |H|. (12)

– Notes:

∗ This is a really strong result: note that the regret is constant; after a finite
number of iterations, we cease to make any more mistakes forever.

∗ However, realizability (that some expert is perfect) is too strong of an as-
sumption.

∗ Also, the regret bound is useless here if there are an infinite number of experts
(|H| =∞).
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[begin lecture 2] (2)

2.3 Online convex optimization (Lecture 2)

• In order to obtain more general results, we move to a framework called online convex
optimization. We will see that convexity will give us considerable leverage. Later,
we’ll connect online convex optimization with online learning.

• Let S ⊆ Rd be a convex set (e.g., representing set of allowed weight vectors).

– Example: S = {u : ‖u‖2 ≤ B}.

• Definition 2 (convexity)

A function f : S → R is convex iff for all points w ∈ S, there is some vector z ∈ Rd

such that

f(u) ≥ f(w) + z · (u− w) for all u ∈ S. (13)

This says that at any point w ∈ S, we can find a linear approximation (RHS of (13))
that lower bounds the function f (LHS of (13)).

• Definition 3 (subgradient)

For each w ∈ S, the set of all z satisfying (13) are known as the subgradients at w:

∂f(w)
def
= {z : f(u) ≥ f(w) + z · (u− w) for all u ∈ S}. (14)

If f is differentiable at w, then there is one subgradient equal to the gradient: ∂f(w) =
{∇f(w)}.

• Convexity is remarkable because it allows you to say something (in particular, lower
bound) the global behavior (for all u ∈ S) of a function f by something local and
simple (a linear function). An important consequence of f being convex is that if
0 ∈ ∂f(w), then w is a global minimum of f .

• Checking convexity

– How do you know if a function is convex? You can try to work it out from the
definition or if the function is twice-differentiable, compute the Hessian and show
that it’s positive semidefinite.

– But often, we can check convexity by decomposing the function using a few rules.
This is by no means an exhaustive list, but these are essentially all the important
cases that we’ll need in this class.

∗ Linear functions: f(w) = w · z for any z ∈ Rd
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∗ Quadratic functions: f(w) = w>Aw for positive semidefinite A ∈ Rd×d

∗ Negative entropy: f(w) =
∑d

i=1 wi logwi on w ∈ ∆d.

∗ Sum: f + g if f and g are convex

∗ Scale: cf where c ≥ 0 and f is convex

∗ Supremum: supf∈F f , where F is a family of convex functions

– Example: hinge loss (skipped)

∗ Function: f(w) = max{0, 1− y(w · x)}.
∗ Subgradient:

· ∂f(w) = {0} if y(w · x) > 1 (w achieves margin at least 1)

· ∂f(w) = {−yx} if y(w · x) < 1

· ∂f(w) = {−yxα : α ∈ [0, 1]} if y(w · x) = 1

• The setup for online convex optimization is similar to online learning:

– Iterate t = 1, . . . , T :

∗ Learner chooses wt ∈ S
∗ Nature chooses convex loss function ft : S → R

– Regret is defined in the way you would expect (cumulative difference of losses):

Regret(u)
def
=

T∑
t=1

[ft(wt)− ft(u)]. (15)

Regret
def
= max

u∈S
Regret(u). (16)

– The set S plays two roles: it is the set of experts with which we define our regret,
and it is also the set of pararameters that our learner is going to consider. For
simplicity, we assume these two are the same, although in general, they do not
have to be.

• We now turn to our original goal of doing online learning. We will show some examples
of reducing online learning to online convex optimization. In particular, given an
input/output sequence input x1:T , y1:T , we will construct a sequence of convex functions
f1:T such that the low regret incurred by a learner on the online convex optimization
problem implies low regret on the online learning problem. Let OL be the online learner
who has access to OCO, a online convex optimizer.

– Example 4 (linear regression)

∗ Assume we are doing linear regression with the squared loss, `(yt, pt) = (pt−
yt)

2.

∗ On each iteration t = 1, . . . , T :

· OL receives an input xt ∈ Rd from nature.
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· OL asks OCO for a weight vector wt ∈ Rd.

· OL sends the prediction pt = wt · xt to nature.

· OL receives the true output yt from nature.

· OL relays the feedback to OCO via the loss function

ft(w) = (w · xt − yt)2. (17)

Note that (xt, yt) is baked into ft, which changes each iteration. Since the
squared loss is convex, ft is convex. One can check easily based on matching
definitions that the regret of OCO is exactly the same as regret of OL.

– Example 5 (learning with expert advice)

∗ Now let’s turn to a problem where the convexity structure isn’t as apparent.

∗ Assume we have a finite number (this is important) of experts H, which the
learner can query. Let

H = {h1, . . . , hd}. (18)

∗ Assume we are doing binary classification with the zero-one loss (this is not
important—any bounded loss function will do), `(yt, pt) = I[yt 6= pt].

∗ Note that neither the loss function nor the set of experts H is convex; in fact,
this doesn’t really make sense, since the domains are discrete.

∗ Nonetheless, we can convexify the problem using randomization. Specif-
ically, we allow the learner to produce a probability distribution wt ∈ ∆d

(∆d ⊆ Rd is the (d− 1)-dimensional simplex).2 over the d experts H, sample
an expert from this distribution, and predict according to that expert. The
expected zero-one loss is then a convex (in fact, linear) function of wt.

∗ Formally, the reduction is as follows:

· OL recives an input xt from nature.

· OL asks OCO for a weight vector wt ∈ ∆d, which represents a distribution
over d experts.

· OL samples an expert jt ∼ wt and send prediction pt = hjt(xt) to nature.

· OL recives the true output yt from nature.

· OL relays the feedback to OCO via the loss function

ft(w) = w · zt, (19)

where zt is the vector of losses incurred by each expert:

zt = [`(yt, h1(xt)), . . . , `(yt, hd(xt))] ∈ {0, 1}d. (20)

2 Formally, think of a probability distribution over a random variable J ∈ {1, . . . , d}, with P[J = j] = wj .
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Again, ft bakes the loss and the data into the same function, and one can
check that the expected regret of OL is the same as the regret of OCO.
Note that we assume no structure on xt and yt—they could be arbitrarily
complicated; we are only exposed to them via the the experts and the
loss function.

∗ This convexify-by-randomization trick applies more generally to any loss func-
tion and any output space Y . The key is that the set of experts is finite, and
the learner is just choosing a convex combination of those experts.

∗ Yet another way to convexify non-convex losses without randomization is to
use an upper bound (e.g., hinge loss or logistic loss upper bounds the zero-
one loss). However, minimizing the convex upper bound does not guarantee
minimizing the zero-one loss.

• Relationship to convex optimization

– Before we talk about how to solve online convex optimization, let’s see what
the implications are for ordinary convex optimization, which is what one would
typically turn to in the batch learning setting, where one gets all the data up
front.

– Recall that in convex optimization, we are given a single convex function f and
asked to minimize it, that is, compute:

w∗ ∈ arg min
w∈S

f(w). (21)

Often in machine learning, the function f we’re minimizing is a sum of convex
functions, one for each of n data points:

f(w) =
1

n

n∑
i=1

gi(w), (22)

where each gi is convex. For example, gi could be the hinge loss on training
example (xi, yi): gi(w) = max{0, 1− yi(w · xi)}.

– We can use a online convex optimization algorithm to minimize f as follows. At
each time step t, choose a random gi and feed it to the learner. Formally, let
ft = git , where it is drawn uniformly from {1, . . . , n}. An important property of
this construction is that ft is equal to f in expectation:

f(w) = E[ft(w)]. (23)

– After T iterations, take the average over all the weight vectors that the learner
predicted:

w̄ =
1

T

T∑
t=1

wt. (24)
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– We claim now that w̄ is good with respect to w∗. By the definition of regret:

Regret(w∗) =
T∑
t=1

[ft(wt)− ft(w∗)]. (25)

After dividing by T , rearranging, and taking expectations:

E

[
1

T

T∑
t=1

ft(wt)

]
= E

[
1

T

T∑
t=1

ft(w
∗)

]
+

E[Regret(w∗)]

T
. (26)

∗ Let’s analyze the LHS of (26). First, by definition of w̄ and Jensen’s inequality
(uniform distribution over {1, . . . , T}), we have:

f(w̄) ≤ 1

T

T∑
t=1

f(wt). (27)

Taking expectations, and using linearity of expectation, and the fact that
f = E[ft]:

E[f(w̄)] ≤ E

[
1

T

T∑
t=1

f(wt)

]
= E

[
1

T

T∑
t=1

ft(wt)

]
. (28)

∗ Let’s now analyze the first term of the RHS of (26). Since f = E[ft],

f(w∗) = E

[
1

T

T∑
t=1

ft(w
∗)

]
. (29)

∗ Therefore, we can conclude

E[f(w̄)] ≤ f(w∗) +
E[Regret(w∗)]

T
. (30)

– You should think of E[Regret(w∗)] as either O(1), O(log T ), or O(
√
T ), so that

E[Regret(w∗)] going to zero means convergence to the global minimum of f (solv-
ing the original convex optimization problem).

– By optimization standards, O(1/
√
T ) or even O(1/T ) is very slow. Standard

(batch) optimization algorithms such as gradient descent (with the appropriate
step size) can, though not in all cases, obtain linear (confusingly, also called expo-
nential or geometric) convergence (O(e−c(T/n))) or even superlinear convergence
(O(e−c(T/n)2)).

– There are two reasons why you might deliberately not choose an algorithm with
these rates:
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∗ First, note the difference in the dependence on n in the batch and online
settings. Each iteration of an online algorithm processes only one example,
whereas each iteration of an batch algorithm processes all n examples to
compute ∇f(w), which is n times more expensive. When we have large
datasets, then online algorithms can be faster.

∗ Second, for machine learning applications, there is no need to optimize f to
death since there is noise in the data anyway, and we’ll show later that the
statistical error is O(1/

√
T ), so one could even argue that running an online

algorithm over the data once (T = n) is theoretically good enough.

2.4 Follow the leader (FTL) (Lecture 2)

We first start out with a natural algorithm called follow the leader (FTL), which in some
sense is the analog of the majority algorithm for online learning. We’ll see that it works for
quadratic functions but fails for linear functions. This will give us intuition about how to
fix up our algorithm.

• Algorithm 2 (follow the leader (FTL))

– Let f1, . . . , fT be the sequence of loss functions played by nature.

– The learner chooses the weight vector wt ∈ S that minimizes the cumulative loss
so far on the previous t− 1 iterations:

wt ∈ arg min
w∈S

t−1∑
i=1

fi(w). (31)

(If there are multiple minima, choose any one of them. This is not important.)

– Aside: solving this optimization problem at each iteration is expensive in general
(which would seem to destroy the spirit of online learning), but we’ll consider
special cases with analytic solutions.

– Note: We can think of FTL as an empirical risk minimizer (we will study this in
batch learning), where the training set is the first t− 1 examples.

• We want to now study the regret of FTL. Regret compares the learner (FTL) with
any expert u ∈ S, but this difference can be hard to reason about. So to get started,
we will use the following result (Lemma 1) to replace u in the bound by (i) something
easier to compare wt to and (ii) at least as good as any u ∈ S.

• Lemma 1 (compare FTL with one-step lookahead cheater)

– Let f1, . . . , fT be any sequence of loss functions.
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– Let w1, . . . , wT be produced by FTL according to (31). For any u ∈ S:

Regret(u)
def
=

T∑
t=1

[ft(wt)− ft(u)] ≤
T∑
t=1

[ft(wt)− ft(wt+1)]. (32)

– Note: This is saying our regret against the best fixed u is no worse than comparing
against the one-step lookahead wt+1 that peeks at the current function ft (which
is cheating!).

– Note: The RHS terms ft(wt) − ft(wt+1) measure how stable the algorithm is;
smaller is better. Stability is an important intuition to develop.

• Proof of Lemma 1:

– Subtracting
∑

t ft(wt) from both sides, it suffices to show

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(u) (33)

for all u ∈ S. Intuitively, this says that wt+1 (which takes the minimum over the
first t functions) is better than using a fixed u for all time.

– Proof by induction:

∗ Assume the inductive hypothesis on T − 1:

T−1∑
t=1

ft(wt+1) ≤
T−1∑
t=1

ft(u) for all u ∈ S. (34)

∗ Add fT (wT+1) to both sides:

T∑
t=1

ft(wt+1) ≤
T−1∑
t=1

ft(u) + fT (wT+1) for all u ∈ S. (35)

∗ In particular, this holds for u = wT+1, so we have:

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(wT+1). (36)

∗ Since wT+1 ∈ arg minu
∑T

t=1 ft(u) by definition of FTL, we have:

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(u) for all u ∈ S, (37)

which is the inductive hypothesis for T .
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• Note that Lemma 1 doesn’t actually require on convexity of ft, but rather only stability
of the iterates {wt} as measured by ft. As we’ll see later, strong convexity is the main
way we will achieve this stability. For now, let’s consider two examples to gain some
intuition: one where the {wt} are stable (Example 6) and one where they are not
(Example 7).

• Example 6 (quadratic optimization: FTL works)

– Assume nature always chooses quadratic functions:

ft(w) =
1

2
‖w − zt‖2

2, (38)

where the points are bounded: ‖zt‖2 ≤ L for all t = 1, . . . , T .

– FTL (minimizing over S = Rd) has a closed form solution, which is just the
average of the previous points:

wt =
1

t− 1

t−1∑
i=1

zi. (39)

– Bound one term of the RHS of Lemma 1 (intuitively the difference is only one
term):

ft(wt)− ft(wt+1) =
1

2
‖wt − zt‖2

2 −
1

2
‖(1− 1/t)wt + (1/t)zt − zt‖2

2 (40)

=
1

2
(1− (1− 1/t)2)‖wt − zt‖2

2 (41)

≤ (1/t)‖wt − zt‖2
2 (42)

≤ (1/t)4L2. (43)

– Side calculation: summing 1/t yields log T :

T∑
t=1

(1/t) ≤ 1 +

∫ T

1

(1/t)dt = log(T ) + 1. (44)

– Summing over t yields:

Regret ≤
T∑
t=1

[ft(wt)− ft(wt+1)] ≤ 4L2(log(T ) + 1). (45)

– The important thing here is that the difference between wt and wt+1 (measured
in terms of loss) is really small (only 1/t), which means that FTL for quadratic
functions is really stable. This makes sense because averages are stable: adding
an extra data point should only affect the running average by O(1/t).
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• Example 7 (linear optimization: FTL fails)

– We will construct an evil example to make FTL fail.

– Let S = [−1, 1] be FTL’s possible predictions. This is a nice bounded one-
dimensional convex set, so we’re not even trying hard to be pathological.

– Consider linear functions ft(w) = wzt in d = 1 dimension, where

(z1, z2, . . . ) = (−0.5, 1,−1, 1,−1, 1,−1, . . . ). (46)

– The minimizer computed by FTL will be attained at an extreme point, causing
oscillating behavior.

(w1, w2, . . . ) = (0, 1,−1, 1,−1, 1,−1, 1, . . . ). (47)

– FTL obtains T − 1 cumulative loss (get loss 1 on every single example except the
first).

– Expert u = 0 obtains 0 cumulative loss (not necessarily even the best).

– Therefore, the regret is pretty depressing:

Regret ≥ T − 1 . (48)

• What’s the lesson?

– For these quadratic functions, wt and wt+1 must get closer (low regret).

– For these linear functions, wt and wt+1 do not get closer (high regret).

– It seems then that FTL works when functions ft offer “stability” (e.g., quadratic)
but fail when they do not (e.g., linear).

– We will reveal the more general principle (strong convexity) later work.
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[begin lecture 3] (3)

2.5 Follow the regularized leader (FTRL) (Lecture 3)

• It would be nice if nature just handed us quadratic-looking ft’s, but in general, we’re
not the ones calling the shots there. But we do control the learner, so the key idea is
to add some regularization of our own to stablize the learner.

• Algorithm 3 (follow the regularized leader (FTRL))

– Let ψ : S → R be a function called a regularizer (this defines the learner).

– Let f1, . . . , fT be the sequence of loss functions played by nature.

– On iteration t, the learner chooses the weight vector that minimizes the regularizer
plus the losses on the first t− 1 examples:

wt ∈ arg min
w∈S

ψ(w)+
t−1∑
i=1

fi(w). (49)

– Note: FTL is just FTRL with ψ = 0.

• Quadratic ψ, linear ft

– For the remainder of the section, just to build the right intuition in a transparent
way, let’s specialize to quadratic regularizers ψ and linear loss functions ft:

ψ(w) =
1

2η
‖w‖2

2, ft(w) = w · zt. (50)

– Then the FTRL optimization problem (49) is:

wt = arg min
w∈S

{
1

2η
‖w‖2

2 − w · θt
}
, (51)

where

θt = −
t−1∑
i=1

zi (52)

is the negative sum of the gradients zt. Interpret θt as the direction that we want
to move in to reduce the loss, but now, unlike in FTL, we’re held back by the
quadratic regularizer.
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– If S = Rd, then FTRL has a closed form solution:

wt = ηθt, (53)

a scaled down version of θt. We can write wt = −ηz1 − ηz2 − · · · − ηzt−1 and
equivalently think of the weights as being updated incrementally according to the
following recurrence:

wt+1 = wt − ηzt. (54)

From this perspective, the recurrence in (54) looks awfully like an online subgra-
dient update where zt is the gradient and η is the step size.

– If S 6= Rd, then FTRL requires a projection onto S. We rewrite (51) by completing
the square (add η

2
‖θt‖2

2):

wt ∈ arg min
w∈S

1

2η
‖w − ηθt‖2

2 = ΠS(ηθt), (55)

which is a Euclidean projection of ηθt onto set S. This is called a lazy projection
since θt still accumulates unprojected gradients, and we only project when we need
to obtain a weight vector wt for prediction. This is also known as Nesterov’s dual
averaging algorithm.

• Regularizers in online and batch learning

– It’s worth pausing to examine the difference in the way regularization enters online
learning versus batch learning, with which you’re probably more familiar.

– In batch learning (e.g., in training an SVM or ridge regression), one typically seeks
to optimize a function which is the sum of the training loss plus the regularizer.
Notably, the regularizer is part of the objective function.

– In online learning here, our objective in some sense is the regret, which makes no
mention of the regularizer. The regularizer lies purely inside the learner’s head,
and is used to defines the updates. In our example so far, the regularizer (in the
context of FTRL) gives birth to the online gradient algorithm in (54).

• Now we will analyze the regret FTRL for quadratic regularizers and linear losses.

• Theorem 1 (regret of FTRL)

– Let S ⊆ Rd be a convex set (of weight vectors).

– Let f1, . . . , fT be any sequence of linear loss functions: ft(w) = w · zt for some
zt ∈ Rd.

– Let ψ(w) = 1
2η
‖w‖2

2 be a quadratic regularizer for any η > 0.
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– Then the regret of FTRL (as defined in Algorithm 3) with respect to any u ∈ S
is as follows:

Regret(u) ≤ 1

2η
‖u‖2

2 +
η

2

T∑
t=1

‖zt‖2
2. (56)

• Interpretation: the step size η allows us to trade off two terms:

– First term: “bias” due to regularization. To compete with u, the learner’s iterates
wt must somehow get close to u. Smaller η means more regularization (remember
wt = ηθt), which means it’s harder to get there.

– Second term: “variance” due to changing zt. A smaller η means that successive
weight vectors are closer and thus stabler (recall wt+1−wt = −ηzt). With a small
η, we can hope to avoid the bad scenario in Example 7.

• FIGURE: [ellipse with u at edge, draw iterates wt trying to reach u]

• Corollary:

– To make the bound look cleaner:

∗ Let ‖zt‖2 ≤ L.

∗ Let ‖u‖2 ≤ B for all experts u ∈ S.

Now (56) can be rewritten as:

Regret(u) ≤ B2

2η
+
ηTL2

2
. (57)

– Side calculation:

∗ Suppose we want to minimize some function with the following form: C(η) =
a/η + bη.

∗ Take the derivative: −a/η2 + b = 0, resulting in η =
√
a/b and C(η) = 2

√
ab,

which is just twice the geometric average of a and b.

– Letting a = B2/2 and b = TL2/2, we get η = B
L
√
T

and

Regret ≤ BL
√
T . (58)

Note that the average regret goes to zero as desired, even though not as fast as
for quadratic functions (log T ).

• Proof of weakened version of Theorem 1
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– We will prove Theorem 1 later using Bregman divergences, but just to give some
intuition without requiring too much technical machinery, we will instead prove
a slightly weaker result (note that the second term is looser by a factor of 2):

Regret(u) ≤ 1

2η
‖u‖2

2 + η

T∑
t=1

‖zt‖2
2. (59)

– The key idea is to reduce FTRL to FTL. Observe that FTRL is the same as FTL
where the first function is the regularizer.

– Let us then apply Lemma 1 to the sequence of functions ψ, f1, . . . , fT (when
applying the theorem, note that the indices are shifted by 1). This results in the
bound:

[ψ(w0)− ψ(u)] +
T∑
t=1

[ft(wt)− ft(u)] ≤ [ψ(w0)− ψ(w1)] +
T∑
t=1

[ft(wt)− ft(wt+1)].

(60)

– Canceling ψ(w0), noting that ψ(w1) ≥ 0, and rearranging, we get:

Regret(u)
def
=

T∑
t=1

[ft(wt)− ft(u)] ≤ 1

2η
‖u‖2

2 +
T∑
t=1

[ft(wt)− ft(wt+1)]. (61)

– Now let’s bound one term of the RHS sum:

ft(wt)− ft(wt+1) = zt · (wt − wt+1) [since ft(w) = w · zt] (62)

≤ ‖zt‖2‖wt − wt+1‖2 [Cauchy-Schwartz] (63)

= ‖zt‖2‖ΠS(ηθt)− ΠS(ηθt+1)‖2 [since wt = ΠS(ηθt)] (64)

≤ ‖zt‖2‖ηθt − ηθt+1‖2 [projection decreases distance] (65)

= η‖zt‖2
2 [since θt+1 = θt − zt]. (66)

Plugging this bound back into (61) completes the proof.

2.6 Online subgradient descent (OGD) (Lecture 3)

• So far, we have proven regret bounds for FTRL with linear loss functions. However,
many loss functions we care about in practice (e.g., squared loss, hinge loss) are not
linear.

• Even if did derive a regret for FTRL with more general losses, there would still be a
computational problem: FTRL (see (49)) requires minimizing over all the loss functions
seen so far, which in general is computationally impractical, especially for an online
learning algorithm. For linear loss functions, on the other hand, we could optimize wt
easily by maintaining θt as a “sufficient statistics” (by linearity).
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• Our strategy to handling general losses efficiently is by appealing to the linear ma-
chinery we already have. The key idea is to run FTRL on a linear approximation of
ft.

• What linear approximation w 7→ w · zt should we use? Let’s use the subgradient of ft
at the current weights wt: take any zt ∈ ∂ft(wt). Just to highlight the simplicity of
the algorithm, here it is:

• Algorithm 4 (Online subgradient descent (OGD))

– Let w1 = 0.

– For iteration t = 1, . . . , T :

∗ Predict wt and receive ft.

∗ Take any subgradient zt ∈ ∂ft(wt).
∗ If S = Rd, perform the update:

wt+1 = wt − ηzt. (67)

∗ If S ⊆ Rd, project cumulative gradients onto S:

wt+1 = ΠS(ηθt+1), θt+1 = θt − zt. (68)

• To emphasize: OGD on ft is nothing more than FTRL on quadratic regularizers and
linear subgradient approximations of ft.

• Analyzing regret

– From our earlier analysis of FTRL (Theorem 1), we already have a bound on the
regret on the linearized losses:

T∑
t=1

[wt · zt − u · zt]. (69)

– We are interested on controlling the actual regret with respect to ft:

T∑
t=1

[ft(wt)− f(u)]. (70)

– How do we relate these two? Here’s where convexity comes in a crucial way.

– Since zt ∈ ∂ft(wt) is a subgradient, we have by the definition of subgradient:

ft(u) ≥ ft(wt) + zt · (u− wt). (71)

Rearranging, we get a direct comparison for each term of the regret:

ft(wt)− ft(u) ≤ (wt · zt)− (u · zt). (72)
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– The upshot is that the bounds we got for linear losses apply without modification
to general losses! Intuitively, linear functions are the hardest to optimize using
online convex optimization.

– FIGURE: [draw convex ft with linearized]

• Remarks:

– OGD works for any convex loss function ft (so does FTRL, but we only analyzed
it for linear losses).

– OGD is in some sense the first practical, non-toy algorithm we’ve developed.

– Gradient-based methods are most commonly thought of as a procedure for opti-
mizing a global objective, but this analysis provides a different perspective: that
of doing full minimization of linearized losses with quadratic regularization.

– The minimization viewpoint opens way to many other algorithms, all of which
can be thought of as using different regularizers or using better approximations
of the loss functions, while maintaining efficient parameter updates.

• Example 8 (Online SVM)

– Let us use our result on OGD to derive a regret bound for learning SVMs in an
online manner.

– We will just apply OGD on the hinge loss for classification (xt ∈ Rd, yt ∈
{+1,−1}):

ft(w) = max{0, 1− yt(w · xt)}. (73)

The algorithm (assume S = Rd, so we don’t need to project):

∗ If yt(wt · xt) ≥ 1 (classify correctly with margin 1): do nothing.3

∗ Else: wt+1 = wt + ηytxt.

– Analysis:

∗ Assume the data points are bounded: ‖xt‖2 ≤ L. Then zt ∈ ∂ft(wt) also
satisfies that bound ‖zt‖2 ≤ L.

∗ Assume that expert weights are bounded: ‖u‖2 ≤ B.

∗ The regret bound from Theorem 1 is as follows:

Regret ≤ BL
√
T . (74)

• Example 9 (Learning with expert advice)

3This algorithm is very similar to the Perceptron algorithm; the only difference is that Perceptron just
requires any positive margin, not necessarily 1.
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– Now let us consider learning with expert advice.

∗ We maintain a distribution wt ∈ ∆d over d experts and predict by sampling
an expert from that distribution.

∗ Assume the zero-one loss: `(yt, pt) = I[yt 6= pt].

∗ The loss function is linear: ft(wt) = wt · zt, where

zt = [`(yt, h1(xt)), · · · , `(yt, hd(xt))] ∈ {0, 1}d (75)

is the loss vector.

– Bound on set of experts (B): the experts live in the simplex S = ∆d, which has
its 2-norm bounded by B = 1 (attained at a corner).

– Bound on loss gradient (L):

∗ The Lipschitz constant is bounded by the norm of the gradient zt, which is
at most

√
d.

∗ Therefore, the regret bound we get is

Regret ≤ BL
√
T =

√
dT . (76)

– Note that we are depending on the square root of the number of experts d rather
than the log of the number of experts in our first online learning bound for learn-
ing with expert advice. Can we obtain a log d dependence without assuming
realizability? We will find out in the next section.
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[begin lecture 4] (4)

2.7 Online mirror descent (OMD) (Lecture 4)

So far, we have analyzed FTRL for quadratic regularizers, which leads to (lazy projected)
gradient-based algorithms. Quadratic regularization is imposing a certain prior knowledge,
namely that there is a good parameter vector w in a small L2 ball. But perhaps we know
some dimensions to be more important than others. Then we might want to use a non-
spherical regularizer. Or in the case of learning with expert advice, we know that w ∈ ∆d

(a probability distribution), so negative entropy might be more appropriate. In this section,
we will develop a general way of obtaining regret bounds for general regularizers, and make
explicit the glorious role that strong convexity plays. We make make extensive use of Fenchel
duality and Bregman divergences.

• The goal for this lecture is to analyze FTRL (Algorithm 3) for arbitrary convex loss
functions and regularizers. The resulting algorithm is this:

• Algorithm 5 (online mirror descent (OMD))

– Let ψ : Rd → R be the regularizer (this defines the learner).

– Let f1, . . . , fT be the sequence of loss functions played by nature.

– On each iteration t = 1, . . . , T , the learner chooses weights wt to minimize the
regularized (linearized) loss:

wt ∈ arg min
w∈Rd
{ψ(w)− w · θt}, (77)

where zt ∈ ∂ft(wt) is the t-th subgradient, and θt = −
∑t−1

i=1 zi is the negative sum
of the first t− 1 subgradients.

• Technical note: we will let the domain of weight vectors be unconstrained (S = Rd).
We can always fold a constraint into the regularizer by setting ψ(w) =∞ if w violates
the constraint.

• To recap the terminology:

– OMD on ft is equivalent to FTRL on the linearizations w 7→ w · zt.
– OGD is OMD with the quadratic regularizer ψ(w) = 1

2η
‖w‖2

2

• Examples of regularizers:

– Quadratic regularizer: ψ(w) = 1
2η
‖w‖2

2.

– Non-spherical quadratic regularizer: ψ(w) = 1
2η
w>Aw for A � 0.
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– Entropic regularizer: ψ(w) = 1
η

∑d
j=1wj logwj if w ∈ ∆d (this is the negative

entropy defined on the probability simplex), and ∞ otherwise.

– Note: the difference between the two regularizers is that the entropic regularizer
slopes up violently when w approaches the boundary of the simplex ∆d (the
function value is finite but the gradient goes to infinity).

• We now need to build up some tools to help us analyze OMD. First, we introduce
Fenchel duality, an important tool in optimization:

– Definition 4 (Fenchel conjugate)

∗ The Fenchel conjugate4 of a function (not necessarily convex) ψ : Rd → R
is

ψ∗(θ)
def
= sup

w∈Rd
{w · θ − ψ(w)}. (78)

– Intuition

∗ For scalars w, θ ∈ R, given a fixed θ (interpreted as a slope), −ψ∗(θ) is the
position where the supporting hyperplane of ψ with slope θ hits the vertical
axis.

· FIGURE: [draw ψ]

∗ One can think of sweeping θ and reading out ψ∗(θ); this information in some
sense encodes the epigraph of ψ if ψ is convex.

– Useful facts:

∗ ψ∗ is always convex (even if ψ is not), since it’s just a supremum over a
collection of linear functions θ 7→ w · θ − ψ(w).

∗ ψ∗(θ) ≥ w · θ − ψ(w) for all w ∈ Rd (Fenchel-Young inequality). This
follows directly from the definition of ψ∗.

∗ If r(w) = aψ(w) with a > 0, then r∗(θ) = aψ∗(θ/a). This is useful because
once we’ve computed the Fenchel conjugate for one function, we know it for
different scalings. In fact, Fenchel duality has a very nice algebra that makes
computing Fenchel conjugates modular.

∗ ψ∗∗ = ψ iff ψ is convex (and lower semi-continuous). In this case, we have

ψ(w) = ψ∗∗(w) = sup
θ∈Rd
{w · θ − ψ∗(θ)}. (79)

∗ If ψ is differentiable, then

∇ψ∗(θ) = arg max
w∈Rd
{w · θ − ψ(w)}. (80)

This is because the gradient of the supremum of a collection of functions at
θ is the gradient of the function that attains the max at θ.

4Also known as the convex conjugate or Legendre-Fenchel transformation.
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– Mirroring

∗ Comparing this with the the OMD update (77), we see that wt = ∇ψ∗(θt),
and −ψ∗(θt) is the corresponding value of the regularized loss.

∗ Since wt attains the supremum of the Fenchel conjugate ψ∗, the optimality
conditions (differentiate with respect to w) tell us that θt = ∇ψ(wt).

∗ We have a one-to-one mapping between weights w and negative cumulative
subgradients θ, linked via the gradients of ψ and ψ∗, which are inverses of
one another:

wt = ∇ψ∗(θt), θt = ∇ψ(wt). (81)

∗ This provides a very elegant view of what online mirror descent is doing.
OMD takes a series of gradient updates θt+1 = θt−zt, generating θ1, θ2, . . . , θT .
These steps are mirrored via Fenchel duality in the sequence w1, w2, . . . , wT .

∗ FIGURE: [mapping]

– Example 10 (Quadratic regularizer)

∗ Let ψ(w) = 1
2η
‖w‖2

2.

∗ Then ψ∗(θ) = η
2
‖θ‖2

2, attained by w = ∇ψ∗(θ) = ηθ.

∗ In this case, w and θ are simple rescalings of each other.

– Example 11 (Entropic regularizer)

∗ Let ψ(w) = 1
η

∑d
j=1 wj logwj for w ∈ ∆d (negative entropy).

∗ Then ψ∗(θ) = 1
η

log
(∑d

j=1 e
ηθj

)
(log partition function), attained by wj =

∇ψ∗(θ) = eηθj∑d
k=1 e

ηθk
.

∗ Aside: this is maximum entropy duality in exponential families, where w
and θ represent the mean and canonical parametrization of a multinomial
distribution.

2.8 Regret bounds with Bregman divergences (Lecture 4)

• Motivation

– Having reinterpreted OMD as a mapping using a conjugate function, let’s turn
to proving a regret bound. Recall that in order to prove bounds, we needed to
ensure that wt and wt+1 don’t change too much according to some criteria.

– For quadratic regularization, this criteria was based on Euclidean distance.

– We now generalize this by using Bregman divergences, which generalizes the no-
tion of distance based on the regularizer.

– Definition 5 (Bregman divergence)
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∗ Let f be a continuously-differentiable convex function.

∗ The Bregman divergence between w and u is the difference at w between
f and a linear approximation around u:

Df (w‖u)
def
= f(w)− f(u)−∇f(u) · (w − u). (82)

∗ Intuitively, the divergence captures the the error of the linear approximation
of f based on the gradient ∇f(u).

∗ FIGURE: [show gap between f and its linear approximation]

– Property: Df (w‖u) ≥ 0 (by definition of convexity).

– Note: Bregman divergences are not symmetric and therefore not a distance metric.

– Example 12 (Quadratic regularizer)

∗ Let f(w) = 1
2
‖w‖2

2.

∗ Then Df (w‖u) = 1
2
‖w − u‖2

2 (squared Euclidean distance).

– Example 13 (Entropic regularizer)

∗ Let f(w) =
∑d

j=1wj logwj for w ∈ ∆d (negative entropy).

∗ Then Df (w‖u) = KL (w‖u) =
∑

j wj log(wj/uj) for w ∈ ∆d (KL divergence).

– Property (scaling): Daf (w‖u) = aDf (w‖u).

• Theorem 2 (regret of OMD using Bregman divergences)

– OMD (Algorithm 5) obtains the following regret bound:

Regret(u) ≤ [ψ(u)− ψ(w1)] +
T∑
t=1

Dψ∗(θt+1‖θt). (83)

– Furthermore, if all ft’s are linear, the inequality is actually an equality if u is the
best expert. So this bound is pretty air tight.

• Proof of Theorem 2:

– We assume all the loss functions are linear; recall in our analysis of OGD that
linear functions are the worst case.

– The key step is to find a potential function which allows us to monitor progress.
The pivoting quantity is ψ∗(θT+1), the negative regularized loss of the best fixed
expert. This will allow us to relate the learner (wt) to the expert (u).

– Recall:

∗ Learner’s loss is
∑T

t=1 wt · zt.
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∗ Expert’s loss is
∑T

t=1 u · zt.
∗ The regret is the difference between the two.

– The expert:

ψ∗(θT+1) ≥ u · θT+1 − ψ(u) (84)

=
T∑
t=1

[−u · zt]− ψ(u) (85)

by the Fenchel-Young inequality. Note that we have equality if u is the best
expert, by definition of ψ∗.

– The learner:

ψ∗(θT+1) = ψ∗(θ1) +
T∑
t=1

[ψ∗(θt+1)− ψ∗(θt)] [telescoping sums] (86)

= ψ∗(θ1) +
T∑
t=1

[∇ψ∗(θt) · (θt+1 − θt) +Dψ∗(θt+1‖θt)] [Bregman definition]

(87)

= ψ∗(θ1) +
T∑
t=1

[−wt · zt +Dψ∗(θt+1‖θt)] [definition of OMD (81) and θt].

(88)

Note that ψ∗(θ1) = −ψ(w1) since θ1 = 0.

– Combining last equations for the expert and learner and rearranging yields the
result.

– The regret bound (83) is a generalization of (56), where ψ(w) = 1
2η
‖w‖2

2 is

quadratic regularizer, and Dψ∗(θt+1‖θt) = η
2
‖zt‖2

2.

– However, a general Bregman divergence usually doesn’t have such a nice form,
and thus it is useful to bound it using a nicer quantity: a norm of some kind.

2.9 Strong convexity and smoothness (Lecture 4)

• First, let’s review some intuition behind norms.

– Lp norms decrease as p increases:

‖w‖1 ≥ ‖w‖2 ≥ ‖w‖∞. (89)

– The difference between the norms can be huge. For example, take w = (1, . . . , 1) ∈
Rd. Then ‖w‖1 = d, ‖w‖2 =

√
d, ‖w‖∞ = 1.
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– Recall that the dual norm of a norm ‖ · ‖ is

‖x‖∗ = sup
‖y‖≤1

(x · y). (90)

Thinking of y as a linear operator on x, the dual norm measures the gain when
we measure perturbations in x using ‖ · ‖.

– The norms ‖ · ‖p and ‖ · ‖q are dual to each other when 1
p

+ 1
q

= 1. Two common
examples are:

‖ · ‖1 is dual to ‖ · ‖∞. (91)

‖ · ‖2 is dual to ‖ · ‖2. (92)

• We will now use these squared norms to control Bregman divergences provided the
Bregman divergences have an important special structure called strong convexity :

• Definition 6 (strong convexity/smoothness)

– A function f is α-strongly convex with respect to a norm ‖ · ‖ iff for all w, u:

Df (w‖u) ≥ α

2
‖w − u‖2. (93)

– A function f is α-strongly smooth with respect to a norm ‖ · ‖ iff for all w, u:

Df (w‖u) ≤ α

2
‖w − u‖2. (94)

• Intuitions

– Strong convexity means that f must be growing at least quadratically.

– Strong smoothness means that f must be growing slower than some quadratic
function.

– Example: the quadratic regularizer ψ(w) = 1
2
‖w‖2

2 is both 1-strongly convex and
1-strongly smooth with respect to the L2 norm, since Dψ(w‖u) = 1

2
‖w − u‖2

2.

• Duality links strong convexity and strong smoothness, as the following result shows.

• Lemma 2 (strong convexity and strong smoothness)

– The following two statements are equivalent:

∗ ψ(w) is 1/η-strongly convex with respect to a norm ‖ · ‖.
∗ ψ∗(θ) is η-strongly smooth with respect to the dual norm ‖ · ‖∗.

– Sanity check the quadratic regularizer: ψ(w) = 1
2η
‖w‖2

2 and ψ∗(θ) = η
2
‖θ‖2

2.
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• With these tools, we can finally make some progress on our regret bound from Theo-
rem 2, rewriting the Bregman divergences in terms of norms.

• Theorem 3 (regret of OMD using norms)

– Suppose ψ is a 1
η
-strongly convex regularizer.

– Then the regret of online mirror descent is

Regret(u) ≤ [ψ(u)− ψ(w1)] +
η

2

T∑
t=1

‖zt‖2
∗. (95)

• Proof of Theorem 3

– By Lemma 2, since ψ is 1/η-strongly convex, the Fenchel conjugate ψ∗ is η-
strongly smooth.

– By definition of strong smoothness and the fact that θt+1 = θt − zt,

Dψ∗(θt+1‖θt) ≤
η

2
‖zt‖2

∗. (96)

– Plugging this bound into (83) gives us the result.

• Remarks:

– If we plug in the quadratic regularizer ψ(w) = 1
2η
‖w‖2

2, then we get back the

original result (56).

– However, (95) generalizes to other regularizers.

– We get to measure the size of zt using the dual norm ‖ · ‖∗ rather than the default
L2 norm, which will help us get tighter bounds for the learning from expert advice
problem.

• Learning form expert advice

– Let’s now use our tools to improve the regret bound that we got for learning from
expert advice.

– Recall that when we used the quadratic regularizer, we got a regret bound of
√
dT

because ‖zt‖2 could be as big as
√
d.

– To reduce this, let’s just use another norm: ‖zt‖∞ ≤ 1; no dependence on d!

– But this means that the regularizer ψ has to be strongly convex with respect to
the L1 norm, but this is harder because ‖ · ‖1 ≥ ‖ · ‖2.
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– Failure: the quadratic regularizer ψ(w) = 1
2
‖w‖2

2 is only 1
d
-strongly convex with

respect to the L1 norm:

Dψ(w‖u) ≥ 1

2
‖w − u‖2

2 ≥
1

2d
‖w − u‖2

1. (97)

Sanity check: ‖(1, . . . , 1)‖2
2 = d but ‖(1, . . . , 1)‖2

1 = d2. So if we try to use this in
the regret bound, we get 1

2η
+ Tηd

2
, which is still

√
dT (for optimal η).

– Failure: the L1 regularizer ψ(w) = ‖w‖1 is neither strongly convex nor strongly
smooth with respect to the any norm for any α: it doesn’t grow fast enough for
large w and grows too fast for small w.

– Success: entropic regularizer ψ(w) = 1
η

∑
j wj logwj for w ∈ ∆d is 1/η-strongly

convex with respect to the L1 norm. This requires some algebra and an application
of Cauchy-Schwartz (see Example 2.5 in Shai Shalev-Shwartz’s online learning
tutorial).

– FIGURE: [compare quadratic and entropic regularizer for d = 2]

• Example 14 (exponentiated gradient (EG))

– Entropic regularizer: ψ(w) = 1
η

∑d
j=1wj logwj for w ∈ ∆d.

– Recall ψ∗(θ) = 1
η

log
∑d

j=1 e
ηθj and ∇ψ∗j (θ) = eηθj∑d

k=1 e
ηθk

.

– OMD updates:

wt,j ∝ eηθt,j . (98)

The equivalent recursive formula:

wt+1,j ∝ wt,je
−ηzt,j . (99)

Interpretation: we maintain a distribution over the d experts. We use the gradient
zt to reweight the experts, normalizing afterwards to ensure a proper distribution.

– Recap: the exponentiated gradient (EG) algorithm is just online mirror descent
using the entropic regularizer.

• Example 15 (EG for learning with expert advice)

– Consider learning with expert advice (Example 5).

– We use the expected zero-one loss: ft(w) = w · zt, where zt is the loss vector.

– We have that the dual norm of the gradients are bounded ‖zt‖∞ ≤ 1.

– The minimum and maximum values of the regularizer:

∗ maxw ψ(w) = 0 (minimum entropy)
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∗ minw ψ(w) = log(1/d)
η

= − log d
η

(maximum entropy)

– Then

Regret =
log(d)

η
+
ηT

2
. (100)

– Setting η =
√

2 log d
T

yields:

Regret =
√

2 log(d)T . (101)

• To compare with quadratic regularization (OGD):

– Quadratic: [maxu ψ(u)−minu ψ(u)] ≤ 1
2η

, ‖zt‖2 ≤
√
d

– Entropic: [maxu ψ(u)−minu ψ(u)] ≤ log d
η

, ‖zt‖∞ ≤ 1

• Discussion

– Online mirror descent (OMD) allows us to use different regularizers based on our
prior knowledge about the expert vector u and the data zt. As we see with EG,
tailoring the regularizer can lead to better bounds. (this is too loose by a factor
of
√
d because we know u lives in the simplex, which is than the L2 ball).

– Using the L2 norm means that we use the bound ‖zt‖2 ≤
√
d. To get rid of the

dependence on d here, we use the L∞ norm with ‖zt‖∞ ≤ 1.

– However, this means that ψ must be strongly convex with respect to the L1

norm. The quadratic regularizer isn’t strong enough (only 1
dη

-strongly convex

with respect to L2), so we need the entropic regularizer, which is 1-strongly convex
with respect to L1.

– Curvature hurts us because [ψ(u)−ψ(w1)] is now larger, but the simplex is small,
so [ψ(u)−ψ(w1)] only grows from 1 (with the quadratic regularizer) to log d (with
the entropic regularizer).

– So the tradeoff was definitely to our advantage.
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[begin lecture 5] (5)

2.10 Local norms (Lecture 5)

• Recall that that the general online mirror descent (OMD) analysis (Theorem 2) yields:

Regret(u) ≤ [ψ(u)− ψ(w1)] +
T∑
t=1

Dψ∗(θt+1‖θt). (102)

Using the fact that ψ is 1/η-strongly convex with respect to some norm ‖ · ‖, we can
upper bound the Bregman divergence by the following (95):

Dψ∗(θt+1‖θt) ≤
η

2
‖zt‖2

∗. (103)

• If we use the entropic regularizer for ψ with norm ‖ · ‖ = ‖ · ‖1 and dual norm ‖ · ‖∗ =
‖ · ‖∞, we get our key

√
2 log(d)T regret bound for EG.

• In this section, we will use the local norms technique to improve (103). This will allow
us to do two things:

– Recover the strong O(log d) bound for the realizable setting.

– Allow us to analyze the multi-armed bandit setting.

• Why we should do better:

– Consider an example where there are two experts: one which is perfect (zt,1 = 0
for all t) and one which is horrible (zt,2 = 1 for all t).

– The EG algorithm will quickly downweight the bad expert exponentially fast:

wt,1 ∝ 1 wt,2 ∝ e−η(t−1). (104)

– So as t→∞, we have basically put all our weight on the first expert, and should
be suffering no loss.

– But ‖zt‖2
∞ = 1, so in the regret bound we still pay ηT

2
, which is simply a travesty.

– We would hope that ‖zt‖2
∞ = max1≤j≤d z

2
t,j should be replaced with something

that is sensitive to how much weight we’re placing on it, which is wt,j. Indeed the
following theorem fulfills this dream:

• Theorem 4 (exponentiated gradient (analysis using local norms))

– Assume nature plays a sequence of linear loss functions ft(w) = w · zt, where
zt,j ≥ 0 for all t = 1, . . . , T and j = 1, . . . , d.

41



– Then the exponentiated gradient (EG) algorithm (Example 15) achieves the fol-
lowing regret bound:

Regret(u) ≤ [ψ(u)− ψ(w1)] + η
T∑
t=1

d∑
j=1

wt,jz
2
t,j. (105)

• This bound (105) is better than the bound in Theorem 3 because we are taking an
average (with respect to the distribution wt ∈ ∆d) instead of a max:

d∑
j=1

wt,jz
2
t,j ≤ max

1≤j≤d
z2
t,j

def
= ‖zt‖2

∞. (106)

This allows some components of the loss subgradients zt,j to be large provided that the
corresponding weights wt,j are small.

• Example 16 (exponentiated gradient in the realizable setting)

– Assume the loss vector is bounded: zt ∈ [0, 1]d.

– Assume there exists an expert u ∈ ∆d with zero cumulative loss (realizability).

– Recall the regret bound from using local norms:

Regret(u)
def
=

T∑
t=1

(wt · zt)−
T∑
t=1

(u · zt)︸ ︷︷ ︸
=0

≤ log d

η
+ η

T∑
t=1

d∑
j=1

wt,jz
2
t,j︸ ︷︷ ︸

≤wt·zt

(107)

.

– Note that
∑d

j=1wt,jz
2
t,j ≤ wt·zt, because all quantities are non-negative and a2 ≤ a

for a ∈ [0, 1].

– Rearranging, we get:

Regret(u) ≤ log d

η(1− η)
. (108)

– Minimize the bound with η = 1
2

to obtain:

Regret(u) ≤ 4 log d. (109)

– Recall that the majority algorithm (which aggressively zeros out the weights of
components as soon as they err) also obtained the very low O(log d) regret (see
Example 3), so it’s really nice to see that EG obtains the same regret guarantee.
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– If the problem isn’t realizable, the majority algorithm isn’t even correct (it will
eliminate all the experts), whereas EG will gracefully fall back to O(

√
log(d)T )

regret.

• Now that you are hopefully somewhat convinced that the theorem is useful, let’s prove
it.

• Proof of Theorem 4:

– This proof mostly involves starting with the Bregman divergence, and perform-
ing some low-level algebraic manipulation. Perhaps the most useful high-level
take-away is whenever we’re trying to massage some expression with log’s and
exp’s, it’s useful to try to approximate the functions using linear and quadratic
approximations (think Taylor approximations).

– Specifically, we will use the following two facts:

∗ Fact 1: e−a ≤ 1− a+ a2 for a ≥ 0 (this actually holds for smaller a, but let’s
keep it simple)

∗ Fact 2: log(1− a) ≤ −a
– Recall the Fenchel conjugate of the entropic regularizer is the log-partition func-

tion:

ψ∗(θ) =
1

η
log

d∑
j=1

eηθj . (110)

– By the definition of Bregman divergences (this was used in the proof of Theo-
rem 2), we have:

Dψ∗(θt+1‖θt) = ψ∗(θt+1)− ψ∗(θt)−∇ψ∗(θt)︸ ︷︷ ︸
wt

· (θt+1 − θt)︸ ︷︷ ︸
−zt

. (111)
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– The rest is just applying the two facts and watching stuff cancel:

Dψ∗(θt+1‖θt) = ψ∗(θt+1)− ψ∗(θt) + wt · zt (112)

=
1

η
log

(∑d
j=1 e

ηθt+1,j∑d
j=1 e

ηθt,j

)
+ wt · zt [definition of ψ∗] (113)

=
1

η
log

(
d∑
j=1

wt,je
−ηzt,j

)
+ wt · zt [definition of θt] (114)

≤ 1

η
log

(
d∑
j=1

wt,j[1− (ηzt,j − η2z2
t,j)]

)
+ wt · zt [fact 1] (115)

=
1

η
log

(
1−

d∑
j=1

wt,j(ηzt,j − η2z2
t,j)

)
+ wt · zt [wt ∈ ∆d] (116)

≤ 1

η

d∑
j=1

wt,j(−ηzt,j + η2z2
t,j) + wt · zt [fact 2] (117)

= η
d∑
j=1

wt,jz
2
t,j [algebra]. (118)

2.11 Multi-armed bandits (Lecture 5)

• In online learning with expert advice, on each iteration, after we choose one of the d
experts/actions, nature reveals the loss vector zt for every single action.

• However, in many applications such as clinical trials or advertisement placement,
packet routing, we only get to observe the loss of the action we took, not the losses of
the actions we didn’t take.

• This setting is known as the multi-armed bandit problem, which is a type of online
learning problem with partial feedback.

• This problem is much more difficult. Intuitively, the learner should choose actions
that we expect to yield low loss, but it must choose which actions to explore to get
more information about the losses. Thus, the multi-armed bandit problem exposes the
challenges of the classic exploration/exploitation tradeoff.5

• Setup

– FIGURE: [matrix with loss functions]

– There are d possible actions (corresponding to the arms of a row of slot machines).

5 Reinforcement learning requires managing the exploration/exploitation tradeoff, but is even more diffi-
cult because actions take the learner between different states in a way that is unknown to the learner.
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– Let zt ∈ [0, 1]d denote the vector of losses of the d actions at iteration t.

– For each iteration t = 1, . . . , T :

∗ Learner chooses a distribution wt ∈ ∆d over actions, and samples an action
at ∼ wt.

∗ Learner observes the loss of only that particular action zt,at and no others.

– The expected regret with respect to an expert u ∈ ∆d is defined in the same way
as it was for online learning with expert advice:

E[Regret(u)] =
T∑
t=1

[wt · zt − u · zt]. (119)

Note that taking the max over randomized experts u ∈ ∆d is equivalent to taking
the max over single actions a ∈ [d], since the maximum over a linear function is
attained at one of the vertices.

• Estimating the loss vector

– Recall that in online learning, we would observe the entire loss vector zt. In that
case, we could use the exponentiated gradient (EG) algorithm (wt+1,j ∝ wt,je

−ηzt,j)

to obtain a regret bound of Regret ≤
√

2 log(d)T (see Example 15).

– In the bandit setting, we don’t observe zt, so what can we do? Let’s try to estimate
it with some ẑt that (i) we can observe and (ii) is equal to zt in expectation
(unbiased) in that for all a = 1, . . . , d:

Eat∼wt [ẑt,a | wt] = zt,a. (120)

– Given these two constraints, it’s not hard to see that the only choice for ẑt is:

ẑt,a =

{
zt,a
wt,a

if a = at

0 otherwise.
(121)

Note that dividing wt,a compensates for sampling at ∼ wt.

• Algorithm 6 (Bandit-EG)

– Run EG with the unbiased esimate ẑt rather than zt. Really, that’s it.

• Theorem 5 (Bandit-EG analysis)

– Bandit-EG obtains expected regret (expectation taken over learner’s randomness)
of

E[Regret(u)] ≤ 2
√
d log(d)T . (122)
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• Comparison of Bandit-EG (bandit setting) and EG (online learning setting):

– Compared with the bound for EG in the full information online learning setting
(101), we see that this bound (122) is worse by a factor of

√
d.

– In other words, the number of iterations T for Bandit-EG needs to be d times
larger in order to obtain the same average regret as EG.

– This is intuitive since in the bandit setting, each iteration reveals (1/d)-th the
amount of information compared with the online learning setting.

• Proof of Theorem 5:

– If EG is run with the unbiased estimate ẑt (zt = E[ẑt | wt]), then the expected
regret is simply:

E[Regret(u)] ≤ log d

η
+ η

T∑
t=1

Eat∼wt

[
d∑
a=1

wt,aẑ
2
t,a | wt

]
. (123)

Note that the random variable ẑt only depends on the previous actions through
the random variable wt.

– So now, we just have to compute the expected local norm:

Eat∼wt

[
d∑
a=1

wt,aẑ
2
t,a | wt

]
=

d∑
a=1

w2
t,a

(
z2
t,a

w2
t,a

)
≤ d, (124)

since zt ∈ [0, 1]d.

– Note that it is crucial that we use local norms here; the generic bound (95) of
‖zt‖2

∞ is not good enough because ‖zt‖∞ is unbounded.

– Minimizing the regret bound with respect to η, we get 2
√
d log(d)T with η =√

log(d)/(dT ).

• Note that we have only gotten results in expectation (over randomness of the learner
at ∼ wt). To get high probability results, we also need to control the variance of ẑt. To
do this, we modify the EG algorithm by smoothing wt with the uniform distribution
over actions. This results in the standard Exp3 algorithm.

2.12 Online-to-batch conversion (Lecture 5)

• So far, we have been focusing on the online setting, where the learner receives one
example at a time and is asked to make a prediction on each one. Good online learners
have low regret.

• Sometimes it is more natural to operate in the batch setting, where the learner gets
a set of training examples, learns a model, and then is asked to predict on new test
examples. Good batch learners have low generalization error.
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• In this section, we will show that low regret implies low generalization error by explicitly
reducing the online setting to the batch setting.

• Batch setting

– Assume we have a unknown data-generating distribution p∗(z), where we use
z = (x, y) ∈ Z to denote an input-output pair.

– Assume our hypothesis class is a convex set of weight vectors S ⊆ Rd.

– As in online learning, we define a convex loss function `(z, w) ∈ R; for example,
the squared loss for linear regression would be `((x, y), w) = (w · x− y)2. Assume
`(z, w) is convex in w for each z ∈ Z.

– The generalization error of a weight vector w ∈ S is defined as follows:

L(w) = Ez∼p∗ [`(z, w)]. (125)

– Define the weight vector that minimizes the generalization error:

w∗ ∈ arg min
w∈S

L(w). (126)

– The batch learner gets T i.i.d. training examples (z1, . . . , zT ), where each zt ∼ p∗.
The goal is to output some estimate w ∈ S that hopefully has low L(w).

Assuming we have an online learner as a black box, we will construct a batch learner
as follows:

• Algorithm 7 (online-to-batch conversion)

– Input: T training examples z1, . . . , zT .

– Iterate t = 1, . . . , T :

∗ Receive wt from the online learner.

∗ Send loss function ft(w) = `(zt, w) to the online learner.

– Return the average of the weight vectors: w̄ = 1
T

∑T
t=1 wt.

• Remarks about randomness

– In contrast to the online learning (adversarial) setting, many of the quantities we
are working with now have distributions associated with them.

– For example, ft is a random function that depends on zt.

– Each wt is a random variable which depends on (i.e., is in the sigma-algebra of)
z1:t−1.

– Note that L(w∗) is not random.
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• Theorem 6 (Online-to-batch conversion)

– Recall the usual definition of regret (which depends on z1:T ):

Regret(u) =
T∑
t=1

[ft(wt)− ft(u)]. (127)

– Online-to-batch conversion obtains the following expected generalization error:

E[L(w̄)] ≤ L(w∗) +
E[Regret(w∗)]

T
. (128)

• Interpretation: the expected generalization error of the online-to-batch conversion L(w̄)
is bounded by the best possible generalization error (attained by w∗ ∈ S) plus the
online regret.

• Note that E[L(w̄)] has two expectations here: the E[·] is an expectation over possible
training datasets, and L contains an expectation over test examples.

• Proof:

– The first key insight is that ft(wt) provides an unbiased estimate of the general-
ization error of wt.

E[ft(wt) | wt] = L(wt). (129)

This is true because all the examples are independent, so wt (deterministic func-
tion of z1:t−1) is independent of ft (deterministic function of zt).

– The second key insight is that averaging can only reduce loss. Since `(z, ·) is
convex, and an average of convex functions is convex, L is convex. By Jensen’s
inequality:

L(w̄) ≤ 1

T

T∑
t=1

L(wt). (130)

– Now, the rest is just putting the pieces together. Putting (130) and (129) together:

L(w̄) ≤ 1

T

T∑
t=1

E[ft(wt) | wt]. (131)

Adding and subtracting L(w∗) to the RHS, noting that L(w∗) = E[ft(w
∗)]:

L(w̄) ≤ L(w∗) +
1

T

T∑
t=1

(E[ft(wt) | wt]− E[ft(w
∗)]). (132)
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– Taking expectations on both sides:

E[L(w̄)] ≤ L(w∗) +
1

T

T∑
t=1

(E[ft(wt)− ft(w∗)]). (133)

– The second term of the RHS is upper bounded by the regret, so we have:

E[L(w̄)] ≤ L(w∗) +
E[Regret(w∗)]

T
. (134)

• Remarks

– If you run online subgradient descent once over your training data,6 you should
expect O(

√
T ) regret by our previous analyses.

– The resulting average weight vector will, in expectation,7 have a generalization
error which is within O(1/

√
T ) of the best weight vector.

– If the batch learner returns the last weight vector wT+1, then our analysis above
doesn’t apply.

– In general, averaging is a useful concept for stabilizing learning algorithms.

2.13 Summary (Lecture 5)

• This concludes our tour of online learning.

• Our measure of success is getting low regret, the difference between the learner’s
cumulative losses and the best fixed expert’s cumulative losses. In particular, we hope
for sublinear regret: Regret = o(T ).

• Without no additional assumptions (even with two experts), any deterministic algo-
rithm must have Regret = Ω(T ) (fail).

• In the realizable setting (some expert is perfect), the majority algorithm achieves
O(log d) regret (constant in T ).

• We started with the follow the leader (FTL), and saw that it worked for quadratic
loss functions (Regret = O(log T )), but failed for linear loss functions (Regret = Ω(T )).

• Inspecting the regret bounds reveals that in order to get low regret, we need to have a
stable learner, in the sense that wt and wt+1 should be close (according to some notion
of proximity).

6In practice, it helps to run the online learning algorithm multiple times over the training data.
7You can get high probability bounds too, but we won’t discuss those here.
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• This motivated us to look at follow the regularized leader (FTRL), where we add
a quadratic regularizer, which gave us a regret bound with two terms: (i) a bias-like
term (value of regularizer applied to the best expert) and (ii) a variance-like term
(sum of the norm of the subgradients). Balancing the two by controlling the amount
of regularization (inverse step size) yields Regret = O(

√
T ).

• If our loss functions were non-linear, we could linearize using the subgradient. Cou-
pled with a quadratic regularizer, we get the online subgradient descent (OGD)
algorithm. We also showed that it suffices to analyze linear functions, since they result
in the most regret.

• We looked at learning with expert advice, and got regret bounds of O(
√
dT ), where d

is the number of experts. Inspired by the logarithmic dependence on d in the majority
algorithm, this motivated us to consider different regularizers.

• The general algorithm that deals with different regularizers is online mirror descent
(OMD). We analyzed this algorithm using Fenchel duality and Bregman divergences,
which allowed us to look at arbitrary regularizers through the lens of the mapping
between wt and θt. Specializing to learning with expert advice, we get a O(

√
log(d)T )

regret bound with the entropic regularizer, resulting in the exponentiated gradient
(EG) algorithm.

• By exploiting properties of exponentiated gradient, we can perform a refined analysis
again using local norms to achieve stronger results, matching the O(log d) regret in
the realizable setting.

• In the bandit setting with partial feedback, we get O(
√
d log(d)T ) regret again using

local norms to control the size of the now unbounded subgradients.

• Finally, we showed that learners with low regret in the online setting directly lead to
learners with low generalization error in the batch setting via an online-to-batch
conversion.

2.14 References

• Shalev-Shwartz, 2012: Online Learning and Online Convex Optimization (survey pa-
per)

– This is a nice introduction to online learning, on which much of these online
learning notes are based.
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[begin lecture 6] (6)

3 Uniform convergence

3.1 Motivation (Lecture 6)

• In online learning, training and testing were intertwined: the learner receives and
is evaluated on a fresh example, but then is able to immediately train on that new
example before proceeding to the next example.

• In the batch setting (which is the more standard one in machine learning), the training
and testing phases are distinct: the learner gets a training set and outputs a hypothesis
(from some fixed hypothesis class) to be judged on how well it generalizes to fresh test
examples.

• As a learning algorithm gets increasingly more training data, one would expect it
to perform better, and maybe eventually even do as well the best hypothesis in our
hypothesis class. How do we formalize this?

• Our main object of study is the empirical risk minimizer, which corresponds to
the hypothesis from a class with the lowest training error. This is the batch learning
analogue of the follow the leader (FTL) algorithm from online learning.

• We measure the quality of a hypothesis by its generalization error, the expected
loss of a hypothesis on a new test example. In online learning, we already saw that we
could bound the expected generalization error of online gradient descent using online-
to-batch conversion. This section will allow us to derive high probability bounds as
well as more general results for hypothesis classes without relying on convexity.

• The generalization error of the empirical risk minimizer can be quite a complicated
random variable depending on the training data. As we’ll see later, our approach for
studying generalization error is based on uniform convergence. In the process, we
will develop some fairly general machinery from probability theory; these tools are more
broadly applicable outside machine learning. These techniques are mathematically
quite involved, so make sure you have a good understanding of probability!

• In summary, the central question is:

Why does minimizing training error reduce test error?

The answer is not obvious for the training error and test error are two separate quan-
tities which can in general be arbitrarily far apart. This deep question is at the core
of statistical learning theory, and answering it reveals what it means to learn.
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3.2 Formal setup (Lecture 6)

• In this section, we formalize the (batch) supervised learning setting. Much of what we
will do also works for unsupervised learning, but we will describe it in the context of
supervised learning to provide intuition.

• Consider the problem of predicting an output y ∈ Y given an input x ∈ X . Example:
X = Rd, Y = {−1,+1}.

• Let H be a set of hypotheses (i.e. experts). Usually, each h ∈ H maps X to Y .
Example: H = {x 7→ sign(w · x) : w ∈ Rd} is all thresholded linear functions.

• Let ` : (X × Y) ×H → R be a loss function. Example: `((x, y), h) = I[y 6= h(x)] is
the zero-one loss.

• Let p∗ denote the true underlying data-generating distribution over input-output pairs
X × Y . This underlying distribution is the crucial piece that distinguishes batch
learning from the online learning, in which we assumed that data could be generated
adversarially.

• Definition 7 (generalization error (expected risk))

– Let L(h) be the generalization error (also known as the expected risk) of a
hypothesis h ∈ H, which is the loss that h incurs on a new test example (x, y) in
expectation:

L(h)
def
= E(x,y)∼p∗ [`((x, y), h)]. (135)

Getting low generalization error is in some sense the definition of successful learn-
ing.

– Define an expected risk minimizer h∗ to be any hypothesis that minimizes the
expected risk:

h∗ ∈ arg min
h∈H

L(h). (136)

This is the thing that we can only aspire to. L(h∗) is the lowest possible gen-
eralization error (which might be large if the learning problem is noisy or your
hypothesis class is too small).

• To do learning, we are given n training examples, which are a set of input-output
pairs:

(x(1), y(1)), . . . , (x(n), y(n)), (137)

where each (x(i), y(i)) is drawn i.i.d. from p∗.
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– Note: the training and test distributions are the same. While this assumption
often doesn’t hold exactly in practice, the training and test distributions morally
have to be related somehow, or else there’s no hope that what we learned from
training would be useful at test time.8

– Note: the i.i.d. assumption, which also doesn’t hold exactly in practice, ensures
that more training data gives us more information (or else we would get the same
training example over and over again, which would be useless).9

• Definition 8 (training error (empirical risk))

– Let L̂(h) be the training error (also known as empirical risk) of a hypothesis
h ∈ H as the average loss over the training examples:

L̂(h)
def
=

1

n

n∑
i=1

`((x(i), y(i)), h). (138)

Note that for a fixed h, L̂(h) is just an empirical average with mean L(h). This
is key.

– Define an empirical risk minimizer (ERM) be any hypothesis that minimizes
the empirical risk:

ĥ ∈ arg min
h∈H

L̂(h). (139)

• Let us pause a moment to remember what are the random variables and what the
independence assumptions are: ĥ is a random variable that depends the training ex-
amples (in a rather complicated way), but h∗ is non-random. The training error L̂(h)
is a random variable for each h, but the generalization error L(h) is non-random.

• Recall that we are interested in the generalization error of the ERM:

L(ĥ). (140)

As in the online learning setting, we will not study this quantity directly, but rather
look at its difference with a baseline. There are two questions we can ask:

– How does training and generalization error relate?

L(ĥ)︸︷︷︸
generalization error of ERM

− L̂(ĥ)︸︷︷︸
training error of ERM

. (141)

8 If the two distributions are different but still related somehow, not all hope is lost; dealing with this
discrepancy is called domain adaptation.

9 Pure i.i.d. is not necessary, but certainly some amount of independence is necessary.
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– How well is ERM doing with respect to the best in the hypothesis class?

L(ĥ)︸︷︷︸
generalization error of ERM

− L(h∗)︸ ︷︷ ︸
lowest generalization error

. (142)

This is know as as the excess risk, which is the batch analogue of the regret in
the online learning setting.

• How do we analyze the excess risk? The excess risk is a random quantity that depends
on the training examples (through ĥ). It is possible that the excess risk is high even
for large n (for instance, if we just happened to see the same example over and over
again). So we can’t deterministically bound the excess risk.

• Fortunately, we can show that bad outcomes are not too likely. We will prove bounds
of the following flavor: With probability at least 1−δ, the excess risk is upper bounded
by some ε (L(ĥ)− L(h∗) ≤ ε), where ε is generally a function that depends on δ (and
other aspects of the learning problem). More formally, the types of statements we’d
like to show can be written compactly as:

P[L(ĥ)− L(h∗) > ε] ≤ δ. (143)

Note that the randomness in the probability is over draws of the n training examples:
(x(1), y(1)), . . . , (x(n), y(n)) ∼ p∗.

• It is important to note that there are two sources of randomness at play here:

– Generalization error (upper bounded by ε) is defined with respect to randomness
over the test example.

– Confidence (lower bounded by 1− δ) is defined with respect to randomness over
the training examples.

• Probably Approximately Correct (PAC) framework [Leslie Valiant, 1984]

– A learning algorithm A PAC learns H if for any distribution p∗ over X ×Y , ε > 0,
δ > 0, A (which takes as input n training examples along with ε and δ), returns
ĥ ∈ H such that with probability at least 1− δ, L(ĥ)− L(h∗) ≤ ε, and A runs in
poly(n, size(x), 1/ε, 1/δ) time.

– Remark: time complexity upper bounds sample complexity, because you have
to go through all the data points. In this class, we will not focus so much on
the computational aspect in our presentation, but just work with the ERM, and
assume that it can be optimized efficiently (even though that’s not true for general
non-convex losses).

– The ideas in PAC learning actually predate Valiant and were studied in the field
of empirical process theory, but Valiant and others focused more on more combi-
natorial problems with computation in mind.
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3.3 Realizable finite hypothesis classes (Lecture 6)

• So far, we have presented a framework that is very general, and in fact, so general, that
we can’t say anything. So we need to make some assumptions. Ideally, the assumptions
would be both realistic (not too strong) but still allow us to prove something interesting
(not too weak).

• In this section, we will start with an easy case, where we have a finite number of
hypotheses, at least one of which has zero generalization error (the outcome will be
analogous to the analysis of the majority algorithm in the online learning setting).
These assumptions are as formalized as follows:

• Assumption 2 (finite hypothesis space)

– Assume H is finite.

• Assumption 3 (realizable)

– Assume there exists a hypothesis h∗ ∈ H that obtains zero generalization error,
that is:

L(h∗) = E(x,y)∼p∗ [`((x, y), h∗)] = 0. (144)

• Theorem 7 (realizable finite hypothesis class)

– Let H be a hypothesis class, where each hypothesis h ∈ H maps some X to Y .

– Let ` be the zero-one loss: `((x, y), h) = I[y 6= h(x)].

– Let p∗ be any distribution over X × Y .

– Assume Assumptions 2 and 3 hold.

– Let ĥ be the empirical risk minimizer.

– Then the following two equivalent statements hold (each has a different interpre-
tation depending on what we’re interested in):

∗ Interpretation 1: what is the error after training on n examples (generalization
error)? Answer: with probability at least 1− δ,

L(ĥ) ≤ log |H|+ log(1/δ)

n
. (145)

Usually, think of log(1/δ) as a constant (e.g., δ = 0.01, then log(1/δ) u 4.6),
so the

L(ĥ)︸︷︷︸
generalization error

= O


complexity︷ ︸︸ ︷
log |H|
n︸︷︷︸

number of training examples

 (146)
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∗ Interpretation 2: how many examples n (sample complexity) do I need to
obtain generalization error at most ε with confidence at least 1− δ? Answer:
With probability at least 1− δ:

n ≥ log |H|+ log(1/δ)

ε
⇒ L(ĥ) ≤ ε. (147)

• Remarks

– Statisticians generally talk about error, and computer scienists like to talk about
sample complexity. But they’re just two sides of the same coin.

– In this case, the excess risk behaves as O(1/n), which is known as a “fast” rate
(analogous to O(1/T ) average regret). This is because we’ve assumed realizability:
as soon as h makes even a single mistake on a training example, we can throw it
away.

– In online-to-batch conversions, we only proved generalization bounds for convex
losses in expectation; here, we are getting a high probability bound, which is
much stronger.

– The excess risk only grows logarithmically with |H|, so we can use pretty big
hypothesis classes.

– Note that our result is independent of p∗(x, y). This is known as a distribution-
free result, which is great, because typically we don’t know what p∗ is.

• Proof of Theorem 7

– FIGURE: [a row of hypotheses, sorted by increasing L(h)]

– We’d like to upper bound the probability of the bad event that L(ĥ) > ε.

– Let B ⊆ H be the set of bad hypotheses h: B = {h ∈ H : L(h) > ε}. We can
rewrite our goal as upper bounding the probability of selecting a bad hypothesis:

P[L(ĥ) > ε] = P[ĥ ∈ B]. (148)

– Recall that the empirical risk of the ERM is always zero (L̂(ĥ) = 0) because at
least L̂(h∗) = L(h∗) = 0. So if we selected a bad hypothesis (ĥ ∈ B), then some
bad hypothesis must have zero empirical risk:

P[ĥ ∈ B] ≤ P[∃h ∈ B : L̂(h) = 0]. (149)

– We now get to the heart of the argument, which consists of two steps.

– Step 1: bound P[L̂(h) = 0] for a fixed h ∈ B.

∗ On each example, hypothesis h does not err with probability 1− L(h).
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∗ Since the training examples are i.i.d. and the fact that L(h) > ε for h ∈ B:

P[L̂(h) = 0] = (1− L(h))n ≤ (1− ε)n ≤ e−εn, (150)

where the last step follows since 1− a ≤ e−a.

∗ Remark: this probability decreases exponentially with n, which is impor-
tant.

– Step 2: show that step 1 holds simultaneously for all h ∈ B:

∗ We apply the union bound to bound the probability of the event for any
h ∈ B:

P
[
∃h ∈ B : L̂(h) = 0

]
≤
∑
h∈B

P[L̂(h) = 0]. (151)

∗ The rest is straightforward:∑
h∈B

P[L̂(h) = 0] ≤ |B|e−εn (152)

≤ |H|e−εn (153)

def
= δ. (154)

– Taking logs of the last equality and rearranging:

ε =
log |H|+ log(1/δ)

n
. (155)

The theorem follows by substuting this expression for δ.

3.4 Generalization bounds via uniform convergence (Lecture 6)

• The proof of Theorem 7 is elementary but illustrates an important pattern that will
recur again in more complex scenarios. At a high level, we are interested in expected
risk L, but only have access to empirical risk L̂ to choose the ERM ĥ. In the proof,
we saw two steps:

– Step 1 (convergence): For a fixed h, show that L̂(h) is close to L(h) with high
probability. In the above proof, this meant showing that if L(h) > ε, then L̂(h) =
0 is unlikely.

– Step 2 (uniform convergence): Show that the above holds simultaneously for all
hypotheses h ∈ H. In the above proof, this meant using a union bound.

The difference between convergence and uniform convergence is absolutely crucial. It is
important to note that ĥ is a random variable that depends on the training examples,
so L̂(ĥ) is not just a sum of i.i.d. variables, so step 1 does not apply directly.
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• Theorem 7 also made two restrictive assumptions.

– First, there exists a perfect hypothesis (realizability). What happens when the
problem is not realizable (all hypotheses make some error)? To answer this, we
consider the general problem of convergence of random variables using concen-
tration inequalities.

– Second, the hypothesis class is finite. What happens when the number of hy-
potheses is infinite? We can’t just apply a union bound any more. To answer
this, we need to have more suitable ways of measuring the “size” of a set other
than cardinality. This leads to Rademacher complexity, VC dimension, and
covering numbers as ways for measuring the “size” of an infinite set from the
point of view of the loss function.

• Breaking free of these restrictive assumptions, we will show how bounding generaliza-
tion error can be reduced to one of uniform convergence. Recall that our goal is to
bound the excess risk, the amount by which ERM’s generalization error exceeds the
lowest possible generalization error:

P[L(ĥ)− L(h∗) ≥ ε] ≤ δ. (156)

Note that the difference between ≥ and > isn’t important here, and it will be more
convenient to use ≥.

• FIGURE: [plot L̂ and L]

• Let us first relate generalization errors to training errors, since that’s what the ERM
is defined in terms of:

L(ĥ)− L(h∗) = [L(ĥ)− L̂(ĥ)]︸ ︷︷ ︸
concentration

+ [L̂(ĥ)− L̂(h∗)]︸ ︷︷ ︸
≤0

+ [L̂(h∗)− L(h∗)]︸ ︷︷ ︸
concentration

. (157)

• The second term is non-positive by definition of the empirical risk minimizer.

• The third term involves a comparison of L̂(h∗) and L(h∗). If we expand things, we
realize that this is just a question of the difference between an average of n i.i.d. random
variables and its mean:

L̂(h∗) =
1

n

n∑
i=1

`((x(i), y(i)), h∗), L(h∗) = E(x,y)∼p∗ [`((x, y), h∗)]. (158)

We’ll see how concentration inequalities can be used to control this difference.

• What about the first term? The same reasoning doesn’t apply because ĥ depends on
the training examples, and so L̂(ĥ) is not a sum of i.i.d. random variables! We’ll need
something something more sophisticated: uniform convergence. Suppose we could
ensure that L̂(h) and L(h) were close (say within ε

2
) for all h ∈ H. Then, we could be

ensure that L̂(ĥ) and L(ĥ) were within ε
2
, as well as L̂(h∗) and L(h∗).
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• The contrapositive can be written formally as:

P[L(ĥ)− L(h∗) ≥ ε] ≤ P
[
sup
h∈H
|L(h)− L̂(h)| ≥ ε

2

]
. (159)

On the LHS is a statement about excess risk, and on the RHS is a statement about
uniform convergence. The RHS is the probability of the event that the largest difference
between the empirical and expected risk is at least ε

2
, or equivalently, the event that

this difference exceeds ε
2

for at least one h ∈ H.

• Note: the classic example of uniform convergence is the Glivenko-Cantelli theorem (also
called the uniform law of large numbers), for estimating distribution functions. Given
x1, . . . , xn drawn i.i.d. from some distribution with cumulative distribution function
(CDF) F (x), we can form the empirical CDF Fn(x) = 1

n

∑n
i=1 I[x ≤ xi]. One can ask

for the convergence of the CDF function in the uniform norm:

‖Fn − F‖∞
def
= sup

x∈R
|Fn(x)− F (x)| P−→ 0. (160)

What we will be studying is a generalization of (160), where we have arbitrary hy-
potheses h ∈ H rather than x ∈ R.

• Note: if we look at the difference between L̂ and L, we can construct something called
an empirical process:

{Gn(h)}h∈H, Gn
def
=
√
n(L̂(h)− L(h)), (161)

which is a stochastic process (collection of random variables indexed by h ∈ H). Em-
pirical process theory focuses on studying empirical processes. We know that for a
given h ∈ H, Gn(h) converges to a normal distribution by the central limit theorem.
We can think about Gn converging to a Gaussian process G with covariance function

Cov(G(h), G(h′)) = E[`(z, h)`(z, h′)]. (162)

This stochastic process viewpoint allows one to talk not just about the supremum
suph∈HGn(h), but also get distributional results, which is useful for computing con-
fidence intervals. This is outside the scope of the class; for additional information,
Pollard has an excellent book on this.
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[begin lecture 7] (7)

3.5 Concentration inequalities (Lecture 7)

• Concentration inequalities are a very powerful set of techniques from probability theory
that shows that an appropriate combination of independent random variables will
concentrate around its expectation. From the point of view of learning theory, the
random variables of interest are the losses of hypotheses on training examples.

• Mean estimation

– Let X1, . . . , Xn be i.i.d. real-valued random variables with mean µ
def
= E[X1]

– Define the empirical mean as follows:

µ̂n
def
=

1

n

n∑
i=1

Xi (163)

– Question: how does µ̂n relate to µ?

– Examples

∗ Xi is the height of the i-th person sampled from some population.

∗ Xi is the loss of a fixed hypothesis h ∈ H on the i-th example.

• FIGURE: [µ with distribution over µ̂n]

• Types of statements

– Consistency: by the law of large numbers,

µ̂n − µ
P−→ 0, (164)

where
P−→ denotes convergence in probability.10 Consistency assures us that as we

get more data (n →∞), we will approach the correct answer, but it doesn’t tell
us how quickly.

– Asymptotic normality: Letting Var[X1] = σ2, by the central limit theorem,

√
n(µ̂n − µ)

d−→ N (0, σ2), (165)

where
d−→ denotes convergence in distribution.11 Asymptotic normality says that

if n is large enough, then µ̂n−µ behaves as σ√
n
), where the variance is decreasing

at a rate of 1/n. But this result is only asymptotic, it doesn’t tell us anything
precise for a particular value of n (say, n = 10).

10Convergence in probability: For each ε > 0, P[|µ̂n − µ| ≥ ε]→ 0 as n→∞.
11Convergence in distribution: For each t, P[

√
n(µ̂n−µ)
σ ≤ t]→ Φ(t) as n→∞, where Φ is the cumulative

distribution of the standard Gaussian distribution.
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– Tail bounds: Ideally, we want a statement of the following form:

P[|µ̂n − µ| ≥ ε] ≤ SomeFunction(n, ε) = δ. (166)

Based on the Gaussian approximation, we expect that the bounding function on
the RHS would decay double exponentially in ε and exponentially in n. We shall
see shortly that this intuition is indeed true. In the context of learning theory, ε
would be the bound on the difference between empirical and expected risks, and
1− δ would be the confidence.

– Note: of course, as we sweep ε from 0 to∞ and look at how much probability mass
is past ε, we get a complete picture of the full distribution. However, typically
tail bounds are simple upper bounds which are often loose and only become more
reliable for small ε.

• Our starting point is Markov’s inequality, a very simple tool that allows us to control
the deviation of a non-negative random variable from its mean using the expectation
of that random variable. In short, it turns expectations (which are easier to work with)
into tail probabilities (what we want).

• Theorem 8 (Markov’s inequality)

– Let Z ≥ 0 be a random variable.

– Then

P[Z ≥ t] ≤ E[Z]

t
. (167)

• Proof:

– Since Z is non-negative, we have tI[Z ≥ t] ≤ Z.

– Taking expectations on both sides and rearranging completes the proof.

• Remarks

– We can apply Z = (X−µ)2 (second moment) and t = ε2 to obtain Chebyshev’s
inequality:

P[|X − µ| ≥ ε] ≤ Var(X)

ε2
. (168)

Applying the inequality to the average over i.i.d. variables (µ̂n = 1
n

∑n
i=1 Xi),

then Var(µ̂n) = Var(X1)
n

. This is a very weak result, because the tail probability is
decaying only at at polynomial rate (1/n).

– To get stronger bounds, we need to apply Markov’s inequality on higher order
moments. In particular, we will look at all moments by considering Z = etX ,
where t is a free parameter we will use later to optimize the bound. “All the
moments” is captured by the moment generating function:
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• Definition 9 (moment generating function)

– For a random variable X, the moment generating function (MGF) of X is:

MX(t)
def
= E[etX ]. (169)

• One useful way to think about the MGF is in terms of its Taylor expansion:

MX(t) = 1 + tE[X] +
t2

2
E[X2] +

t3

6
E[X3] + · · · . (170)

• The moment generating function receives its name because the k-th derivative evalu-
ated at t = 0 yield the k-th moment (assuming we can swap integration and differen-
tiation):

dkMX(t)

dtk
|t=0 = E[Xk]. (171)

• One important property is that the MGF of a sum of independent random variables
is simply the product of the MGFs. If X1 and X2 are independent random variables,
then we have:

MX1+X2(t) = MX1(t)MX2(t). (172)

The distribution over X1 +X2 can be computed using a convolution, which is typically
cumbersome, but MGFs (like Fourier transforms) turn convolutions into products.

• Applying Markov’s inequality to Z = etX , we get that

P[X ≥ ε] ≤ MX(t)

etε
for all t > 0. (173)

We can apply this to the case of sample means (X = µ̂n) by computing P[µ̂n ≥ ε] =
P[X1 + · · ·+Xn ≥ nε]. We get that all t > 0:

P[µ̂n ≥ ε] ≤
(
MX1(t)

etε

)n
. (174)

– Provided that
MX1

(t)

etε
< 1, getting n independent samples means that our tail

probability will decrease exponentially. This is key.

– Why should we expect this to happen? If E[X1] = 0, then the dominant term
in the Taylor expansion of MX1(t) (170) is O(t2), which grows slower than O(t)
(what is in the demoniator of (174), so we can always choose t small enough such
that the ratio is strictly less than 1.
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– Note that MX1(t) could be infinite for some t, in which case the bounds are
vacuous. In this class, we will work with distributions X such that MX1(t) < ∞
for all t > 0.

• Now let’s actually compute the MGF of some probability distributions of interest. The
Gaussian distribution is a natural place to start, as we will see.

• Example 17 (MGF of Gaussian variables)

– Let X ∼ N (0, σ2).

– Then MX(t) = eσ
2t2/2 .

– Derivation (by completing the square):

MX(t) = E[etX ] =

∫
(2πσ2)−

1
2 exp

(
x2 − 2σ2tx

−2σ2

)
dx (175)

=

∫
(2πσ2)−

1
2 exp

(
(x− σ2t)2 − σ4t2

−2σ2

)
dx (176)

= exp

(
σ2t2

2

)
. (177)

• Lemma 3 (Tail bound for Gaussian variables)

– Having control on the Gaussian MGF, we can now derive a tail bound by plugging
the form of the MGF into (173). This yields:

P[X ≥ ε] ≤ inf
t

exp

(
σ2t2

2
− tε

)
. (178)

The infimum on the RHS is attained by setting t = ε/σ2, yielding:

P[X ≥ ε] ≤ exp

(
−ε2

2σ2

)
. (179)

• What about non-Gaussian variables? Note that the bounds would still hold if we
replaced MX(t) with an upper bound. This motivates the following definition:

• Definition 10 (sub-Gaussian)

– A mean-zero random variable X is sub-Gaussian with parameter σ2 if its mo-
ment generating function is bounded as follows:

MX(t)≤ exp

(
σ2t2

2

)
. (180)
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– It follows immediately by analogy with (179) that:

P[X ≥ ε] ≤ exp

(
−ε2

2σ2

)
. (181)

• Examples

– Gaussian random variables: If X ∼ N (0, σ2), then X is sub-Gaussian with pa-
rameter σ2 (trivial). Note that the sub-Gaussian parameter and the variance
coincide in this case, but this is not true in general.

– Bounded random variables (Hoeffding’s lemma): If a ≤ X ≤ b with probability
1 and E[X] = 0, then X is sub-Gaussian with parameter (b− a)2/4.

∗ Intuition (not a proof): in the Gaussian case, the sub-Gaussian parameter
was the variance. Suppose a = −b. Then the variance of X is b2 = (b−a)2/4,
the sub-Gaussian parameter givn by the lemma. In general, the variance is
at most the sub-Gaussian parameter.

– Non-examples: exponential and Gamma variables, since these distributions have
tails which are too fat, decaying exponentially rather than double exponentially.12

• Properties

– Sum: If X1 and X2 are independent sub-Gaussian variables with parameters σ2
1

and σ2
2, respectively, then X1 +X2 is sub-Gaussian with parameter σ2

1 + σ2
2.

– Multiplication by a constant: if X is sub-Gaussian with parameter σ2, then for
any c > 0, cX is sub-Gaussian with parameter c2σ2.

– Not surprisingly, these properties coincide with those of Gaussians.

– Note that the product of two sub-Gaussian variables is in general not sub-Gaussian.

• Given the machinery thus far, we can easily obtain the following classic tail bound for
bounded random variables:

• Theorem 9 (Hoeffding’s inequality)

– Let X1, . . . , Xn be independent random variables.

– Assume each Xi is bounded: ai ≤ Xi ≤ bi.

– Let µ̂n = 1
n

∑n
i=1Xi be the sample mean.

– Then

P[µ̂n ≥ E[µ̂n] + ε] ≤ exp

(
−2n2ε2∑n

i=1(bi − ai)2

)
. (182)

12These variables have moment generating functions which are defined not for all t but only small t. These
are known as sub-exponential variables.
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– Special case (ai = −B, bi = +B):

P[µ̂n ≥ E[µ̂n] + ε] ≤ exp

(
−nε2

2B2

)
. (183)

• Proof of Theorem 9:

– Using compositional properties of sub-Gaussian, µ̂n−E[µ̂n] is sub-Gaussian with

parameter 1
n2

∑n
i=1

(bi−ai)2
4

.

– Apply (181).

• Summary so far

– We’ve shown that Gaussian and bounded random variables are sub-Gaussian and
enjoy sharp tail bounds.

– Furthermore, if we have an average of n independent sub-Gaussian variables, then
the bound simply gets powered up by n.

• Next, we will show a generalization of Hoeffding’s inequality, where we want to bound
not the average of X1, . . . , Xn, but any function on X1, . . . , Xn satisfying an appropriate
bounded differences condition. After all, learning algorithms do more complex things
than taking averages.

• Theorem 10 (McDiarmid’s inequality (bounded differences inequality))

– Let f be a function satisfying the following bounded differences condition:

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci (184)

for all i = 1, . . . , n and all x1, . . . , xn, x
′
i. Intuition: modifying one coordinate

doesn’t change the function value too much.

– Let X1, . . . , Xn be independent random variables.

– Then

P[f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ ε] ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
. (185)

• Remarks

– McDiarmid’s inequality generalizes Hoeffding’s inequality as follows. Define the
function f(x1, . . . , xn) = 1

n

∑n
i=1 xi, where each xi satisfies ai ≤ xi ≤ bi. Then f

satisfies the bounded differences condition with ci = 1
n
(bi − ai). Substituting this

value of ci recovers Hoeffding’s inequality exactly.
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– This result is quite powerful, as it holds for any independent random variables,
and f could be quite complex (e.g., fitting a neural network). As long as the
function isn’t too sensitive to perturbations in one of its arguments, we get good
concentration.

– The proof is not difficult, but it requires introducing martingales, which generalize
partial sums of independent random variables.

• Definition 11 (martingale)

– A sequence of random variables Z0, Z1, . . . , Zn is a martingale sequence with
respect to another sequence of random variables X1, . . . , Xn iff Zi is a function of
X1:i, E[|Zi|] <∞, and

E[Zi | X1:i−1] = Zi−1. (186)

– Define Di
def
= Zi − Zi−1. We call D1:n a martingale difference sequence with

respect to X1:n. Another way to write (186) is

E[Di | X1:i−1] = 0. (187)

• Examples

– Random walk: Z0 = 0, Zi = Zi−1 + 1 with probability 1
2

and Zi = Zi−1 − 1 with
probability 1

2
. This is just a sum of i.i.d. random variables.

– Random walk with absorbing state: same as above but Zi = Zi−1 if Zi−1 = 42.

• Intuitions

– Given X1:i−1 (the past), the expected value of Zi is the same as Zi−1 (i.e., can’t
predict the future).

– Think of D1:n as a generalization of an i.i.d. sequence.

• Recall that we showed that sums of independent sub-Gaussian variables are sub-
Gaussian. The exact same result holds for martingales, as shown in the following
lemma:

• Lemma 4 (sub-Gaussian martingales)

– Let Z0, Z1, . . . , Zn be a martingale with respect to X1, . . . , Xn.

– Suppose that each difference Di = Zi − Zi−1 is conditionally sub-Gaussian with
parameter σ2

i , that is:

E[etDi | X1:i−1] ≤ exp(σ2
i t

2/2). (188)
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– Then Zn − Z0 =
∑n

i=1 Di is sub-Gaussian with parameter σ2 def
=
∑n

i=1 σ
2
i .

• Proof of Lemma 4

– This proof is straightforward by induction on n:

E[exp(t(Zn − Z0))] = E[exp(tDn) exp(t(Zn−1 − Z0))] (189)

= E[E[exp(tDn) exp(t(Zn−1 − Z0)) | X1:n−1]] (190)

≤ exp(σ2
nt

2/2)E[exp(t(Zn−1 − Z0))] (191)

≤ exp

(
n∑
i=1

σ2
i t

2/2

)
. (192)

– The key is that conditioned on X1:i−1, Di is just a sub-Gaussian variable and
Zi−1−Z0 is just a constant. The last inequality follows by repeating the argument
recursively.

• Proof of Theorem 10 (McDiarmid’s inequality)

– We construct a particular type of martingle called Doob martingale:

Zi = E[f(X1, . . . , Xn) | X1:i]. (193)

Note the extremes: Z0 = E[f(X1, . . . , Xn)] and Zn = f(X1, . . . , Xn). Using this
terminology, we are interested in bounding P[Zn − Z0 ≥ ε].

– Now let’s study Di = Zi − Zi−1. Both Zi and Zi−1 condition on X1:i−1 and take
expectations over Xi+1:n. The only difference is in the treatment of Xi. Therefore
we would Di is contained in some interval of length ci

– To make this precise, define the lower and upper bounds:

Li = inf
x
E[f(X1:n) | X1:i−1, Xi = x]− E[f(X1:n) | X1:i−1], (194)

Ui = sup
x

E[f(X1:n) | X1:i−1, Xi = x]− E[f(X1:n) | X1:i−1]. (195)

Note that Li ≤ Di ≤ Ui.

– Let xL and xU correspond to the x’s achieving Li and Ui, respectively. By the
bounded differences assumption,

f(X1:i−1, xU , Xi+1)− f(X1:i−1, xL, Xi+1) ≤ ci. (196)

By independence of the Xi’s, the distribution over Xi+1:n is the same no matter
on whether we condition on Xi = xL or Xi = xU . Therefore, we can take an
expectation over Xi+1:n to get that

Ui − Li = E[f(X1:i−1, xU , Xi+1) | X1:i−1, Xi = xU ] (197)

− E[f(X1:i−1, xL, Xi+1) | X1:i−1, Xi = xL] ≤ ci. (198)

This means that Di ∈ [Li, Ui] is sub-Gaussian with parameter c2
i /4 conditioned

on X1:i−1.
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– Applying Lemma 4, we have that Zn−Z0 is sub-Gaussian with parameter
∑n

i=1 c
2
i /4.

Finally, apply the sub-Gaussian tail inequality (181).
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3.6 Finite hypothesis classes (Lecture 8)

• Theorem 11 (finite hypothesis class)

– Let H be a hypothesis class, where each hypothesis h ∈ H maps X to Y .

– Let ` be the zero-one loss: `((x, y), h) = I[y 6= h(x)].

– Assume Assumption 2 holds.

– Let ĥ be the empirical risk minimizer.

– Then with probability at least 1− δ,

L(ĥ)− L(h∗) ≤
√

2(log |H|+ log(2/δ))

n
= O

(√
log |H|
n

)
. (199)

• Proof of Theorem 11:

– The high-level strategy is to use Hoeffding’s inequality to show convergence of a
fixed hypothesis h ∈ H and then a union bound to get uniform convergence.

– Step 1 (convergence)

∗ For a fixed h ∈ H, note that L̂(h) is an empirical average over n i.i.d. loss
terms (bounded in [0, 1]) with expectation L(h). Therefore, by Hoeffding’s
inequality,

P[L̂(h)− L(h) ≥ ε] ≤ exp
(
−2nε2

)
. (200)

∗ To bound the absolute value, we apply the bound again on the negative loss
and combine using the union bound:

P[|L̂(h)− L(h)| ≥ ε] ≤ 2 exp
(
−2nε2

)
. (201)

– Step 2 (uniform convergence).

∗ Since H is finite, we can apply the union bound over |H| hypotheses, obtain-
ing:

P
[
sup
h∈H
|L̂(h)− L(h)| ≥ ε

2

]
≤ |H| · 2 exp

(
−2n

( ε
2

)2
)

def
= δ. (202)

Note that we substituted ε
2

for ε, which is needed by the generalization bound
(159).

∗ Rearranging completes the proof.
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• Comparison with the realizable case (145):

– We still have logarthmic dependence on |H| and 1/δ.

– The main difference is that the realizable bound had a 1
n

rate, whereas when
there is noise, we now get a 1√

n
rate. This rate difference should be reminiscent of

the situation in online learning, where we got O( log T
T

) and O( 1√
T

) average regret
with and without a perfect expert, respectively. Of course the batch setting is
different from the online setting: we have i.i.d. assumptions on the data but no
assumptions of convexity on the loss.

3.7 Rademacher complexity (Lecture 8)

• So far, we’ve relied on concentration inequalities (Hoeffding’s inequality) along with
the union bound to derive generalization bounds via uniform convergence. However, we
can’t directly apply the union bound to infinite hypothesis classes (set of all linear clas-
sifiers). We need a more sophisticated way to measure the complexity of a hypothesis
class. In this section, we will develop such a framework known as Rademacher com-
plexity, which has many nice properties and connects to other measures of complexity
such as VC dimension and covering numbers.

• We will arrive at Rademacher complexity by deriving generalization bounds. Specifi-
cally, we carry out the following steps:

– Step 1: Define a random variable Gn (maximum difference between expected and
empirical risk).

– Step 2: Show that it concentrates to E[Gn] using McDiarmid’s inequality.

– Step 3: Use a technique called symmetrization to bound the expectation using
a quantity known as the Rademacher complexity.

• Step 1 (setup)

– Consider the largest difference between the expected and the empirical risk over
all possible hypotheses:

Gn
def
= sup

h∈H
L(h)− L̂(h). (203)

Here, Gn is a random variable that depends on the data points Z1, . . . , Zn. An
upper bound on Gn would ensure that if you observed empirical risk L̂(ĥ), the
expected risk L(ĥ) will not be much higher.

– In order to bound the excess risk (159), we actually need to also bound G′n defined
analogously for the negative loss `′(z, h) = −`(z, h), so that

P[L(ĥ)− L(h∗) ≥ ε] ≤ P
[
Gn ≥

ε

2

]
+ P

[
G′n ≥

ε

2

]
. (204)
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Usually, the tail bound for Gn is the same as for G′n, as we’ll see later.

• Step 2 (concentration): convert tail bound into an expectation

– Let g be the deterministic function such that Gn = g(Z1, . . . , Zn).

– Then g satisfies the following bounded differences condition:

|g(Z1, . . . , Zi, . . . , Zn)− g(Z1, . . . , Z
′
i, . . . , Zn)| ≤ 1

n
. (205)

– Proof:

∗ Recall L̂(h) = 1
n

∑n
i=1 `(Zi, h).

∗ We have:∣∣∣ sup
h∈H

[L(h)− L̂(h)]︸ ︷︷ ︸
g(Z1,...,Zi,...,Zn)

− sup
h∈H

[L(h)− L̂(h) +
1

n
(`(Zi, h)− `(Z ′i, h))]︸ ︷︷ ︸

g(Z1,...,Z′i,...,Zn)

∣∣∣ ≤ 1

n
. (206)

∗ For each h ∈ H, the difference between the Gn and the perturbed Gn is at
most 1

n
since the loss is bounded: `(z, h) ∈ [0, 1]. Taking the supremum

(which is a contraction) cannot increase the difference.

– Now we can apply McDiarmid’s inequality (Theorem 10) to get that:

P [Gn ≥ E[Gn] + ε] ≤ exp(−2nε2). (207)

– Remark: Note that g is quite a non-trivial function (involving a sup over a huge
hypothesis class), but because it satisfies the bounded differences condition, we
can simply apply McDiarmid’s inequality.

• Step 3 (symmetrization)

– Now we need to bound E[Gn]. This quantity is quite difficult since it depends on
L(h), an expectation over the unknown distribution p∗. The goal of symmetriza-
tion is to remove this strong dependence on p∗ and replace it with a quantity that
only depends on p∗ through the data points Z1, . . . , Zn.

– The key idea of symmetrization is to introduce a ghost dataset Z ′1, . . . , Z
′
n, drawn

i.i.d. from p∗. Let L̂′(h) = 1
n

∑n
i=1 `(Z

′
i, h) be the empirical risk with respect to

this ghost dataset.

– Rewriting L(h) in terms of the ghost dataset:

E[Gn] = E[sup
h∈H

E[L̂′(h)]− L̂(h)]. (208)
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– Bring L̂(h) into the inner expectation by conditioning on the original dataset
Z1, . . . , Zn (the two datasets are independent):

E[Gn] = E[sup
h∈H

E[L̂′(h)− L̂(h) | Z1, . . . , Zn]]. (209)

– Pushing the sup inside the expectation can only increase:

E[Gn] ≤ E[E[sup
h∈H

L̂′(h)− L̂(h) | Z1, . . . , Zn]]. (210)

– Apply law of iterated conditional expectation:

E[Gn] ≤ E[sup
h∈H

L̂′(h)− L̂(h)]. (211)

– Introduce i.i.d. Rademacher variables σ1, . . . , σn, where σi is uniform over
{−1,+1}. Since `(Z ′i, h) − `(Zi, h) is symmetric around 0, multiplying by σi
doesn’t change its distribution. Now expanding the definition of the empirical
risk:

E[Gn] ≤ E

[
sup
h∈H

1

n

n∑
i=1

σi[`(Z
′
i, h)− `(Zi, h)]

]
. (212)

– Pushing the sup inside suph[ah − bh] ≤ suph[ah] + suph[−bh]:

E[Gn] ≤ E

[
sup
h∈H

1

n

n∑
i=1

σi`(Z
′
i, h) + sup

h∈H

1

n

n∑
i=1

(−σi)`(Zi, h)]

]
. (213)

– By linearity of expectation and the fact that Z ′i has the same distribution as Zi,
and σi and −σi have the same distribution:

E[Gn] ≤ 2E

[
sup
h∈H

1

n

n∑
i=1

σi`(Zi, h)

]
. (214)

The RHS motivates the following general definition of the Rademacher complex-
ity:

• Definition 12 (Rademacher complexity)

– Let F be a class of real-valued functions f : Z → R. Example: Z = X × Y
consists of input-output pairs.

– Define the Rademacher complexity (or Rademacher average) of F to be

Rn(F)
def
= E

[
sup
f∈F

1

n

n∑
i=1

σif(Zi)

]
, (215)

where
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∗ Z1, . . . , Zn are drawn i.i.d. from p∗ (data points); and

∗ σ1, . . . , σn are drawn i.i.d. from the uniform distribution over {−1,+1}
(Rademacher variables).

– Interpretation of Rademacher complexity:

∗ Consider a binary classification problem with inputs Z1, . . . , Zn and random
labels σ1, . . . , σn. Clearly, this is a meaningless learning problem.

∗ The Rademacher complexity captures (in expectation) how well the best func-
tion from the function class F can align with these random labels. In other
words, how well F can fit noise?

∗ We’d like Rn(F) to go to zero as n increases.

– Define the empirical Rademacher complexity of F to be:

R̂n(F)
def
= E

[
sup
f∈F

1

n

n∑
i=1

σif(Zi) | Z1, . . . , Zn

]
, (216)

which is a random variable depending on the data. Note that Rn(F) = E[R̂n(F)],
where the expectation is taken over the n training examples.

• Theorem 12 (generalization bound based on Rademacher complexity)

– Define A = {z 7→ `(z, h) : h ∈ H} to be the loss class, the composition of the
loss function with each of the hypotheses. With probability at least 1− δ,

L(ĥ)− L(h∗) ≤ 4Rn(A) +

√
2 log(2/δ)

n
. (217)

• Proof of Theorem 12:

– Note that E[Gn] ≤ 2Rn(A) by definition of Rademacher complexity.

– Since negation doesn’t change the Rademacher complexity, Rn(A) = Rn(−A), so
E[G′n] ≤ 2Rn(−A).

– Let’s apply the tail bound (207) on both Gn and G′n:

P
[
Gn ≥

ε

2

]
≤ exp

(
−2n

( ε
2
− E[Gn]

)2
)

(218)

≤ exp

(
−2n

( ε
2
− 2Rn(A)

)2
)

[for ε ≥ 4Rn(A)] (219)

def
=
δ

2
. (220)

We have an analogous inequality for G′n. Adding them and solving for ε yields
the result.
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– Remark: We see that the essence of generalization is captured in the Rademacher
complexity of the loss class Rn(A).

• Summary

– We have reduced the problem of bounding Gn, which involved a complex compar-
ison between L(h) and L̂(h), to something that only depends on samples. In fact,
the empirical Rademacher complexity can even be computed from data. We’ll
see that in the analysis to follow, we will often condition on Z1:n; the points take
a backseat as it is the randomness of σi and the supremum over F that really
determine the Rademacher complexity.

– We will study the Rademacher complexity Rn(F) of various function classes F .
First, let us discuss some basic compositional properties that Rademacher com-
plexity enjoys, mostly due to linearity of expectation:

• Basic properties of Rademacher complexity

– Boundedness

∗ Rn(F) ≤ maxf∈F maxz f(z).

∗ This is a trivial bound, which means that it’s not impressive to say that the
Rademacher complexity is a constant. We’d ideally like it to go to zero as
n→∞.

– Singleton

∗ Rn({f}) = 0

∗ Proof: σi has zero mean and is independent of everything else, so E[σif(Zi)] =
0

– Monotonicity

∗ Rn(F1) ≤ Rn(F2) if F1 ⊆ F2

∗ Proof: supf∈F2
ranges over at least as many functions as supf∈F1

, which
makes it at least as large.

– Linear combination

∗ Rn(F1 + F2) = Rn(F1) +Rn(F2) for F1 + F2 = {f1 + f2 : f1 ∈ F1, f2 ∈ F2}
∗ Proof: linearity of expectation

– Scaling

∗ Rn(cF) = |c|Rn(F)

∗ Proof: for c > 0, this is trivial; if c < 0, then we can absorbe the negation
into σi’s, which are symmetric around zero.

– Lipschitz composition (a generalization of scaling):

∗ Rn(φ ◦ F) ≤ cφRn(F), where φ ◦ F = {z 7→ φ(f(z)) : f ∈ F} and cφ is the
Lipschitz constant of φ: |φ(z)− φ(z′)| ≤ cφ|z − z′|.
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∗ Proof: see Corollary 3.17 of Ledoux and Talagrand 1991

∗ If φ is differentiable, then cφ is just a bound on the L2 norm of the gradient.

∗ This property is useful because we can analyze the complexity of our hypoth-
esis class (linear functions), and compose with φ to get the loss class.

– Convex hull

∗ Rn(convex-hull(F)) = Rn(F) for finite F
∗ Proof: supremum over the convex hull is attained at one of its vertices

∗ This property is useful because if we want to compute the Rademacher of a
polytope (an infinite set), it suffices to compute the Rademacher complexity
of its vertices (a finite set). We will use this property when we look at L1

regularization.
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3.8 Finite-dimensional hypothesis classes (Lecture 9)

• So far, we’ve set up Rademacher complexity as a means of bounding the complexity of
a function class (specifically, the loss class associated with a hypothesis class). Now,
let’s instantiate Rademacher complexity for the case where the function class is finite.
This may initially seem like overkill (since we already analyzed the finite hypothesis
case), but doing this analysis in the Rademacher complexity is a good sanity check,
and it will reveal an unexpected but important aspect of finiteness.

• Lemma 5 (Massart’s finite lemma)

– Throughout this lemma, condition on Z1, . . . , Zn (treat them like constants).

– Let F be a finite class of functions.

– Let M be a bound satisfying:

sup
f∈F

1

n

n∑
i=1

f(Zi)
2 ≤M2. (221)

– Then

R̂n(F) ≤
√

2M2 log |F|
n

. (222)

• Proof of Lemma 5:

– Let Wf = 1
n

∑n
i=1 σif(Zi).

– We are interested in bounding R̂n(F) = E[supf∈FWf | Z1:n].

– Exponentiate and use convexity of x 7→ exp(tx) for t ≥ 0 to push the exp inside
the expectation:

exp(tE[sup
f∈F

Wf | Z1:n]) ≤ E[exp(t sup
f∈F

Wf ) | Z1:n]. (223)

– By monotonicity, we can pull the sup out of the exponent:

= E[sup
f∈F

exp(tWf ) | Z1:n]. (224)

– The sup over non-negative terms can be upper bounded by the sum:

≤
∑
f∈F

E[exp(tWf ) | Z1:n]. (225)
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– Now we have to bound E[exp(tWf )], which is the moment generating function of
Wf .

∗ By Hoeffding’s lemma (after Lemma 3.5), σi is a bounded random variable
with sub-Gaussian parameter 22/4 = 1.

∗ By scaling and independence of σi, we get that Wf is sub-Gaussian with

parameter 1
n2

∑n
i=1 f(Zi)

2 ≤ M2

n
(remember that we’re conditioning on Z1:n,

which are just treated like constants).

∗ By the definition of sub-Gaussian, we have

exp(tR̂n(F)) ≤
∑
f∈F

E[exp(tWf ) | Z1:n] ≤ |F| exp

(
t2M2

2n

)
. (226)

– Taking logs and dividing by t:

R̂n(F) ≤ log |F|
t

+
tM2

2n
. (227)

– Optimizing over t yields the result as desired (by just taking the twice the geo-
metric average of log |F| and M2/(2n)):

R̂n(F) ≤
√

2M2 log |F|
n

. (228)

• We can immediately apply Massart’s finite lemma to any finite loss class A. For
example, for the zero-one loss, we have each f(Zi) = `(Zi, h) ∈ [0, 1] (for h ∈ H
corresponding to f ∈ F) so we can take M = 1. Combined with (217), this gives us

L(ĥ)− L(h∗) ≤
√

32 log |H|
n

+

√
2 log(2/δ)

n
= O

(√
log |H|
n

)
, (229)

which gives the same result (with worse constants) compared with Theorem 11.

3.9 Shattering coefficient (Lecture 9)

• But we can do more than that. Notice that Massart’s finite lemma places a bound on
the empirical Rademacher complexity R̂n, which only depends on the n data points.
If we had an infinite function class F , but acts the same on the n points as a finite
function class F ′, then the two function classes have the same empirical Rademacher
complexity. More formally, if

{[f(Z1), . . . , f(Zn)] : f ∈ F} = {[f ′(Z1), . . . , f ′(Zn)] : f ′ ∈ F ′}, (230)

then R̂n(F) = R̂n(F ′). Therefore, all that matters as far as empirical Rademacher
complexity is concerned is the behavior of a function class on n data points.
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• This key observation is useful when we are trying to analyze boolean functions,
those that return either 0 or 1. An important example is the loss class A = {z 7→
`(z, h) : h ∈ H} where ` is the zero-one loss. Then the number of behaviors on n
points is certainly finite (and perhaps even small). The behavior of F on n data points
is captured in the shattering coefficient:

• Definition 13 (shattering coefficient (growth function))

– Let F be a family of functions that map Z to a finite set (usually {0, 1}).
– The shattering coefficient of F is the maximum number of behaviors over n

points:

s(F , n)
def
= max

z1,...,zn∈Z
|{[f(z1), . . . , f(zn)] : f ∈ F}|. (231)

• We can use Massart’s finite lemma to upper bound the Rademacher complexity by the
shattering coefficient. If F contains boolean functions, we have the bound M = 1, so
that:

Rn(F) ≤
√

2 log s(F , n)

n
. (232)

The significance is that we can apply Massart’s finite lemma to infinite function
classes with finite shattering coefficient. In order to have applied this bound,
it is important to condition on the data (note that the distribution over the data
has disappeared completely!) After applying Massart’s finite lemma, we can take
expectations over the data without changing the bound. We have turned an impossible
expectation over p∗ into a purely combinatorial notion of complexity.

• Intuition:

– For boolean functions, if s(F , n) = 2n (we obtain all possible labelings), then we
say F shatters the n points that achieve the maximum of (231).

– To get meaningful bounds, we want s(F , n) to grow sub-exponentially with n;
otherwise the Rademacher complexity will not go to zero, and we will not obtain
uniform convergence. This is expected since if F can really hit all labelings for
all n, then we would be able to fit any labeling of the data, leading to massive
overfitting.

• Shattering coefficient of hypotheses class and loss class

– The bounds we derive depend on the shattering coefficient s(A, n) of the loss
class A (via (232) and (217)). However, it will be more intuitive to talk about
the shattering coefficient hypothesis class H. We now show that the two are the
same for zero-one loss and binary classifiers.
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– Let H be a set of binary classifiers h : X 7→ {0, 1} and zero-one loss `((x, y), h) =
I[y 6= h(x)].

– Note that the hypothesis class H contains functions on X , and the loss class A
contains functions on X × {0, 1}: A = {(x, y) 7→ I[y 6= h(x)] : h ∈ H}.

– The key point is that

s(H, n) = s(A, n). (233)

– The reason is as follows: for any (x1, y1), . . . , (xn, yn), there is a bijection between
the behavior of the losses and the hypotheses:

[`((x1, y1), h), . . . , `((xn, yn), h)] ⇔ [h(x1), . . . , h(xn)], (234)

where the translation between the two sets of vectors is obtained by taking the
XOR with [y1, . . . , yn]. Therefore, as we range over h ∈ H, we obtain the same
number of behaviors from ` as we do from h.

3.10 VC dimension (Lecture 9)

• In the previous section, we saw that the shattering coefficient can be used to upper
bound the Rademacher complexity of a family of boolean functions (232), which in turn
can be used to upper bound the excess risk (Theorem 12). Although the shattering
coefficient nicely captures the behavior of an infinite H, it is not necessarily the most
convenient quantity to get a handle on. In this section, we will use a concept called
VC dimension to gain more intuition about the shattering coefficient.

• Definition 14 (VC dimension)

– The VC dimension of a family of functions H with boolean outputs is the
maximum number of points that can be shattered by H:

VC(H) = sup{n : s(H, n) = 2n}. (235)

– Intuition: the VC dimension of H is the maximum number of points whose labels
can be memorized perfectly by choosing some h ∈ H.

• Overloading notation, we can think of each h ∈ H (a boolean function on X ) as a
subset of X for which h(x) returns 1.

• Example (intervals)

– Let H = {[a, b] : a, b ∈ R}.
– s(H, 1) = 2 = 21 (can shatter)
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– s(H, 2) = 4 = 22 (can shatter)

– s(H, 3) = 7 < 23 (can’t shatter, because can’t isolate the middle point)

– s(H, n) =
(
n+1

2

)
+ 1

– Therefore, VC(H) = 2.

• Important note: to show that a class H has VC dimension d, one needs to

– Derive an upper bound: show that no d + 1 points can be shattered. This is
done by showing that for any d+ 1 points, there is some labeling that cannot be
achieved by H.

– Derive a lower bound: show that there exists d points can be shattered. This
is done by showing that there exists d points such that all 2d labelings can be
achieved by H.

• One can verify that that the VC dimension of rectangles in two dimensions is 4. Based
on this, one might be tempted to conclude that the VC dimension of a hypothesis class
with d parameters is d, but the following example shows that this is in general not the
case (there are pathological examples).

• Example (infinite VC dimension with one parameter)

– Let H = {{x : sin(θx) ≥ 0} : θ ∈ R}.
– We have that VC(H) =∞.

• It turns out that it’s not the number of parameters that matter, but the dimension of
the function space:

• Theorem 13 (finite-dimensional function class)

– Let F be a function class containing functions f : X → R.

– Recall that the dimension of F is the number of elements in a basis of F .

– Let H = {{x : f(x) ≥ 0} : f ∈ F} (for example, F could be linear functions, but
not necessarily).

– Then we have

VC(H) ≤ dim(F). (236)

– Remark: this allows us to connect the linear algebraic properties of F (dimension)
with the combinatorial properties of H (VC dimension).

• Proof of Theorem 13:

– Take any n points x1, . . . , xn with n > dim(F). We will show that these n points
cannot be shattered.

80



– Consider the linear map H(f)
def
= (f(x1), . . . , f(xn)) ∈ Rn which maps each func-

tion f ∈ F to the function values on the n points (function evaluation is linear).

– The vector space {H(f) : f ∈ F} ∈ Rn has dimension at most dim(F) (applying
linear maps can’t increase dimension).

– Since n > dim(F), there is some non-zero vector c ∈ Rn such that H(f) · c = 0
for all f ∈ F .

– Without loss of generality, some component of c is negative (otherwise, just take
−c, which satisfies H(f) · c = 0 too).

– So we have for all f ∈ F :∑
i:ci≥0

cif(xi) +
∑
i:ci<0

cif(xi) = 0. (237)

– For the purposes of contradiction, suppose H shatters {x1, . . . , xn}.
∗ Then we could find an A = {x : f(x) ≥ 0} ∈ H (equivalently some f ∈ F)

such that

· xi ∈ A (f(xi) ≥ 0) whenever ci ≥ 0 (so the first term of (237) is non-
negative)

· xi 6∈ A (f(xi) < 0) whenever ci < 0 (so the second term of (237) is strictly
positive).

∗ The sum of the two terms couldn’t equal zero, which contradicts (237).

– Therefore, H can’t shatter {x1, . . . , xn} for any choice of x1, . . . , xn, so VC(H) ≤
dim(F).

• Example 18 (Half-spaces passing through the origin)

– Let H = {{x : w · x ≥ 0} : w ∈ Rd}.
– By Theorem 13, the VC dimension of H is at most d (this is a linear function

class of dimension d). It remains to show that the VC dimension is at least d.

– In general, upper bounds suffice for obtaining generalization bounds, but just for
fun, let’s get a lower bound on the VC dimension.

– Showing that the VC dimension of some H is at least d is easier because we just
have to construct some set of d points that can be shattered rather than showing
there does ont exist d+ 1 points that can be shattered.

– Create d points:

x1 = (1, 0, . . . , 0, 0) (238)

· · · (239)

xd = (0, 0, . . . , 0, 1) (240)
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– Given any subset I ⊆ {1, . . . , d} (labeling of x1, . . . , xd), we can construct a w as
follows to obtain that labeling:

∗ Set wi = 1 for i ∈ I
∗ Set wi = −1 for i 6∈ I

– This establishes that VC(H) ≥ d.

– Putting the upper and lower bounds, we get that VC(H) = d .

• We have defined VC dimension in terms of shattering coefficient (236), and have given
some examples of VC dimension. Let us now upper bound the shattering coefficient in
terms of the VC dimension.

• Lemma 6 (Sauer’s lemma)

– For a class H be a class with VC dimension d.

– Then

s(H, n) ≤
d∑
i=0

(
n

i

)
≤

{
2n if n ≤ d(
en
d

)d
if n > d.

(241)

• Intuition

– For n ≤ d, the shattering coefficient grows exponentially in n.

– For n > d, the shattering coefficient grows only polynomially in n.

– In some sense, H can only represent any subset of up to d of the n points.

• The ramification of Sauer’s lemma is that now we have a new upper upper bound on
the Rademacher complexity (and thus on uniform convergence):

R̂n(A) ≤
√

2 log s(A, n)

n
=

√
2 log s(H, n)

n
≤
√

2VC(H)(log n+ 1)

n
, (242)

where the first inequality follows from (232), the second equality follows from (233),
and the final inequality follows from (241) and holds for n ≥ d.

• Proof of Lemma 6 (somewhat technical and specific, skipped in class)

– The idea is to take H and transform it into H′ with the same shattering coefficient
(s(H, n) = s(H′, n)) but where s(H′, n) will be easier to bound.

– Key: all that matters is the action of H and H′ on a finite set of n points, which
we will represent as a table.

– Draw a table whose columns are the n points and rows are the s(H, n) possible
labelings, and each entry is either a 0 or 1. The question is how many rows there
are.
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– Here’s an example table T :

x1 x2 x3 x4

0 1 0 1
0 0 0 1
1 1 1 0
1 0 1 0

– We will transform the table to a canonical form as follows:

∗ Pick a column j.

∗ For each row r with rj = 1, set rj = 0 if the resulting r doesn’t exist in the
table.

∗ Repeat until no more changes are possible.

– Here is the resulting table T ′ (corresponding to some H′):

x1 x2 x3 x4

0 1 0 1
0 0 0 1
0 1 0 0
0 0 0 0

– Step 1: Note that the number of rows is still the same and all the rows are all
distinct, so s(H, n) = s(H′, n). So we just have to compute s(H′, n), which should
be easier.

– Step 2: We show that the VC dimension doesn’t increase by transformation
(VC(H′) ≤ VC(H))

∗ The transformations proceed one column at a time:

T → T1 → · · ·Tk
transform column j→ Tk+1 → · → T ′. (243)

∗ Claim: After transforming any column j, if some subset S ⊆ {1, . . . , n} of
points is shattered (all 2|S| labelings exist on those columns) after transfor-
mation (in Tk+1), then S was also shattered before transformation (in Tk).

∗ Case 1: trivially true for all subsets S that don’t contain j.

∗ Case 2: take any subset S that contains j.

· For any row i with 1 in column j, there is a row i′ with 0 in column j
and agrees with r on all columns except j: Tk+1(i, j′) = Tk+1(i′, j′) for all
j′ ∈ {1, . . . , n}\{j}, but Tk+1(i, j) = 1 and Tk+1(i′, j) = 0.

· Note that Tk(i, j) = 1 (because we never turn zeros into ones).

· Note that Tk(i
′, j) = 0 because if it had been a 1, then rows i and i′

would have been identical, and we maintain the invariant that there are
no duplicate rows.

∗ So all 2|S| labelings on S existed before transformation in Tk.

– Step 3: Each row of T ′ must contain at most d ones.

∗ Suppose if T ′ has a row with k ones in columns S ⊆ {1, . . . , n}.
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∗ Then for each j ∈ S, there must be another row with a labeling that assigns
ones to exactly S ⊆ {j} (otherwise we would have been able to transform
column j by changing the 1 to a 0).

∗ Reasoning recursively, all 2k subsets must exist.

∗ Since T ′ has VC dimension at most d, k ≤ d.

∗ Based on simple counting, we find that number of rows (remember, they’re
all distinct!) is upper bounded by

∑d
i=0

(
n
i

)
, completing the first inequality

of (241).

– Finishing the second part of the inequality of (241) is just algebra. Observe that
for n ≥ d,

d∑
i=0

(
n

i

)
≤
(n
d

)d d∑
i=0

(
n

i

)(
d

n

)i
(244)

≤
(n
d

)d n∑
i=0

(
n

i

)(
d

n

)i
(245)

=
(n
d

)d(
1 +

d

n

)n
(246)

≤
(n
d

)d
ed. (247)
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3.11 Norm-constrained hypothesis classes (Lecture 10)

• We started by establishing Rademacher complexity Rn(F) as a measure of complexity
of a function class that yielded generalization bounds when applied to the loss class
A. Then we specialized to boolean functions and zero-one losses, which led to notions
of shattering coefficients and VC dimension as combinatorial means of bounding the
Rademacher complexity.

• However, combinatorial notions are not the most appropriate way to think about com-
plexity. For example, it is common in machine learning to have a huge number of
features (large d) in a linear classifier, but where we regularize or constrain the norm
of the weights. In this case, d is the VC dimension doesn’t really capture the true
complexity of the hypothesis class.

• Deriving Rademacher complexity will actually be easier for the norm-constrained set-
ting. We will study the Rademacher complexity of three such examples:

– Linear functions with L2 norm constraints (suitable for kernel methods)

– Linear functions with L1 norm constraints (suitable for sparsity)

• Rademacher complexity of linear functions with weights bounded in an L2 ball

– Theorem 14 (Rademacher complexity of L2 ball)

∗ Let F = {z 7→ w · z : ‖w‖2 ≤ B2} (bound on weight vectors).

∗ Assume EZ∼p∗ [‖Z‖2
2] ≤ C2

2 (bound on spread of data points).

∗ Then

Rn(F) ≤ B2C2√
n
. (248)

– Proof of Theorem 14:

∗ Expand the definition:

Rn(F) =
1

n
E

[
sup

‖w‖2≤B2

n∑
i=1

σi(w · Zi)

]
. (249)

∗ By Cauchy-Schwartz applied to w and
∑n

i=1 σiZi:

≤ B2

n
E

[
‖

n∑
i=1

σiZi‖2

]
. (250)
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∗ By concavity of
√
·, we can push it outside the expectation:

≤ B2

n

√√√√E

[
‖

n∑
i=1

σiZi‖2
2

]
. (251)

∗ Distribute the sum; expectation of cross terms is zero by independence
of σi (this is the key point, which turns n2 terms into n terms):

=
B2

n

√√√√E

[
n∑
i=1

‖σiZi‖2
2

]
. (252)

∗ We can drop σi because it changes sign, not magnitude:

=
B2

n

√√√√E

[
n∑
i=1

‖Zi‖2
2

]
. (253)

∗ Use the bound on Zi:

≤ B2

n

√
nC2

2 . (254)

Simple algebra completes the proof.

• Rademacher complexity of linear functions with weights bounded in an L1 ball

– Motivation

∗ Working with L2 regularization has the advantage that we can use ker-
nel methods, and the dimensionality could be infinite as long the norm is
bounded.

∗ In some applications, we have a finite but large set of features, and we believe
that there are a relatively small subset that are relevant to our task (i.e., we
believe in parameter sparsity). It is common to use L1 regularization, or
simarily, assume that the weights satisfy ‖w‖1 ≤ B1.

Let us compute the Rademacher complexity of F = {z 7→ w · z : ‖w‖1 ≤ B1}.
– Theorem 15 (Rademacher complexity of L1 ball)

∗ Assume that the coordinates are bounded: ‖Zi‖∞ ≤ C∞ with probability 1
for all data points i = 1, . . . , n.

∗ Then

Rn(F) ≤
B1C∞

√
2 log(2d)√
n

. (255)
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– Proof of Theorem 15

∗ The key step is to realize that the L1 ball ({w : ‖w‖1 ≤ B1}) is the convex
hull of the following 2d weight vectors:

W = ∪dj=1{B1ej,−B1ej}. (256)

Since the Rademacher complexity of a class is the same as the Rademacher
complexity of its convex hull, we just need to look at the finite class:

Rn(F) = E

[
sup
w∈W

1

n

n∑
i=1

σi(w · Zi)

]
. (257)

∗ Apply Hölder’s inequality, we have w · Zi ≤ ‖w‖1‖Zi‖∞ ≤ B1C∞.

∗ Applying Massart’s finite lemma (Lemma 5) to the function class specified
by W (of size 2d) with M2 = B2

1C
2
∞, we get that

Rn(F) ≤
√

2B2
1C

2
∞ log(2d)

n
. (258)

– Remarks

∗ It is useful to recall that as p increases,

· p-norms decrease: ‖w‖p ≥ ‖w‖q
· Size of balls increase: {w : ‖w‖p ≤ B} ⊆ {w : ‖w‖q ≤ B}

∗ Note that a L1 bound on the parameters is placing a much stronger constraint
than the L2 norm, which allows us to measure the L∞ norm of the data (which
is much better) rather than the L2 norm at the expense of a logarithmic
dependence on d.

∗ This tradeoff came up earlier when we looked at exponentiated gradient (EG)
for online learning, where the experts resided in an L1 ball, which allowed us
to get a bound that depended logarithmically on the number of experts.

– Ramifications under sparsity

∗ L1 regularization is often used when we believe that most features are irrele-
vant; formally, that the desired weight vector has s� d non-zero entries.

∗ You might have seen the intuition that L1 regularization has sharp corners
which encourage weights to be identically zero, but that doesn’t directly tell
us anything about generalization. We would like a stronger justification.

∗ For convenience, assume that all entries of w and x have magnitude at most
1 (‖w‖∞ ≤ 1, ‖x‖∞ ≤ 1).

∗ It suffices to consider the hypothesis class ‖w‖1 ≤ B1 = s.

∗ Then the Rademacher complexity (and thus the generalization error) isO
(
s
√

log d√
n

)
.
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∗ Interpretation: essentially the number of relevant features (s) controls the
complexity, and we can have a ton of irrelevant features (an exponentially
large number).

∗ In contrast, if we use L2 regularization, we would have B2 =
√
s and C2 =

√
d.

The Rademacher complexity of {w : ‖w‖2 ≤ B2} is O

(
s
√
d/s
√
n

)
.

∗ When s � d, then L1 regularization is desirable, but if s = d, then L1

regularization is worse by a factor of
√

log d.

∗ Note that these are heuristic arguments since we are comparing upper bounds.
In this case, the heuristics are accurate, but in general, one should exercise
caution.

• From hypothesis class to loss class (for binary classification)

– So far, we have bounded the Rademacher complexity of various hypothesis classes
F . We still need to turn that into a bound on the loss class A.

∗ Recall that the zero-one loss on a data point is `((x, y), w) = I[yx · w ≤ 0],
where x ∈ Rd, y ∈ {−1,+1}.
∗ Recall the hypothesis class that we’ve bounded: F = {z 7→ w·z : ‖w‖2 ≤ B2}.
∗ To leverage this result, think of each data point as z = yx, so that each

function in F maps z = xy to the margin that we get on that data point
m = yx · w.

∗ Then the loss class can simply be expressed as function composition: A =
φ ◦ F , where φ(m) = I[m ≤ 0] maps the margin m to the zero-one loss.
However, the problem is that we can’t apply the composition directly because
φ is not Lipschitz due to the discontinuity at 0.

– Our strategy will be to instead introduce a surrogate loss function, the truncated
hinge loss, which upper bounds the zero-one loss:

φsurrogate(m) = min(1,max(0, 1−m)). (259)

Similarly, define the loss classAsurrogate = φsurrogate◦F and expected risk Lsurrogate(h)
in terms of the surrogate loss. Note that the Lipschitz constant of φsurrogate is 1,
so we can apply the Lipschitz composition rule:

– By applying the Lipschitz composition rule:

Rn(Asurrogate) ≤ Rn(F). (260)

– Using the fact that the surrogate is an upper bound and plugging into (217), we
obtain:

L(ĥ) ≤ Lsurrogate(ĥ) ≤ Lsurrogate(h
∗) + 4Rn(F) +

√
2 log(2/δ)

n
. (261)

88



Note that on the LHS, we have the zero-one loss of the ERM and on the RHS,
we have the surrogate loss of the minimizer of expected risk. This says that if
there exists a classifier that obtains low expected surrogate risk (by classifying
correctly with large margin), then one should expect low expected risk L(ĥ) with
a norm-constrained set of functions.

– Remarks

∗ These bounds either do not depend (L2 constrained) or only depend weakly
(L1 constrained) on the dimensionality d. This supports the prevailing wis-
dom that it doesn’t matter how many features you have (how big d is). As
long as you regularize properly (constrain the norm of the weights), then you
will still have good generalization.

∗ Compare this bound to the regret bound (58) we got in online learning. Note
that this essentially gives the same result, but with an extra term for high
probability guarantees, despite the fact that the analysis techniques were
quite different.

∗ We make no assumptions about convexity here (only Lipschitz is needed).
This allows us to use the truncated hinge-loss rather than the zero-one loss,
which is a tighter approximation to the zero-one loss (of course, computation
with non-convex loss functions is hard).

3.12 Covering numbers (metric entropy) (Lecture 10)

• Motivation

– We can measure the complexity of a finite hypothesis class simply by computing its
cardinality. For infinite hypothesis classes, we observed that shattering coefficient
was an appropriate measure since (thanks to symmetrization) all that mattered
was the behavior of a function class on a finite set of points. However, shattering
coefficient only works for functions that return a finite number of values. Can we
retain the combinatorial nature of shattering coefficients, but allow for real-valued
functions (for example, to handle regression problems)?

– The key measure we will explore in this section is covering numbers, which counts
the number of balls of size ε one needs to cover the hypothesis class.

– We can use the Massart’s finite lemma to control the representatives; the behavior
of the other functions is controlled by virtue of being close to some representative.
In essence, covering numbers allows us to discretize the problem.

To talk about closeness of functions, we introduce the general notion of a metric space:

• Definition 15 (metric space)

– A metric space (F , ρ) is defined over a set F with equipped with a metric ρ.
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– A metric ρ : F × F → R must be non-negative, symmetric, satisfy the triangle
inequality, and evaluate to 0 iff its arguments are equal.

– If ρ(f, f ′) = 0 is possible for f 6= f ′, then we say ρ is a pseudometric. In this
section, technically we will be working with the pseudometric.

• Examples of metrics ρ

– Euclidean distance

∗ For real vectors F = Rd.

∗ The metric is ρ(f, f ′) = ‖f − f ′‖2.

– L2(Pn)

∗ This is the L2 distance with respect to the empirical distribution over n data
points: Pn = 1

n

∑n
i=1 δzi .

∗ Let F be a family of functions mapping Z to R.

∗ The metric is ρ(f, f ′) =
(

1
n

∑n
i=1(f(zi)− f ′(zi))2

) 1
2 .

∗ Remark: this metric can be thought of as computing an empirical standard
deviation over differences between f and f ′.

∗ Remark: since we are restricting the functions to evaluations at n points, we
can really think of these functions as n-dimensional vectors, with a metric
which is Euclidean distance scaled down by

√
n.

∗ FIGURE: [two functions and n points]

• Definition 16 (ball)

– Let (F , ρ) be a metric space.

– Then the ball with radius ε > 0 centered at f ∈ F is defined as:

Bε(f)
def
= {f ′ ∈ F : ρ(f, f ′) ≤ ε}. (262)

• Definition 17 (covering number)

– An ε-cover of a set F with respect to a metric ρ is a finite subset C = {f1, . . . , fm} ⊆
F such that if we put a ball of radius ε at each fj, the resulting union is a superset
of F ; that is F ⊆ ∪mj=1Bε(fj).

– Equivalently, every point in F is at most distance ε away (under the metric ρ)
from some point fj in the cover C.

– Define the ε-covering number of F with respect to ρ to be the size of the
smallest cover:

N(ε,F , ρ)
def
= min{m : ∃{f1, . . . , fm} ⊆ F ⊆ ∪mj=1Bε(fj)}. (263)
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– The metric entropy of F is logN(ε,F , ρ).

– FIGURE: [covering a set with balls]

• As ε decreases, the points fj in the cover are a better approximation of the points in
Bε(fj), but N(ε,F , ρ) also increases. What is this tradeoff?

• Example 19 (all functions)

– Let F be all functions from Z = R to [0, 1].

– Recall that using the metric ρ = L2(Pn) means that only function evaluations on
the points z1, . . . , zn matter.

– In order to cover F , fix any f ∈ F . Our strategy is to construct some g ∈ F such
that ρ(f, g) ≤ ε and count the number of g’s we obtain as we sweep f across F .

– For each point zi, we cover the range [0, 1] with the set of discrete points Y =
{2ε, 4ε, . . . , 1}. For any value of f(zi) ∈ [0, 1], we can pick g(zi) ∈ Y so that
|f(zi) − g(zi)| ≤ ε. The value of g(z) for z not equal to any of the n points can
be chosen arbitrarily. Summing over all zi, we get that ρ(f, g) ≤ ε.

– Furthermore, |Y | = 1
2ε

, so

N(ε,F , L2(Pn)) ≤
(

1

2ε

)n
. (264)

The metric entropy is thus O(n log(1/ε)), which intuitively is too large. To see
this, even if we ignored the discretization error ε for the moment, we would see
that the empirical Rademacher complexity of the cover, by Massart’s finite lemma

is O(
√

n log(1/ε)
n

) = O(1), which does not go to zero. Clearly this class of functions

is too large. Let’s consider something smaller but still pretty rich:

• Example 20 (non-decreasing functions)

– Let F be all non-decreasing functions from Z = R to [0, 1].

– Recall that z1, . . . , zn are the n fixed point, assumed to be sorted in increasing
order.

– Similar to before, we break up the range [0, 1] into 1
ε

levels Y = {ε, 2ε, . . . 1}.
– Fix any function f ∈ F . We will construct a piecewise constant approximation g

for which ρ(f, g) ≤ ε.

– For each level y ∈ Y , consider the points zi for which f(zi) ∈ [y − ε, y]. Set
g(zi) = y for these points. By construction, ρ(f, g) ≤ ε.
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– Now let’s count the number of possible g’s there are. For each of the |Y | = 1/ε
levels, we choose one of n points to serve as the leftmost zi for which f(zi) ∈
[y − ε, y]. Therefore

N(ε,F , L2(Pn)) = O(n1/ε). (265)

The metric entropy is O((log n)/ε), which is much better than that of all functions.
The main difference is that we’re choosing a point for each level rather than a
level for each point.

Having set up covering numbers with some examples, we are ready to state our main
theorems. Specifically, we will show that the metric entropy leads to an upper bound
on the Rademacher complexity. This can be accomplished two ways:

– First, we will show a simple discretization argument that applies covering numbers
at a single resolution ε.

– Next, we provide a more sophisticated argument called chaining that adaptively
chooses the resolution, yielding tighter bounds.

• Theorem 16 (simple discretization)

– Let F be a family of functions mapping Z to [−1, 1].

– The empirical Rademacher complexity of a function class F can be upper bounded
using its covering number:

R̂n(F) ≤ inf
ε>0

(√
2 logN(ε,F , L2(Pn))

n
+ ε

)
. (266)

– Remark: the RHS involves two terms

∗ The first is the covering number, which increases as ε decreases. This comes
from Massart’s finite lemma.

∗ The second is ε (which decreases as ε decreases). This is the penalty we pay
for having a discretization.

• Preparation

– We will also assume Z1:n are constant and suppress the explicit conditioning,
writing E[A] instead of E[A | Z1:n].

– To simplify notation, we write ‖f‖ for ‖f‖L2(Pn) and 〈f, g〉 for 〈f, g〉L2(Pn).

– Overloading notation, let σ : Z → {−1,+1} be defined as a function which when
evaluated on zi returns the random sign σi. This allows us to write the empirical
Rademacher complexity succinctly as:

R̂n(F) = E
[
sup
f∈F
〈σ, f〉

]
. (267)
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– Note that ‖σ‖ = 1 since it’s just a vector of +1s and −1s.

• Proof of Theorem 16:

– Fix ε > 0 and let C be an ε-cover of F .

– The proof follows from manipulating the empirical Rademacher complexity:

R̂n(F) = E
[
sup
f∈F
〈σ, f〉

]
(268)

= E

[
sup
g∈C

sup
f∈F∩Bε(g)

〈σ, g〉+ 〈σ, f − g〉

]
(269)

= E
[
sup
g∈C

1

n
〈σ, g〉+ ε

]
[Cauchy-Schwartz] (270)

=

√
2N(ε,F , L2(Pn))

n
+ ε [Massart’s finite lemma]. (271)

• Example 21 (non-decreasing functions (with simple discretization))

– Let F be all non-decreasing functions from Z = R to [0, 1].

– Plugging the covering number of F into Theorem 16:

R̂n(F) ≤ inf
ε>0

√2 ·O( logn
ε

)

n
+ ε

 . (272)

The RHS is minimized when the two terms are equal. Solving for ε and substi-
tuting it back yields:

R̂n(F) = O

((
log n

n

) 1
3

)
. (273)

– Note that this bound provides a rate which is worse than the usual 1√
n

rates.
Is it because non-decreasing functions are just more complex than parametric
function classes? Not in this case. We’ll see shortly that this is just an artifact
of the analysis being too weak, because it is only able to work at one level of
resolution ε. We will now introduce a clever technique called chaining which fixes
this problem:

• Theorem 17 (Chaining (Dudley’s theorem))

– Let F be a family of functions mapping Z to [−1, 1].
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– The empirical Rademacher complexity of a function class F can be upper bounded
using an integral over its covering number:

R̂n(F) ≤ 12

∫ ∞
0

√
logN(ε,F , L2(Pn))

n
dε. (274)

– Remark: note that compared with Theorem 16, this bound involves an integral
that sweeps across different resolutions ε, and importantly removes the additive
ε penalty.

• Proof of Theorem 17

– FIGURE: [lines corresponding to levels, where each level is discretized more finely
than the previous]

– FIGURE: [plot showing N(ε,F , ρ) as a function of ε, with locations of ε0, ε1, . . . ]

– The key is to work at multiple levels of resolution.

– Let ε0 = supf∈F ‖f‖ be the maximum norm of a function f ∈ F , which is the
coarsest resolution, and let εj = 2−jε0 for j = 1, . . . ,m be successively finer
resolutions.

– For each j = 0, . . . ,m, let Cj be an εj-cover of F .

– Fix any f ∈ F .

– Let gj ∈ Cj be such that ‖f − gj‖ ≤ εj; take g0 = 0. Note that gj’s depend on f .

– Let us decompose f as follows:

f = f − gm + g0︸︷︷︸
=0

+
m∑
j=1

(gj − gj−1). (275)

– Restating Massart’s finite lemma, if we have ‖f‖ ≤ M for all f ∈ F , then

R̂n(F) ≤M
√

2 log |F|
n

.

– Let us bound some norms:

∗ ‖f − gm‖ ≤ εm

∗ ‖gj − gj−1‖ ≤ ‖gj − f‖+ ‖f − gj−1‖ ≤ εj + εj−1 = 3εj (since 2εj = εj−1)
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– Now compute the empirical Rademacher complexity:

R̂n(F) = E
[
sup
f∈F
〈σ, f〉

]
[definition] (276)

= E

[
sup
f∈F
〈σ, f − gm〉+

m∑
j=1

〈σ, gj − gj−1〉

]
[decompose f ] (277)

≤ εm + E

[
sup
f∈F

m∑
j=1

〈σ, gj − gj−1〉

]
[Cauchy-Schwartz] (278)

≤ εm +
m∑
j=1

E
[
sup
f∈F
〈σ, gj − gj−1〉

]
[push sup inside] (279)

≤ εm +
m∑
j=1

E

[
sup

gj∈Cj ,gj−1∈Cj−1

〈σ, gj − gj−1〉

]
[refine dependence] (280)

≤ εm +
m∑
j=1

(3εj)

√
2 log(|Cj||Cj−1|)

n
[Massart’s finite lemma] (281)

≤ εm +
m∑
j=1

(6εj)

√
log |Cj|
n

[since |Cj| ≥ |Cj−1|] (282)

= εm +
m∑
j=1

12(εj − εj+1)

√
log |Cj|
n

[since εj = 2(εj − εj+1)] (283)

≤ 12

∫ ∞
0

√
logN(ε,F , L2(Pn))

n
dε [bound sum with integral] (284)

In the last step, we took m→∞, which makes the additive penalty εm → 0.

– Remark: The technical reason why chaining provides better results is the follow-
ing. In simple discretization, we apply Massart’s finite lemma on functions whose
range is [−1, 1], whereas in chaining, we apply Massart’s finite lemma on functions
Cj whose range has size O(εj); this leads to a scaling of εj.

– Remark: when j increases by one, εj is multiplied by 1
2
, but for some examples

(such as the next one), the integrand, because it’s under the square root, will only
be multiplied by

√
2, not 2. So we win.

• Example 22 (non-decreasing functions (with chaining))

– Let F be all non-decreasing functions from Z to [0, 1].

– Note that ‖f‖ ≤ 1 for all f ∈ F , so the coarsest resolution is ε0 = 1, so we only
have to integrate ε up to 1, not ∞, since logN(ε,F , L2(Pn)) = 0 for ε ≥ ε0.
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– Plugging the covering number of F into Theorem 17:

R̂n(F) ≤ 12

∫ 1

0

√O( logn
ε

)

n

 dε (285)

= O

(√
log n

n

)∫ 1

0

√
1

ε
dε (286)

= O

(√
log n

n

)
. (287)

– Remark: compared with the bound using the simple discretization, we get a better
bound (n−

1
2 versus n−

1
3 ).

• Summary

– Covering numbers is a powerful technique that allows us to handle rich function
classes such as all non-decreasing functions.

– The essence is discretization of a function class, so that we can use Massart’s
finite lemma.

– The discretization resolution ε can be set via chaining to yield tight bounds.

– Covering numbers give you a lot of freedom for customization: choice of metric,
choice of discretization.

– Covering numbers can sometimes be more convenient; for example, the covering
number of F1 ∪ F2 is at most that of F1 plus that of F2, a property not shared
by Rademacher complexity.
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[begin lecture 11] (11)

3.13 Algorithmic stability (Lecture 11)

• Motivation

– Let us shelve excess risk L(ĥ) − L(h∗) for the moment, and instead consider the
gap between the expected and empirical risk. It is easy to see that this quantity
can be upper bounded using uniform convergence:

P[L(ĥ)− L̂(ĥ) ≥ ε] ≤ P[sup
h∈H

L(h)− L̂(h) ≥ ε]. (288)

Colloquially, this answers the following question: if I get 10% error on my training
set, what should I expect my test error to be? (The answer is no more than
10% + ε.) Analyzing the excess risk has relied on ĥ being the ERM, but (288)
actually holds for any estimator ĥ. It is useful to think about ĥ as a function of
the training examples: ĥ = A(z1, . . . , zn), where A is an algorithm.

– Uniform convergence hones in on studying the “size” of H (using Rademacher
complexity, VC dimension, etc.). However, what if a learning algorithm A does
not “use” all of H? For example, what if you use naive Bayes, regularization
via a penalty term, early stopping, or dropout training? All of these could in
principle can return any hypothesis from H, but are somehow constrained by
their objective function or algorithm, so we might expect better generalization
than simply looking at the complexity of H in an algorithm-independent way.

– To be more concrete, let us analyze H = {x 7→ w · x : w ∈ Rd}, the class of linear
functions (with no bounds on the norm). Define the norm ‖h‖H to be ‖w‖2

2 of the
associated weight vector. Define the regularized empirical risk minimizer as
follows:

ĥ = arg min
h∈H

L̂(h) +
λ

2
‖h‖2

H. (289)

– Of course, for a given realization of the data z1:n, the solution to (289) can be
gotten by finding the ERM on the constrained set {h ∈ H : ‖h‖H ≤ B} for some
bound B. But this connection is weak in that B would need to depend on the
data to obtain an exact equivalence. How can we analyze (289) directly?

– In this section, we will introduce bounds based on a notion of algorithmic sta-
bility, where we view a learning algorithm as a function A that take as input
the data z1:n and outputs some hypothesis ĥ. We will study the generalization
properties of ĥ as a function of how stable the algorithm is. Notice the focus on
algorithms (similar to in online learning) rather than a focus on the hypothesis
class.
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• Stability will be measured with respect to the difference in behavior of an algorithm
on a training set S and a perturbed version Si:

– S = (z1, . . . , zn): training data, drawn i.i.d. from p∗

– Si = (z1, . . . , z
′
i, . . . , zn): training data with an i.i.d. copy of the i-th example

– z0 is a new test example

We start with a definition of stability:

– Definition 18 (uniform stability)

∗ We say that an algorithm A : Zn → H has uniform stability β (or in the
context of these notes, simply β-stable) with respect to a loss function ` if for
all training sets S ∈ Zn, perturbations Si ∈ Zn, and test example z0 ∈ Z,

|`(z0, A(S))− `(z0, A(Si))| ≤ β. (290)

∗ Note that this is a very strong condition in that the bound must hold uni-
formly for all z0, S, S

i and is not reliant on the probability distribution.

– Example 23 (stability of mean estimation)

∗ Assume all points z ∈ Rd are bounded ‖z‖2 ≤ B.

∗ Define the squared loss: `(z, h) = 1
2
‖z − h‖2

2.

∗ Define an algorithm that computes the regularized empirical risk minimizer:

A(S)
def
= arg min

h∈Rd
L̂(h) +

λ

2
‖h‖2

2 (291)

=
1

(1 + λ)n

n∑
i=1

zi. (292)

∗ Then A has uniform stability β =
6B2

(1 + λ)n
.

∗ To derive this, define v1 = A(S)− z0 and v2 = 1
(1+λ)n

[z′i − zi].

|`(z0, A(S))− `(z0, A(Si))| ≤
∣∣∣∣12‖v1‖2

2 −
1

2
‖v1 + v2‖2

2

∣∣∣∣ (293)

≤ ‖v2‖2(‖v1‖2 +
1

2
‖v2‖2) (294)

≤ 2B

(1 + λ)n
(2B +B). (295)

∗ We can see that as we increase regularization (larger λ) or amount of data
(larger n), we have more stability (smaller β).
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– Example 24 (stability of linear predictors)

∗ Let H = {x 7→ w · x : w ∈ Rd}.
∗ Assume that ‖x‖2 ≤ C2 with probability 1 (according to the data-generating

distribution p∗).

∗ Assume the loss ` is 1−Lipschitz: for all z0 ∈ Z and h, h′ ∈ H:

|`(z0, h)− `(z0, h
′)| ≤ ‖h− h′‖∞

def
= sup

x∈Rd
|h(x)− h′(x)|. (296)

For example, for classification (y ∈ {−1,+1}), this holds for the hinge loss
`((x, y), h) = max{1− yh(x), 0}.
∗ Define the regularized empirical risk minimizer:

A(S)
def
= arg min

h∈H
L̂(h) +

λ

2
‖h‖2

H (297)

∗ Then A has uniform stability β =
C2

2

λn
with respect to `. See the Bous-

quet/Elisseeff paper on stability for the proof.

And now for the main theorem:

– Theorem 18 (generalization under uniform stability)

∗ Let A be an algorithm with uniform stability β.

∗ Assume the loss is bounded: supz,h |`(z, h)| ≤M .

∗ Then with probability at least 1− δ,

L(A(S)) ≤ L̂(A(S)) + β + (βn+M)

√
2 log(1/δ)

n
. (298)

∗ Remark: Due to the presence of βn, for this bound to be not vacuous, we

must have β = o
(

1√
n

)
. Generally, we will have β = O( 1

n
), which guarantees

that L(A(S))− L̂(A(S)) = O( 1√
n
).

– Proof of Theorem 18:

∗ Our goal is to bound the difference between the expected and empirical risks:

D(S)
def
= L(A(S))− L̂(A(S)). (299)

∗ Step 1: Bound the expectation of D(S).

· Recall that S = (z1, . . . , zn), (z′1, . . . , z
′
n), z0 are all independent and there-

fore exchangeable. The basic trick is just to rename variables that pre-
serve the dependency structure and therefore the expectation E[D(S)],
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and get it into a form where we can apply the definition of uniform sta-
bility:

E[D(S)] = E

[
1

n

n∑
i=1

[`(z0, A(S))− `(zi, A(S))]

]
[definition] (300)

= E

[
1

n

n∑
i=1

[`(z′i, A(S))− `(z′i, A(Si))]

]
[renaming] (301)

≤ β [definition of uniform stability] (302)

The point is that in the first term z0 is not in S and zi is in S. This logic
is preserved: z′i is not in S and z′i is in Si.

∗ Step 2: show that D(S) satisfies the bounded differences property.

· We should expect such a property to hold given the definition of uniform
stability. But we are not directly applying the bounded differences to the
loss `(z0, A(S)), but rather to D(S). So there is slightly more work. The
trick here is to break down differences using the triangle inequality into
a chain of comparisons, each involving a single perturbation.

· Let L̂i denote the empirical expectation with respect to Si.

· We have

|D(S)−D(Si)| (303)

≤ |L(A(S))− L̂(A(S))− L(A(Si)) + L̂i(A(Si))| (304)

≤ |L(A(S))− L(A(Si))|+ |L̂(A(S))− L̂i(A(Si))| [triangle inequality]
(305)

≤ |L(A(S))− L(A(Si))|︸ ︷︷ ︸
≤β

+ |L̂(A(S))− L̂(A(Si))|︸ ︷︷ ︸
≤β

+ |L̂(A(Si))− L̂i(A(Si))|︸ ︷︷ ︸
≤ 2M

n

(306)

≤ 2β +
2M

n
. (307)

In the first two cases, we just used the fact that A is β-stable; recall that
L̂(h) = 1

n

∑n
i=1 `(zi, h) and L(h) = Ez0∼p∗ [`(z0, h)]; here it’s important

that β-stability holds uniformly for any first argument of `, so that we
can upper bound by β regardless of the dependence structure between
the two arguments. In the third case, L̂ and L̂i just differ by one term
which can differ by at most 2M and is scaled by 1

n
.

∗ Step 3: apply McDiarmid’s inequality to bound D(S) in high probability.
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· This is a straightforward application. We have

P[D(S))− E[D(S)] ≥ ε] ≤ exp

(
−2ε2

n(2β + 2M
n

)2

)
(308)

= exp

(
−nε2

2(βn+M)2

)
def
= δ. (309)

Rewriting the bound and using the fact that E[D(S)] ≤ β, we have that
with probability at least 1− δ,

D(S) ≤ β + (βn+M)

√
2 log(1/δ)

n
. (310)

– Application to linear functions

∗ Recall that for regularized ERM on linear functions with 1-Lipschitz losses

(like hinge loss), β =
C2

2

λn
, where λ is the regularization strength and ‖x‖2 ≤

C2
2 . Plugging this value of β into Theorem 18, we get that with probability

at least 1− δ,

L(A(S)) ≤ L̂(A(S)) +O

(
C2

2 +M

λ
√
n

)
. (311)

Note that this bound has the right dependence on n, but has a worse depen-
dence on C2 compared to the Rademacher bounds.

3.14 PAC-Bayesian bounds (Lecture 11)

• Motivation

– Everything we’ve been doing is under a frequentist paradigm, where we assume
an unknown h∗ ∈ H against which we assess our performance. We assume the
worst case over h∗ (defined via p∗).

– A Bayesian would instead start with a prior P (h), observe the training data
z1, . . . , zn, and produce a posterior Q(h). Bayesian procedures are optimal as-
suming the prior (and the model) is “correct”, but this is in practice too strong
of an assumption.

– From one perspective, a Bayesian procedure is just an algorithm that returns
some hypothesis ĥ (perhaps stochastically) given z1, . . . , zn, and we already have
analyses that work on any algorithm (via uniform convergence or algorithmic sta-
bility). However, the analysis itself is still worst case over h∗. Can we incorporate
the prior into the analysis itself while not assuming that the prior is correct?

– PAC-Bayesian bounds provide exactly this. In this class, we will consider two
types:
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∗ Occam bound: assume a countable hypothesis class, algorithm outputs a
single hypothesis

∗ PAC-Bayesian theorem: assume an infinite hypothesis class, algorithm out-
puts a posterior

Let us start with Occam bound, which captures the key intuitions:

• Theorem 19 (Occam bound)

– Let H be a countable hypothesis class.

– Let the loss function be bounded: `(z, h) ∈ [0, 1].

– Let P be any “prior” distribution over H.

– Then with probability at least 1− δ,

∀h ∈ H : L(h) ≤ L̂(h) +

√
log(1/P (h)) + log(1/δ)

2n
. (312)

• Let’s try to understanding this bound with a few special cases.

– If the prior puts all its mass on one hypothesis h0 (P (h) = I[h = h0]), then the
bound is just the standard Hoeffding bound you would get for a single hypothesis.

– If we have a uniform distribution over some subset of hypotheses S ⊆ H (P (h) =
I[h ∈ S]/|S|), then we recover the standard result for finite hypotheses (similar
to Theorem 11, which is for excess risk).

– This reveals how PAC-Bayes is a generalization: rather than commiting to prior
distributions which are uniform over some support S ⊆ H, we can have prior dis-
tributions which place different probability mass on different hypotheses. We can
letH be as large as we want as long as we still have probabilities (

∑
h∈H P (h) = 1).

In some sense, P (h) defines a fuzzy hypothesis class.

• The bound also suggests an algorithm.

– First, note that the penalty term log(1/P (h)) is tailored towards the particular
hypothesis h, whereas in our previous bounds, we were looking at the complexity
of all of H. This dependence on h presents a new possibility: that of treating the
RHS bound as an objective to be minimized by an algorithm. Recall that this
bound holds simultaneously for all h ∈ H, which means that it will hold for the
output of an algorithm A(S).

– Motivated by the bound, we can define an algorithm that actually uses the bound
by minimizing the RHS:

A(S)
def
= arg min

h∈H
L̂(h) +R(h), R(h) =

√
log(1/P (h)) + log(1/δ)

2n
. (313)
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From this perspective, the bound provides a regularizer R(h) which penalizes h
more if it has small prior probability P (h). The algorithm A(S) thus balances
the empirical risk L̂(h) with the regularizer R(h).

– As we get more data (n→∞), the regularizer also goes to zero, meaning that we
will trust the empirical risk more, allowing us to consider more complex hypotheses
in H. This is a pretty nice behavior to have.

• Proof of Theorem 19:

– The proof is very simple. The key idea is to allocate our confidence parameter δ
across different hypotheses proportionally based on the prior P (h).

– By Hoeffding’s inequality, we have that for any fixed h ∈ H:

P[L(h) ≥ L̂(h) + ε] ≤ exp(−2nε2). (314)

– With probability at most δP (h),

L(h) ≥ L̂(h) +

√
log(1/P (h)) + log(1/δ)

2n
. (315)

– Applying the union bound across all h ∈ H, we have that with probability at
most δ,

∃h ∈ H : L(h) ≥ L̂(h) +

√
log(1/P (h)) + log(1/δ)

2n
. (316)

• There are two things lacking about the Occam bound:

– It only applies to countableH, which does not include the set of all weight vectors,
for example.

– It only embraces half of the Bayesian story: while we have a prior P (h), only a
single h ∈ H is returned rather than a full posterior Q(h).

The following theorem generalizes the Occam bound:

• Theorem 20 (PAC-Bayesian theorem)

– Let the loss function be bounded: `(z, h) ∈ [0, 1].

– Let P be any “prior” distribution over H.

– Let QS be any “posterior” distribution over H, which is a function of the training
data S.

– Then with probability at least 1− δ,

Eh∼QS [L(h)] ≤ Eh∼QS [L̂(h)] +

√
KL (QS‖P ) + log(4n/δ)

2n− 1
. (317)
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• See the McAllester paper for the proof.

• To recover the Occam bound (up to constants), we simply set QS to be a delta function
at some h.

3.15 Interpretation of bounds (Lecture 11)

• Now that we’ve derived a whole host of generalization bounds, let us take a step back
and ask the question: how should we think about these bounds?

• Properties

– One could evaluate these bounds numerically, but they will probably be too loose
to use directly. The primary purpose of these bounds is to instead formalize the
relevant properties of a learning problem and characterize their relationship to
the generalization error, the quantity of interest.

– The relationships solidify intuitions about learning. Here are some examples:

∗ If we have d features, n ∼ d training examples suffices to learn. If the number
of features increase by 2, we need to increase n by 2 as well to maintain the
same estimation error.

∗ We can actually have as many features d as we want (even infinite), so long
as we regularize properly using L2 regularization: bounds depend on norm B
not dimension d.

∗ If there are many irrelevant features use L1 regularization: the L1 ball is just
much smaller than the L2 ball. Here, exploiting the structure of the problem
leads to better bounds (and algorithms).

∗ If there is low noise in the problem (in the realizable setting, some predictor
obtains zero generalization error), then estimation error is smaller (O(1/n)
versus O(1/

√
n) convergence).

• Focus on estimation error

– It is important to note that generalization bounds focus on addressing the esti-
mation error (excess risk) L(ĥ)− L(h∗), not the approximation error L(h∗).

– For example, if d is the number of features, then L(ĥ)−L(h∗) = O( d
n
) shows that

by adding more features, the estimation error will worsen. However, we hope that
L(h∗) will improve.

– In practice, one can still hope to reduce L(ĥ) by adding additional features.

– The technical core of this section is concentration of measure: as you aggregate
over increasing amounts of independent data, many of the relevant quantities
convergence. Insight is obtained by closely observing how fast these quantities
converge.
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• Loss function

– Is the bound on the right measure of error?

– The bounds derived using finite hypothesis classes or finite VC dimension operated
on the zero-one loss (supposing for the moment that’s our desired loss function).
However, the empirical risk minimizer in this case is NP hard to compute.

– However, the norm-based bounds using Rademacher complexity required a Lip-
schitz loss function such as the truncated hinge loss or the hinge loss, which is
a surrogate loss. This gives us results on an empirical risk minimizer which we
can actually evaluate in practice. One can say is that the zero-one loss is upper
bounded by the hinge loss, but this is relatively weak, and in particular, minimiz-
ing the hinge loss even in the limit of infinite data will not give you something
that minimizes the zero-one loss. A special case is that for universal kernels, min-
imizing the hinge loss (among others) does correspond to minimizing the zero-one
loss in the limit of infinite data (Bartlett/Jordan/McAuliffe, 2005).

– Note that this distinction mirrors our online learning regret bounds as well: in the
finite experts case, we obtained bounds on expected loss for arbitrary (bounded)
loss functions, whereas in general, we needed convexity (which is even stronger
than what we require here).

3.16 Summary (Lecture 11)

• The main focus of this section was to study the excess risk L(ĥ) − L(h∗) of the
empirical risk minimizer ĥ. In particular, we wanted that with probability at least
1 − δ, the excess risk L(ĥ) − L(h∗) is upper bounded by something that depends on
the complexity of the learning problem and n, the number of i.i.d. training examples.
(Another goal is to bound the difference L(ĥ)− L̂(ĥ).

• The excess risk is often within a factor of two of the difference between empirical and
expected risk: suph∈H |L(h) − L̂(h)|, which has a form which suggests using uniform
convergence tools to bound it.

• Results on excess risk L(ĥ)− L(h∗):

– Realizable, finite hypothesis class: O
(

log |H|
n

)
– Finite hypothesis class: O

(√
log |H|
n

)
– Shattering coefficient / VC dimension: O

(√
log s(H,n)

n

)
= O

(√
VC(H) logn

n

)
– L2 norm constrained—kernels (‖w‖2 ≤ B2, ‖x‖2 ≤ C2): O

(
B2C2√

n

)
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– L1 norm constrained—sparsity (‖w‖1 ≤ B1, ‖x‖∞ ≤ C∞): O
(
B1C∞

√
log d√

n

)
– Non-decreasing functions (via covering numbers and chaining): O

(∫∞
0

√
logN(ε,H,L2(Pn))

n
dε

)
=

O

(√
logn
n

)
• Technical tools

– Tail bounds

∗ How much do random variables deviate from their mean? We generally look
for sharp concentration bounds, which means that the probability of deviation
by a constant decays exponentially fast as a function of n: P[Gn−E[Gn] ≥
ε] ≤ c−nε

2
.

∗ When Gn is an average of i.i.d. sub-Gaussian variables Zi we can bound
the moment generating function and get the desired bound (Hoeffding’s
inequality for bounded random variables). Sub-Gaussian random variables
include Gaussian and bounded random variables (it is convenient to assume
our loss or data is bounded), but not Laplace distribution, which has heavier
tails.

∗ When Gn is the result of applying a function with bounded differences to
i.i.d. variables, then McDiarmid’s inequality gives us the same bound.

– Complexity control

∗ For a single hypothesis, we can directly apply the tail bound to control the
difference L(h) − L̂(h). However, we seek uniform convergence over all
h ∈ H.

∗ Finite hypothesis classes: log |H| (use simple union bound)

∗ For infinite hypothesis classes, the key intuition is that the complexity of H
is described by how it acts on n data points. Formally, symmetrization
(introduce ghost dataset and Rademacher variables) reveals this.

∗ The complexity is the shattering coefficient s(H, n) (technically of the
loss class A). By Sauer’s lemma, the shattering coefficient can be upper
bounded using the VC dimension VC(H).

∗ Rademacher complexity Rn(H) measures how well H can fit random binary
labelings (noise). Rademacher complexity is nice because of the numerous
compositional properties (convex hull, Lipschitz composition, etc.)

· By Massart’s finite lemma, we can relate Rn(H) to the shattering
coefficient.

· For L2 norm constrained linear functions, we used linearity and Cauchy-
Schwartz, which enables us to analyze kernels.

· For L1 norm constrained linear functions, we used the fact that the L1

polytope is really simple as it only has 2d vertices.
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· For neural networks, we leveraged the compositionality of Rademacher
complexity.

• Other paradigms

– We also studied two alternative pardigms for analyzing learning, both of which
were motivated by the need for greater nuance. Let A be any learning algorithm
that maps training data S to a hypothesis ĥ ∈ H. The algorithm A could be the
ERM, but it need not be.

– Typical uniform convergence bounds yield results that depend on the complexity
of the entire hypothesis class H:

L(A(S))− L̂(A(S)) ≤ SomeFunction(H). (318)

– Algorithmic stability allows us to obtain a bound that depends on properties of
the algorithm A (i.e., its stability β) rather than H. We obtained bounds of the
form:

L(A(S))− L̂(A(S)) ≤ SomeFunction(A). (319)

– PAC-Bayesian bounds allow us to incorporate the prior into the analysis without
sacrificing objective rigor. We obtained bounds of the form:

L(A(S))− L̂(A(S)) ≤ SomeFunction(A(S)). (320)

Note that the bound depends on the output of the algorithm.
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[begin lecture 12] (12)

4 Direct analysis

4.1 Introduction (Lecture 12)

• In the last unit, we used uniform convergence to study the generalization ability of
learning algorithms, in particular, the empirical risk minimizer (ERM). Uniform con-
vergence is like a tank. While we were able to obtain quite general results, this required
a fairly heavy piece of machinery, and there was a sense in which we were losing touch
with the particular properties of the data.

• In this unit, we are still in pursuit of strong generalization bounds, but we will do it
using a completely different approach that is more tailored to the problem. First, we
will start with fixed design linear regression, which should be a breath of fresh air.
This problem is simple enough that we can do everything in closed form. As a result,
we will obtain new intuitions such as bias-variance tradeoffs.

• Of course, for most problems other than linear regression, we won’t have nice closed
form expressions. We will turn to asymptotic analysis, which by only track first-
order terms enables us to yield simple closed form expressions which are exact in the
limit.

4.2 Fixed design linear regression (Lecture 12)

• Setup

– Our goal is to predict a real-valued output (response) y ∈ R given an input
(covariates/features) x ∈ Rd.

– The fixed design setting means that we have a fixed set of n inputs x1, . . . , xn,
which are treated as constants.

– We assume that there is a true underlying parameter vector θ∗ ∈ Rd, which
governs a set of outputs:

yi = xi · θ∗ + εi, (321)

where we assume that the noise terms εi are i.i.d. with mean E[εi] = 0 and
variance Var[εi] = σ2.

– At training time, we observe one realization of y1, . . . , yn. For convenience, let’s
put the data into matrices:

∗ X = [x1, . . . , xn]> ∈ Rn×d
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∗ ε = [ε1, . . . , εn]> ∈ Rd

∗ Y = [y1, . . . , yn]> ∈ Rd

∗ Σ = 1
n
X>X ∈ Rd×d (second moment matrix)

– FIGURE: [linear regression line over x1, . . . , xn]

– Our goal is to minimize the expected risk as defined by the squared loss:

L(θ)
def
=

1

n

n∑
i=1

E[(xi · θ − yi)2] =
1

n
E[‖Xθ − Y ‖2

2]. (322)

Note that the expectation is over the randomness in Y (recall that X is fixed).

– One can think of the fixed design setting as performing signal reconstruction,
where the xi’s correspond to fixed locations, and yi is a noisy sensor reading.

– The regularized least squares estimator is as follows:

θ̂
def
= arg min

θ∈Rd

1

n
‖Xθ − Y ‖2

2 + λ‖θ‖2
2, (323)

where λ ≥ 0 is the regularization strength. By taking derivatives and setting
the result to zero, we obtained the following closed form solution:

θ̂ = (X>X + λI)−1X>Y =
1

n
Σ−1
λ X>Y, (324)

where we define Σλ = Σ + λI.

– Our goal is to study the expected risk of the regularized least squares estimator
(ridge regression):

L(θ̂). (325)

More specifically, we will study the expectation E[L(θ̂)], where the expectation is
taken over the training data. We could obtain high probability statements as we
did for all our generalization bounds using uniform convergence, but we will not
do that here.

• Studying the expected risk

– As a first step, let us understand the expected risk L(θ). The goal will be to
understand this quantity geometrically. The basic idea is to expand Y = Xθ∗+ ε;
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the rest is just algebra. We have:

L(θ) =
1

n
E[‖Xθ − Y ‖2

2] (326)

=
1

n
E[‖Xθ −Xθ∗ + ε‖2

2] [by definition of Y (321)] (327)

=
1

n
E[‖Xθ −Xθ∗‖2

2 + ‖ε‖2
2] [cross terms vanish] (328)

=
1

n
(θ − θ∗)>(X>X)(θ − θ∗) + σ2 [algebra, definition of ε] (329)

= ‖θ − θ∗‖2
Σ + σ2. (330)

– Intuitively, the first term of the expected risk is the squared distance between the
estimate θ and the true parameters θ∗ as measured by the shape of the data. If
the data does not vary much in one direction, then the discrepancy between θ
and θ∗ will be downweighted in that direction.

– The second term is the unavoidable variance term coming from the noise, which
is present even with the optimal parameters θ∗. Note that L(θ∗) = σ2.

– In conclusion, the excess risk is:

L(θ)− L(θ∗) = ‖θ − θ∗‖2
Σ. (331)

• Unregularized case

– Now, let us analyze the expected risk of the ERM L(θ̂) for the case where we
don’t regularize (λ = 0). Assume that X>X � 0 (which means necessarily that
n > d). The key is to expand θ̂ and Y based on their definitions and perform
algebra. The expectation is over the test data. The main term of the expected
risk is:

‖θ̂ − θ∗‖2
Σ =

1

n
‖Xθ̂ −Xθ∗‖2

2 (332)

=
1

n
‖X(X>X)−1X>(Xθ∗ + ε)−Xθ∗‖2

2 (333)

=
1

n
‖ΠXθ∗ + Πε−Xθ∗‖2

2 [projection Π
def
= X(X>X)−1X>] (334)

=
1

n
‖Πε‖2

2 [projection doesn’t change Xθ∗, cancel] (335)

=
1

n
tr(Πεε>) [projection is idempotent and symmetric]. (336)

– Taking expectations (over the training data), and using the fact that E[εε>] = σ2I,
and subtracting off L(θ∗), we get:

E[L(θ̂)− L(θ∗)] =
dσ2

n
. (337)
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Note that the complexity of the problem is completely determined by the dimen-
sionality d and the variance of the noise σ2.

– Intuitively, the noise ε is an n-dimensional vector gets projected onto d dimensions
by virtue of having to fit the data using a linear function with d degrees of freedom.

• Regularized case

– The above shows that when d � n, regularization isn’t important. But what
happens when d� n? Intuitively, we should regularize (take λ > 0), but how do
we justify this in terms of the expected risk? And by how much?

– The first main insight is the bias-variance tradeoff, whose balance is determined
by λ. Let us decompose the excess risk:

E[‖θ̂ − θ∗‖2
Σ] = E[‖θ̂ − E[θ̂] + E[θ̂]− θ∗‖2

Σ] (338)

= E[‖θ̂ − E[θ̂]‖2
Σ]︸ ︷︷ ︸

def
= Var

+ ‖E[θ̂]− θ∗‖2
Σ︸ ︷︷ ︸

def
= Bias

, (339)

where the cross terms are designed to cancel out. Note that in the unregularized
case (λ = 0), the bias is zero since E[θ̂] = (X>X)−1X>(Xθ∗ + E[ε]) = θ∗, but
when λ > 0, the bias will be non-zero.

– The second main insight is that the risk of the regularized least squares estimate
on the original problem is the same as the risk of an equivalent problem which
has been rotated into a basis that is easier to analyze.

∗ Suppose we rotate each data point xi by an orthogonal R (xi 7→ R>xi), so
that X 7→ XR for some orthogonal matrix R. Correspondingly, we must
rotate the parameters θ∗ 7→ R>θ∗. Then the claim is that the excess risk
does not change.

∗ The excess risk of the modified problem is:

E[‖XR(R>X>XR + λI)−1R>X>(XRR>θ∗ + ε)−XRR>θ∗‖2
2]. (340)

Simplification reveals that we get back exactly the original excess risk:

E[‖X(X>X + λI)−1X>(Xθ∗ + ε)−Xθ∗‖2
2]. (341)

∗ If we take the SVD X = USV > and rotate by R = V , then we can see
that X>X 7→ (V >V SU>)(USV >V ) = S2, which is diagonal. Therefore, for
the purposes of analysis, we can assume that Σ is diagonal without loss of
generality:

Σ = diag(τ1, . . . , τd). (342)
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– Let us compute the mean estimator:

θ̄j
def
= E[θ̂j] (343)

= E[Σ−1
λ n−1X>(Xθ∗ + ε)]j (344)

= E[Σ−1
λ Σθ∗ + Σ−1

λ X>ε]j (345)

=
τj

τj + λ
θ∗j . (346)

Thus, the expected value of the estimator is the true parameter value θ∗ shrunk
towards zero by a strength that depends on λ.

– Compute the bias:

Bias = ‖θ̄ − θ∗‖2
Σ (347)

=
d∑
j=1

(
τj

τj + λ
θ∗j − θ∗j

)2

(348)

=
d∑
j=1

τjλ
2(θ∗j )

2

(τj + λ)2
. (349)

If λ = 0, then the bias is zero as expected.

– Compute the variance:

Var = E[‖θ̂ − θ̄‖2
Σ] (350)

= E[‖Σ−1
λ n−1X>ε‖2

Σ] [recall definition of θ̂] (351)

=
1

n2
E[ε>XΣ−1

λ ΣΣ−1
λ X>ε] (352)

=
1

n2
tr(Σ−1

λ ΣΣ−1
λ X>E[εε>]X) (353)

=
σ2

n
tr(Σ−1

λ ΣΣ−1
λ Σ) (354)

=
σ2

n

d∑
j=1

τ 2
j

(τj + λ)2
. (355)

If we didn’t regularize, the variance would be dσ2

n
. Regularization clearly reduces

the variance.

– Now let us balance the two terms. Fact: (a+ b)2 ≥ 2ab.

– Bound the bias:

Bias ≤
d∑
j=1

λ(θ∗j )
2

2
=
λ‖θ∗‖2

2

2
(356)

Var ≤
d∑
j=1

τj
σ2

n

2λ
=

tr(Σ)σ2

2nλ
. (357)
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– Optimizing yields an bound on the excess risk:

E[L(θ̂)− L(θ∗)] ≤
√
‖θ∗‖2

2 tr(Σ)σ2

n
, (358)

with the regularization parameter set to:

λ =

√
tr(Σ)σ2

‖θ∗‖2
2n
. (359)

– Remarks

∗ As λ→ 0, the bias vanishes and we are left with dσ2

n
.

∗ We can do better in cases where d > n. In particular, d could be essentially
infinite. The true dimensionality is the sum of the eigenvalues (tr(Σ)). So
if the data can be described (via PCA) by a few dimensions, then we don’t
need to regularize much to get a dependence on that effective dimension.

∗ However, the excess risk is now decaying at a rate of O(
√

1
n
) rather than

O( 1
n
).

∗ This bound is similar to the one we got for online learning. If ‖θ∗‖2 ≤ B and
‖xi‖2 ≤ L (which means tr(Σ) ≤ L), then we get a excess risk (analogous to
regret) of BL√

n
.

∗ In the random design where X is a random variable, things are more compli-
cated. In that setting, X>X would be random and different from the expected
covariance E[X>X]. We would need to argue that the two converge. See the
Hsu/Kakade/Zhang paper for more details.
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[begin lecture 13] (13)

4.3 Finite-dimensional asymptotics (Lecture 13)

• Motivation

– In the previous section, the simplicity of the regularized least squares problem in
the fixed design setting allowed us to compute everything exactly. What happens
if we are in the random design setting or if we wanted to handle other loss functions
(e.g., logistic loss)? We can’t hope to compute the excess risk L(θ̂)−L(θ∗) exactly,
and we might lose too much if we try to derive an upper bound.

– In this unit, we will show that the excess risk approaches a simple quantity as
the number of data points n goes to infinity by performing Taylor expansions
around θ∗. In brief, we will see that θ̂ − θ∗ is approximately Gaussian with some
variance that is O

(
1
n

)
, and assuming that L is continuous, we can convert this

result into one about the expected risk.

∗ FIGURE: [θ̂ in a ellipsoid Gaussian ball around θ∗]

– How large does n have to be for the asymptotic results to hold? While our anal-
ysis doesn’t give a quantitative handle on this, asymptotics can provide valuable
insight into the problem. In practice for even small n, asymptotic approxima-
tions can be more accurate than upper bounds since we need not be strict about
enforcing one-sided errors.

• Comparing two estimators

– One compelling use of asymptotics arises when we are comparing estimators.
Suppose we have two algorithms (estimators) that return hypotheses θ̂1 and θ̂2.
Which one is better?

– Let L(θ̂1; p∗) and L(θ̂2; p∗) denote the expected risks of the two, where we’ve
made the dependence on the data generating distribution p∗ ∈ P explicit (P is
the family of distributions we’re considering).

– We can derive upper bounds on the generalization error, but it’s invalid to just
compare these two upper bounds, because discrepancies could reflect our ability
to prove bounds rather than real phenomena.

– We could try to derive lower bounds (which usually analyze the worst case), which
is harder but doable:

Loweri ≤ sup
p∗∈P

L(θ̂i; p
∗) ≤ Upperi for i ∈ {1, 2}. (360)

To show θ̂1 is better than θ̂2, we would need to show that Upper1 ≤ Lower2.
However, these lower bounds are obtained on the worst case p∗, and moreover,
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the p∗ might be different between θ̂1 and θ̂2. So this comparison might be quite
crude.

– What we really want is control

L(θ̂1; p∗)− L(θ̂2; p∗) (361)

for various values of p∗ ∈ P .

– We will show that asymptotics can give us a handle on this. The main idea is
to approximate L(θ̂i; p

∗) directly in terms of some function of p∗ plus some lower
order terms in n.

L(θ̂i; p
∗) u Approxi(p

∗). (362)

We can compute Approx1(p∗)− Approx2(p∗), which converges to the correct dif-
ference as n→∞ for any p∗ ∈ P .

• Probability refresher

– Let X1, . . . , Xn be real vectors drawn i.i.d. from some distribution with mean µ
and covariance matrix Σ.

– Let µ̂ = 1
n

∑n
i=1Xi.

– Convergence in probability

∗ Example: µ̂
P−→ µ (weak law of large numbers)

– Convergence in distribution

∗ Example:
√
n(µ̂− µ)

d−→ N (0,Σ) (central limit theorem)

– Continuous mapping theorem

∗ If f is continuous and Yn
P−→ Y , then f(Yn)

P−→ f(Y )

∗ Example: ‖µ̂‖2
P−→ ‖µ‖2

– Slutsky’s theorem

∗ If Yn
P−→ c and Zn

d−→ Z then YnZn
d−→ cZ.

∗ Example:
√
nµ̂ · (µ̂− µ)

d−→ N (0, µ>Σµ).

– Notation: Xn = Op(f(n)) if Xn/f(n) is bounded in probability, that is, for every
ε > 0, there exists Mε such that for all n, P[|Xn/f(n)| > Mε] < ε.

∗ Example: N (0,Σ) = Op(1)

∗ Example: µ̂− µ = Op

(
1√
n

)
– These results turn complicated things on the LHS into simple things on the RHS.

The continuous mapping theorem and Slutsky’s theorem allow you to compose
these results in simple ways. Generally, just use your intuitions from real analysis.
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• Setup

– z = (x, y) is an example

– `(z, θ) is a loss function on example z with parameters θ ∈ Rd

∗ Example: `((x, y), θ) = 1
2
(θ · x− y)2

– Let p∗ be the true probability distribution over examples z ∈ Z.

– Let θ∗ ∈ Rd be the minimizer of the expected risk:

θ∗
def
= arg min

θ∈Rd
L(θ), L(θ)

def
= Ez∼p∗ [`(z, θ)] (363)

– Let θ̂ ∈ Rd be the minimizer of the empirical risk:

θ̂
def
= arg min

θ∈Rd
L̂(θ), L̂(θ)

def
=

1

n

n∑
i=1

`(z(i), θ), (364)

where z(1), . . . , z(n) are drawn i.i.d. from p∗.

– Recall that we are interested in studying the excess risk L(θ̂)− L(θ∗).

• Assumptions on the loss

– Loss function `(z, θ) is twice differentiable in θ (works for squared and logistic
loss, but not hinge)

– Let ∇`(z, θ) ∈ Rd be the gradient of the loss at θ.

∗ Example: ∇`(z, θ) = (θ · x− y)x

– Let ∇2`(z, θ) ∈ Rd×d be the Hessian of the loss at θ.

∗ Example: ∇2`(z, θ) = xx>

– Assume that the expected loss Hessian Ez∼p∗ [∇2`(z, θ)] � 0 is positive definite
for all θ ∈ Rd. This assumption is actually not needed, but it will make the math
simpler.13

• Outline of analysis

– Step 0 (consistency): show that θ̂
P−→ θ∗. This is obtained by a uniform con-

vergence argument to show that L̂ approximates L well. Then, since the Hessian
E[∇2`(z, θ)] is positive definite, minimizing L̂ will eventually minimize L. We will
not dwell on this point.

13 In fact, if the expected loss is rank deficient, things are actually even better, since the complexity will
depend on the rank of the Hessian rather than the dimensionality.
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– Step 1: obtain an asymptotic expression for the parameter error by Taylor
expanding the gradient of the empirical risk.

θ̂ − θ∗. (365)

– Step 2: obtain an asymptotic expression for the excess risk by Taylor expanding
the expected risk.

L(θ̂)− L(θ∗). (366)

• Definition 19 (well-specified model)

– Assume that the loss function corresponds to the log-likelihood under a proba-
bilistic model pθ:

`((x, y); θ) = − log pθ(y | x), (367)

so that θ̂ is the (conditional) maximum likelihood estimate under this model.

– We say that this model family {pθ}θ∈Rd is conditionally well-specified if p∗(x, y) =
p∗(x)pθ∗(y | x) for some parameter θ∗ ∈ Rd.

– Suppose each model θ actually specifies a joint distribution over both x and y:
pθ(x, y). We say that this model family {pθ}θ∈Rd is jointly well-specified if
p∗(x, y) = pθ∗(x, y) for some parameter θ∗ ∈ Rd. This places a much stronger
assumption on the data generating distribution. If x is an image and y is a single
binary label, this is much harder to satisfy.

– Of course, jointly well-specified implies conditionally well-specified.

• In the conditionally well-specified case, the Bartlett identity allows us to equate the
variance of the risk gradient with the risk Hessian. This quantity is the Fisher infor-
mation matrix (or rather, a generalization of it).

• Theorem 21 (Bartlett identity)

– In the well-specified case (conditionally, and thus also jointly), the following iden-
tity holds:

∇2L(θ∗) = Var(∇`(z, θ∗)). (368)

• Proof of Theorem 21:

– Recall that z = (x, y).
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– Using the fact that probability densities integrate to one:∫
p∗(x) e−`(z,θ

∗)︸ ︷︷ ︸
pθ∗ (y|x)

dz = 1. (369)

– Assuming regularity conditions, differentiate with respect to θ∗:∫
p∗(x)e−`(z,θ

∗)(−∇`(z, θ∗))dz = 0. (370)

Note that this implies E[∇`(z, θ∗)] = 0, which shouldn’t be surprising since θ∗

minimizes L(θ) = E[`(z, θ∗)].

– Differentiating again, using the product rule:∫
p∗(x)[−e−`(z,θ∗)∇2`(z, θ∗) + e−`(z,θ

∗)∇`(z, θ∗)∇`(z, θ∗)>]dz = 0. (371)

– Re-arranging:

E[∇2`(z, θ∗)] = E[∇`(z, θ∗)∇`(z, θ∗)>]. (372)

– Using the fact that E[∇`(z, θ∗)] = 0 and the definition of L(θ) yields the result.

• Remark: our general analysis does not assume the model is well-specified. We will
only make this assumption for examples to get simple expressions for intuition.

• Example 25 (well-specified linear regression)

– Assume that the conditional model is as follows:

∗ x ∼ p∗(x) for some arbitrary p∗(x)

∗ y = θ∗ · x+ ε, where ε ∼ N (0, 1)

– Loss function: `((x, y), θ) = 1
2
(θ · x− y)2 (the log-likelihood up to constants)

– Check that the following two are equal:

∗ Hessian: ∇2L(θ) = E[xx>] (covariance matrix of data)

∗ Variance of gradient: Var(∇`(z, θ)) = E[εxx>ε] = E[xx>], where the last
equality follows from independence of x and ε

Now let us analyze the parameter error (step 1) and expected risk (step 2) in the
general (not necessarily well-specified) case. In the following, pay attention how fast
each of the terms is going to zero.

• Step 1: analysis of parameter error
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– Since ` is twice differentiable, we can perform a Taylor expansion of the gradient
of the empirical risk (∇L̂) around θ∗:

∇L̂(θ̂) = ∇L̂(θ∗) +∇2L̂(θ∗)(θ̂ − θ∗) +Op(‖θ̂ − θ∗‖2
2). (373)

– Using the fact that the LHS ∇L̂(θ̂) = 0 (by optimality conditions of the empirical
risk minimizer) and rearranging:

θ̂ − θ∗ = −∇2L̂(θ∗)−1
(
∇L̂(θ∗) +Op(‖θ̂ − θ∗‖2

2)
)
. (374)

– As n→∞:

∗ By the weak law of large numbers, we have

∇2L̂(θ∗)
P−→ ∇2L(θ∗). (375)

Since the inverse is a smooth function around θ∗ (we assumed ∇2L(θ∗) � 0),
we can apply the continuous mapping theorem:

∇2L̂(θ∗)−1 P−→ ∇2L(θ∗)−1. (376)

∗ L̂(θ∗) is a sum of mean zero i.i.d. variables, so by the central limit theorem,√
n · ∇L̂(θ∗) converges in distribution:

√
n · ∇L̂(θ∗)

d−→ N (0,Var(∇`(z, θ∗))). (377)

An intuitive implication of this result is that L̂(θ∗) = Op

(
1√
n

)
.

∗ Suppose θ̂ − θ∗ = Op(f(n)). By (374), f(n) goes to zero at a rate which is
the maximum of 1√

n
and f(n)2. This implies that f(n) = 1√

n
, so we have:

√
n ·Op(‖θ̂ − θ∗‖2

2)
P−→ 0. (378)

– By Slutsky’s theorem, we can substitute the limits into (374) to obtain:

√
n · (θ̂ − θ∗)︸ ︷︷ ︸

parameter error

d−→ N
(
0,∇2L(θ∗)−1Var(∇`(z, θ∗))∇2L(θ∗)−1

)
, (379)

where we used the fact that if xn
d−→ N (0,Σ), then Axn

d−→ N (0, AΣA>). This

also establishes that the parameter error behaves θ̂ − θ∗ = Op

(
1√
n

)
as expected.

∗ ∇2L(θ∗): measures the amount of curvature in the loss function at θ∗. The
more there is, the more stable the parameter estimates are.
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∗ Var(∇`(z, θ∗)): measures the variance in the loss gradient. The less there
is, the better.

∗ When
√
n(θ̂ − θ∗) d−→ N (0,Σ), Σ is known as the asymptotic variance of

the estimator θ̂.

– Example 26 (well-specified linear regression)

∗ In this case, due to (368), we have Var(∇`(z, θ∗)) = E[∇2`(z, θ∗)] = E[xx>],
so the variance factor is canceled out by one of the curvature factors.

√
n · (θ̂ − θ∗) d−→ N

(
0,E[xx>]−1

)
. (380)

Intuition: the larger x is, the more stable the parameter estimates; think about
wiggling a pencil by either holding it with two hands out at the ends (large x) or
near the center (small x).

• Step 2: analysis of excess risk

– Perform a Taylor expansion of the expected risk around θ∗:

L(θ̂) = L(θ∗) +∇L(θ∗)>(θ̂ − θ∗) +
1

2
(θ̂ − θ∗)>∇2L(θ∗)(θ̂ − θ∗) +Op(‖θ̂ − θ∗‖3

2).

(381)

– By optimality conditions of the expected risk minimizer θ∗, we have ∇L(θ∗) = 0.
This the key to getting O

(
1
n

)
rates of convergence.

– Multiplying by n and rearranging:

n(L(θ̂)− L(θ∗)) =
1

2

√
n(θ̂ − θ∗)>∇2L(θ∗)

√
n(θ̂ − θ∗) +Op(n‖θ̂ − θ∗‖3

2). (382)

– Substituting in the parameter error:

∗ Facts

· If xn
d−→ N (0,Σ), then xnx

>
n

d−→ W(Σ, 1), where W(Σ, 1) is a Wishart
distribution with mean Σ and 1 degree of freedom.

· Taking the trace of both sides, we have that x>nxn = tr(xnx
>
n )

d−→ tr(W(Σ, 1)).14

· The distribution on the RHS is a weighted sum of d chi-squared dis-
tributed variables, whose distribution is the same as

∑d
j=1 Σjjv

2
j , where

vj ∼ N (0, 1) is a standard Gaussian and v2
j ∼ χ2

1 is a chi-squared.

14We are abusing notation slightly by writing the trace of a distribution D to mean the distribution of the
trace of x ∼ D.
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∗ In our context, let us define

xn =
√
n(∇2L(θ∗))

1
2 (θ̂ − θ∗). (383)

Then

Σ = ∇2L(θ∗)−
1
2 Var(∇`(z, θ∗))∇2L(θ∗)−

1
2 . (384)

Therefore:

n(L(θ̂)− L(θ∗))
d−→ 1

2
trW

(
∇2L(θ∗)−

1
2 Var(∇`(z, θ∗))∇2L(θ∗)−

1
2 , 1
)
,

(385)

whereW(V, n) is the Wishart distribution with scale matrix V and n degrees
of freedom.

– Example 27 (well-specified models)

∗ Since the model is well-specified, everything cancels nicely, resulting in:

n(L(θ̂)− L(θ∗))
d−→ 1

2
trW(Id×d, 1). (386)

∗ The limiting distribution is half times a χ2
d distributed random variable, which

has mean d
2

and variance d.

∗ To get an idea of their behavior, we can compute the mean and variance:

· Mean: E[n(L(θ̂)− L(θ∗))]→ d
2
.

· Variance: Var(n(L(θ̂)− L(θ∗)))→ d.

In short,

L(θ̂)− L(θ∗) ∼ d

2n
. (387)

Note that this recovers the result from fixed-design linear regression (337)
(the factor of 1

2
is due to defining the loss function with an extra 1

2
).

∗ Interestingly, in the well-specified case, the expected risk does not depend
asymptotically on any properties of x.

· For parameter estimation, the more x varies, the more accurate the pa-
rameter estimates.

· For prediction, the more x varies, the harder the prediction problem.

· The two forces cancel each other out exactly (asymptotically).

• Remarks

– For this brief section, suppose the model is well-specified.
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– We have shown that regret L(θ̂)−L(θ∗) is exactly d
2n

asymptotically; we emphasize
that there are no hidden constants and this is equality, not just a bound.

– Lower-order terms

∗ Of course there could be more error lurking in the lower order ( 1
n2 ) terms.

∗ For linear regression, the low-order terms Op(‖θ̂− θ∗‖2
2) in the Taylor expan-

sion are actually zero, and the only approximation comes from estimating the
second moment matrix E[xx>].

∗ For the fixed design linear regression setting, ∇2L̂(θ∗) = ∇2L(θ∗), so all
lower-order terms are identically zero, and so our asymptotic expressions are
exact.

– Norm/regularization

∗ We only obtained results in the unregularized case. Asymptotically as n→∞
and the dimension d is held constant, the optimal thing to do (up to first
order) is not use regularization.

∗ So these results are only meaningful when n is large compared to the com-
plexity (dimensionality) of the problem. This is consistent with the fact that
the type of analyses we do are fundamental local around the optimum.

∗ What about constraining the norm? This also doesn’t do anything since if
the norm constraint even slightly too big, then locally it is not tight.

• Let us compare the asymptotic expression (386) with results that we’ve derived previ-
ously in this class.

– Using uniform convergence, we were only able to get a 1√
n

convergence rate for the
unrealizable setting. This was unavoidable using our techniques since we relied on
concentration of empirical risk to expected risk, which even for a single hypothesis
is already 1√

n
.

– How did we get a faster rate? While asymptotics gives us the correct rate (as
long as n→∞ while all other quantities such as dimensionality remain constant),

there are non-asymptotic effects hidden away in the Op

(
n−

3
2

)
terms. capturing

different aspects regarding the complexity of the learning problem. For instance,
1√
n

is the rate associated with the norm, while 1
n

is associated with the dimen-
sionality.

– In online learning, we were able to get a logn
n

bound for strongly convex loss
functions. However, strong convexity is too much to ask for, since any linear model
will not satisfy this. In the asymptotic setting, we only need strong convexity
in expectation (averaged over data points) at θ∗ (remember, the entire analysis
operates locally around θ∗). It is also possible to analyze online learning under
statistical assumptions and obtain bounds that depend on strong convexity in
expectation.
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• Comparison of generative versus discriminative models (skipped in lecture)

– Recall one of the main motivations of asymptotic analysis was that we could
compare different estimators.

– In this section, let’s assume that the model is jointly well-specified and is an
exponential family (includes logistic regression, conditional random fields, MRFs,
etc):

pθ(x, y) = exp
(
φ(x, y)>θ − A(θ)

)
, (388)

where

∗ φ(x, y) ∈ Rd is the feature vector,

∗ θ ∈ Rd are the parameters, and

∗ A(θ) = log
∫
X×Y exp(φ(x, y)>θ)dxdy is the joint log-partition function.

∗ A(θ;x) = log
∫
Y exp(φ(x, y)>θ)dy is the conditional log-partition function

(useful later).

– We consider two estimators which are used to train:

∗ Generative: `gen((x, y), θ) = − log pθ(x, y) defines estimator θ̂gen

∗ Discriminative: `dis((x, y), θ) = − log pθ(y | x) defines estimator θ̂dis

Here, we are being careful to define the estimators with respect to the same model,
but only changing the estimator as to pin down the underlying essence between
generative and discriminative estimation.

– Important: note that we are using different loss functions at training time, al-
though at test time, we still evaluate using the discriminative loss `dis.

– Recall that the asymptotic variance of the estimators θ̂ − θ∗ are functions of
∇2`(z; θ)−1.

– For exponential families, the derivatives are simply the moments of the distribu-
tions:

∗ Lgen(θ∗) = E[∇2`gen((x, y), θ∗)] = ∇2A(θ∗) = Var(φ(x, y)).

∗ Ldis(θ
∗) = E[∇2`dis((x, y), θ∗)] = E[∇2A(θ;x)] = E[Var(φ(x, y) | x)].

– Key variance decomposition identity:

Var(φ(x, y)) = E[Var(φ(x, y) | x)] + Var(E[φ(x, y) | x]). (389)

Since variance matrices are PSD, we have that

Var(φ(x, y)) � E[Var(φ(x, y) | x)]. (390)

Inverting:

Var(φ(x, y))︸ ︷︷ ︸
asymptotic variance of θ̂gen − θ∗

� E[Var(φ(x, y) | x)]︸ ︷︷ ︸
asymptotic variance of θ̂dis − θ∗

. (391)
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This says that the asymptotic variance of generative estimator (θ̂gen) to be at

most the asymptotic variance of the discriminative estimator (θ̂dis).

– To get the generalization error from the parameter error, we simply left and right
multiply by the same matrix ∇2Ldis(θ

∗)−
1
2 . Therefore, the generalization error

of the generative estimator is at most the generaliztaion of the discriminative
estimator.

– However, if the model is not jointly well-specified, then the two estimators will
not even converge to the same θ∗ in general, and the discriminative estimator will
clearly be better since it converges to the expected risk minimizer.

4.4 References

• Sham Kakade’s statistical learning theory course

• Hsu/Kakade/Zhang, 2014: Random design analysis of ridge regression

• van der Vaart, 2000: Asymptotic Statistics
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[begin lecture 14] (14)

5 Kernel methods

5.1 Motivation (Lecture 14)

• So far in this class, we have studied excess risk L(ĥ)− L(h∗), which measures how far
our estimated predictor ĥ is away from the best possible predictor h∗ ∈ H in terms of
expected risk. But this is only half of the story, since the expected risk that we care
about is the sum of the estimation error (excess risk) and the approximation error:

L(ĥ) = L(ĥ)− L(h∗) + L(h∗). (392)

The approximation has to do with how expressive H is.

• We have mainly focused on linear models, where the prediction is a function of the
inner product 〈w, x〉 between a weight vector w ∈ Rd and an input x ∈ Rd (e.g., for
regression, the prediction function is just f(x) = 〈w, x〉). However, real data often
exhibit highly non-linear relationships which are important to model.

• Fortunately, all our algorithms so far (e.g., online gradient descent) actually only re-
quire convexity in w to ensure that the loss functions are convex, not x. So we can
sneakily replace x with an arbitrary feature vector φ(x) ∈ Rd.

– Example: φ(x) = (1, x, x2) for x ∈ R
– Example: φ(x) = (count of a appearing in x, . . . ) for a string x.

Note that x does not even need to be a real vector. In general, we assume that x ∈ X
for some set X of all possible inputs (we won’t assume any further structure on X for
now).

• We can actually represent very expressive non-linear functions by simply augmenting
φ(x), but the problem is that φ(x) would have to be very high-dimensional in order
to attain the desired degree of expressiveness, resulting in computationally expensive
algorithms. A secondary consideration is that for some problems, it might be hard to
design good features directly.

• Kernels address the two issues above by offering:

– A computationally efficient way of working with high (and even infinite) dimen-
sional φ(x) implicitly.

– A different perspective on features, which can be more natural from a modeling
perspective for certain applications.
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• Before we define kernels formally, let’s provide some intuition.

– Consider online gradient descent on, say, the squared loss: `((x, y), w) = 1
2
(y −

〈w, φ(x)〉)2.

– The weight update is (w1 = 0):

wt+1 = wt + η(yt − 〈wt, φ(xt)〉)︸ ︷︷ ︸
def
= αt

φ(xt). (393)

– We see that the weight vector will always be a linear combination of the feature
vectors (we will revisit this property in much greater generality when we study
the representer theorem):

wt =
t−1∑
i=1

αiφ(xi), (394)

and the prediction is:

〈wt, φ(xt)〉 =
t−1∑
i=1

αi〈φ(xi), φ(xt)〉, (395)

by linearity of inner products. Note that predictions only depend on the inner
product between the feature vectors. This suggests we can work with in high
(even infinite) dimensions as long as we can compute this inner product efficiently.
The specific algorithmic tradeoff of expressing online gradient descent in this
peculiar way is that we store the αt’s (T numbers) rather than the w (d numbers).
If d is much larger than T , then we win on space. On the other hand, if we have
a lot of data (T ), we must resort to approximations.

– Example 28 (Computing with quadratic features)

∗ Let the raw input be x ∈ Rb.

∗ Feature map with all quadratic terms:

φ(x) = (x2
1, . . . , x

2
b ,
√

2x1x2, . . . ,
√

2x1xb,
√

2x2x3, . . . ,
√

2x2xb, . . . ,
√

2xb−1xb),
(396)

There are O(b2) dimensions.

∗ Explicit computation: 〈w, φ(x)〉 takes O(b2) time.

∗ Implicit computation: 〈φ(x), φ(x′)〉 = 〈x, x′〉2, which takesO(b) time. 〈w, φ(x)〉
requires doing this for each of T data points, which takes O(bT ) time.

– It’s important to realize that mathematically, we’re still running online gradient
descent, and that all we’ve done is perform a computational sleight of hand, known
as the kernel trick.
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– Aside: sometimes, we can compute dot products efficiently in high (even infinite)
dimensions without using the kernel trick. If φ(x) is sparse (as is often the case
in natural language processing), then 〈φ(x), φ(x′)〉 can be computed in O(s) time
rather than O(d) time, where s is the number of nonzero entries in φ(x).

• Summary thus far

– We start with a feature map φ : X → Rd.

– We can recast algorithms such as online gradient descent in a way so that they
only depend on the inner product 〈φ(x), φ(x′)〉.

– We can sometimes compute this inner product efficiently.

• Since these algorithms only depend on the inner product, maybe we can just cut
to the chase and directly write down functions k that correspond to inner products:
k(x, x′) = 〈φ(x), φ(x′)〉 for some feature map φ.

• This is a key conceptual change: it shifts our perspective from thinking in terms of
features of single inputs to thinking about a similarity k(x, x′) between two examples
x and x′. Sometimes, similarities might be more convenient from a modeling point of
view.

5.2 Kernels: definition and examples (Lecture 14)

• We will first define kernels as a standalone concept without reference to feature maps.
Later, we’ll establish the connection.

• Definition 20 (kernel)

– A function k : X × X → R is a positive semidefinite kernel (or more simply,
a kernel) iff for every finite set of points x1, . . . , xn ∈ X , the kernel matrix
K ∈ Rn×n defined by Kij = k(xi, xj) is positive semidefinite.

• Let us now give some examples of kernels, and then prove that they are indeed valid
according to Definition 20. Assume in the following that the input space is X = Rb.
Note that we can visualize a kernel for X = R by fixing x to some value (say 1) and
plotting k(x, x′) against x′.

– Linear kernel:

k(x, x′) = 〈x, x′〉 . (397)

– Polynomial kernel:

k(x, x′) = (1 + 〈x, x′〉)p. (398)

127



∗ Intuition: for boolean features (x ∈ {0, 1}b), this corresponds to forming
conjunctions of the original features.

∗ Here, we can check that the corresponding dimensionality (number of fea-
tures) is O(bp), which is exponential in p.

– Gaussian kernel:

k(x, x′) = exp

(
−‖x− x′‖2

2

2σ2

)
. (399)

∗ A Gaussian kernel puts a smooth bump at x.

∗ The bandwidth parameter σ2 governs how smooth the functions should be:
larger σ2 yields more smoothness.

∗ The corresponding dimensionality is infinite (as we’ll see later), so computa-
tionally, we really have no choice but to work with kernels.

∗ The Gaussian is in some sense the “go to” kernel in machine learning, because
it defines a very expressive hypothesis class, as we will see.

– Sequence mis-match kernel:

∗ The above kernels have been defined for continuous input spaces X ⊆ Rb, but
we can define kernels on any type of object.

∗ Suppose X = Σ∗ is the set of all possible sequences (strings) over some
alphabet Σ. We want to define a kernel between two strings which measures
their similarity, a problem that arises in NLP and computational biology. For
example, consider the strings format and fmt.

∗ A string u ∈ X is a subsequence of x ∈ X if there exists a sequence of indices
i = (i1, . . . , i|u|) such that 1 ≤ i1 < · · · < i|u| ≤ |x| such that uj = xij . In this
case, we write u = x(i).

∗ Note that x has exponentially many subsequences in general.

∗ Now define a kernel between two sequences x, x′ to be a weighted number of
common subsequences:

k(x, x′) =
∑
u∈Σ∗

∑
(i,j):x(i)=x′(j)=u

λ|i|+|j|, (400)

for some decay parameter 0 ≤ λ ≤ 1. Smaller values of λ discount longer
subsequences more.

• Non-example: k(x, x′) = I[‖x− x′‖2 ≤ 1]

– Exercise: show that k is not a kernel function.

• Now we show the above kernels (linear, polynomial, Gaussian) are actually valid ac-
cording to Definition 20. Let x1, . . . , xn ∈ X be any points. We have to check that the
kernel matrix K formed by Kij = k(xi, xj) is positive semidefinite. But we first start
with some general principles that will allow us to easily check whether a given function
k is a kernel easily.
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• General principles for checking kernels

– Base case: for any function f : X → R, k(x, x′) = f(x)f(x′) is positive semidefi-
nite.

∗ Proof: the kernel matrix can be written as K = uu> � 0, where u =
(f(x1), · · · , f(xn)).

– Recursive case: given two kernels k1, k2, we can create new kernels k. Note that
to check that k is a kernel, it suffices to check that K1, K2 � 0 ⇒ K � 0, where
K1, K2, K are the corresponding kernel matrices of k1, k2, k.

– Sum (recursive case): k(x, x′) = k1(x, x′) + k2(x, x′)

∗ Since positive semidefiniteness is closed under addition, K = K1 +K2 � 0.

– Product (recursive case): k(x, x′) = k1(x, x′)k2(x, x′)

∗ K = K1 ◦K2 corresponds to elementwise product.

∗ Since K1, K2 are positive semidefinite, we can take their eigendecompositions:

· K1 =
∑n

i=1 λiuiu
>
i

· K2 =
∑n

j=1 τjzjz
>
j

∗ Taking the elementwise product yields the following eigendecomposition, show-
ing that K is also positive semidefinite:

· K =
∑n

i=1

∑n
j=1 λiτj(ui ◦zj)(ui ◦zj)>, where ◦ denotes elementwise prod-

ucts.

• Using these three principles, we can show that the linear, polynomial, and Gaussian
kernels are valid.

– Linear kernel: sum over kernels defined by functions of the form f(x) = xi.

– Polynomial kernel: given the linear kernel 〈x, x′〉, add 1 (which is a kernel); this
shows that the sum 〈x, x′〉+ 1 is a kernel. By the product property, (〈x, x′〉+ 1)2

is also a kernel. Repeat p− 1 times to show that (〈x, x′〉+ 1)p is a kernel.

– Gaussian kernel:

∗ Rewrite

k(x, x′) = exp

(
−‖x‖2

2

2σ2

)
exp

(
−‖x′‖2

2

2σ2

)
exp

(
〈x, x′〉
σ2

)
. (401)

∗ The first two factors are handled by the base case.

∗ For the third factor, take the Taylor expansion:

exp

(
〈x, x′〉
σ2

)
= 1 +

〈x, x′〉
σ2

+
1

2

〈x, x′〉2

σ4
+

1

6

〈x, x′〉3

σ6
+ · · · (402)

Each term is just a homogenous polynomial kernel. Summing a finite number
of terms yields a kernel. Kernels are closed under taking limits (since the set
of positive semidefinite matrices is closed).
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5.3 Three views of kernel methods (Lecture 14)

• We now start laying the mathematical foundation for kernel methods. Specifically, we
will develop three views of kernel methods, as illustrated in Figure 5.

– Feature map φ: maps from a data point x ∈ X to an element of an inner product
space (the feature vector). This allows us to think about properties of single data
points.

– Kernel k: takes two data points x, x′ ∈ X and returns a real number. This allows
us to think about similarity between two data points.

– RKHS H: a set of functions f : X → R equipped a norm ‖ · ‖H for measuring the
complexity of functions. This allows us to think about the prediction function f
itself.

We will define each of the three views separately, but eventually show that they are all
in a sense equivalent.

Feature map φ(x)

Kernel k(x, x′) RKHS H with ‖ · ‖H

unique

unique

Figure 5: The three key mathematical concepts in kernel methods.

• First, we need a formal notion of infinite feature vectors (the range of a feature map
φ) that generalizes Rd.

• Definition 21 (Hilbert space)

– A Hilbert space H is an complete15 vector space with an inner product 〈·, ·〉 :
H×H → R that satisfies the following properties:

∗ Symmetry: 〈f, g〉 = 〈g, f〉
∗ Linearity: 〈α1f1 + α2f2, g〉 = α1 〈f1, g〉+ α2 〈f2, g〉
∗ Positive definiteness: 〈f, f〉 ≥ 0 with equality only if f = 0

The inner product gives us a norm: ‖f‖H
def
=
√
〈f, f〉.

– Examples

15 Completeness means that all Cauchy sequences (in which elements get closer and closer to each other)
converge to some element in the space (see Definition 30). Examples: set of real numbers is complete, set of
rational numbers is not.
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∗ Euclidean space: Rd, with 〈u, v〉 =
∑d

i=1 uivi

∗ Square summable sequences: `2 = {(ui)i≥1 :
∑∞

i=1 u
2
i < ∞}, with 〈u, v〉 =∑∞

i=1 uivi.

∗ Square integrable functions on [0, 1]: L2([0, 1]) = {f :
∫ 1

0
f(x)2 < ∞}, with

〈f, g〉 =
∫ 1

0
f(x)g(x)dx.16

• Definition 22 (feature map)

– Given a Hilbert space H, a feature map φ : X → H takes inputs x ∈ X to
infinite feature vectors φ(x) ∈ H.

• Theorem 22 (feature map defines a kernel)

– Let φ : X → H be a feature mapping some input space X to a Hilbert space H.

– Then k(x, x′)
def
= 〈φ(x), φ(x′)〉 is a kernel.

• Proof:

– The key idea is that the definition of the kernel only needs to look at n points,
which reduces everything to a finite problem.

– Let x1, . . . , xn be a set of points, and let K be the kernel matrix where Kij =
〈φ(xi), φ(xj)〉.

– To show that K is positive semidefinite, take any α ∈ Rn. We have

α>Kα =
n∑
i=1

n∑
j=1

αiαj 〈φ(xi), φ(xj)〉 (403)

=

〈
n∑
i=1

αiφ(xi),
n∑
i=j

αjφ(xj)

〉
(404)

≥ 0, (405)

where we use linearity of the inner product.

• Theorem 23 (kernel defines feature maps)

– For every kernel k (Definition 20), there exists a Hilbert space H and a feature
map φ : X → H such that k(x, x′) = 〈φ(x), φ(x′)〉.

16 Technically, L2([0, 1]) is not a vector space since a function f which is non-zero on a measure zero set
will still have ‖f‖H = 0. But the quotient space (with respect to functions f with ‖f‖H = 0) is a vector
space.
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• We will prove Theorem 23 later since it requires more sophisticated machinery (RKHSes).
But to get some intuition, let’s prove it for the case where the number of inputs X is
finite.

– Let X = {x1, . . . , xn} and define the kernel matrix K (which defines the entire
kernel).

– Since K ∈ Rn×n is positive semidefinite, we can write it as K = ΦΦ>. For
example we can take an eigendecomposition K = UDU> and let Φ = UD1/2 or
the Cholesky decomposition K = LL>.

– Let the feature vector φ(xi) ∈ Rn be the i-th row of Φ. We can verify that
K = ΦΦ> (equivalently, k(xi, xj) = 〈φ(xi), φ(xj)〉).

– Note: the feature map is not unique, since we can also define an alternate fea-
ture matrix Φ′ = ΦQ for any orthogonal matrix Q. In this light, kernels are a
more “pure” way of defining models, because feature vectors have this rotational
indeterminancy.

– If the input space X infinite, then we need to generalize our notion of feature
vector from Rn to an infinite dimensional space. What is that space?

5.4 Reproducing kernel Hilbert spaces (RKHS) (Lecture 14)

• We will now introduce RKHSes (a type of Hilbert space), the third view on kernel
methods. Initially, we will use it as means to show that every kernel k actually corre-
sponds to some feature map.

• But RKHSes stand on their on right as an object worth studying since they directly
allow us to work on the prediction function. Concretely, in linear regression, we fit a
weight vector w, constraining or regularizing the norm ‖w‖2, and we use w to predict
on a new input x via x 7→ 〈w, φ(x)〉. But can we get a handle on this prediction
function x 7→ f(x) directly as well as a norm ‖f‖H measuring the complexity of f?
Let H be the space of all prediction functions f we are (implicitly) considering when
using a kernel k. What is this space and how is it related to k?

• We can consider Hilbert spaces over functions f : X → R. But not all Hilbert spaces
are not suitable for machine learning.

– For example, consider H = L2([0, 1]). Recall that every f ∈ H is actually an
equivalence class over functions which differ on a measure zero set, which means
pointwise evaluations f(x) at individual x’s is not even defined.

– This is highly distressing given that the whole point is to learn an f for the
purpose of doing pointwise evaluations (a.k.a. prediction)!

– RKHSes remedy this problem.

• Definition 23 (bounded functional)
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– Given a Hilbert space H, a functional L : H → R is bounded iff there exists an
M <∞ such that

|L(f)| ≤M‖f‖H for all f ∈ H. (406)

– Example: H = Rd with the usual inner product, L(f) = 〈c, f〉 is bounded (with
M = ‖c‖2 by Cauchy-Schwartz)

• Definition 24 (evaluation functional)

– Let H be a Hilbert space consisting of functions f : X → R.

– For each x ∈ X , define the evaluation functional Lx : H → R as

Lx(f)
def
= f(x). (407)

– Example: for X = Rd and H = {fc(x) = c · x : c ∈ Rd} be linear functions, then
the evaluation functional is Lx(fc) = 〈c, x〉.

– Intuitively, the evaluation functional is a projection operator that turns a function
f into one component f(x). Hence, evaluation functionals are linear. This will
be important later.

• Definition 25 (reproducing kernel Hilbert space)

– A reproducing kernel Hilbert space H is a Hilbert space over functions f : X → R
such that for each x ∈ X , the evaluation functional Lx is bounded.

• Non-example

– Let H be the set of all square integrable continuous functions from [0, 1] to R.

– Consider fε(x) = max(0, 1− |x−
1
2
|

ε
), which is zero except for a small spike at x = 1

2

up to f(x) = 1. Note that ‖fε‖H → 0 as ε→ 0.

– Consider the evaluation functional L 1
2
. Note that L 1

2
(fε) = fε(

1
2
) = 1. So there

cannot exist an M such that L 1
2
(fε) ≤M‖fε‖H for all ε > 0.

– So this H is not a RKHS.

• Theorem 24 (RKHS defines a kernel)

– Every RKHS H over functions f : X → R defines a unique kernel k : X ×X → R.

• Proof (construction of the kernel)

– Note that Lx(f) is linear : Lx(cf) = cLx(f) and Lx(f + g) = f(x) + g(x).
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– The Riesz representation theorem states that all bounded linear functionals
L on a Hilbert space can be expressed as an inner product L(f) = 〈R, f〉 for a
unique R ∈ H.

– Applying this theorem to the evaluation functionals Lx, we can conclude that
for each x ∈ X , there exists a unique representer Rx ∈ H such that Lx(f) =
〈Rx, f〉. Recall that we also have Lx(f) = f(x) by definition. Combining yields
the reproducing property:

f(x) = 〈Rx, f〉 for all f ∈ H. (408)

This is the key property: function evaluations can be expressed as inner products.

– Now let’s define a function k:

k(x, x′)
def
= Rx(x

′). (409)

Applying the reproducing property one more time with f = Rx yields

k(x, x′) = Rx(x
′) = 〈Rx, Rx′〉. (410)

If we define a feature map φ(x)
def
= Rx, we can invoke Theorem 22 to conclude

that k(x, x′) is a valid kernel.

– In summary, any RKHS H gives rise to a kernel k called the reproducing kernel
of H. The key is the Riesz representation, which turns function evaluations into
inner products.

To complete the picture, we need to show that a kernel defines an unique RKHS.

• Theorem 25 (Moore-Aronszajn theorem)

– For every kernel k, there exists a unique RKHS H with reproducing kernel k.

• Proof sketch:

– Let k be a kernel. We will construct a RKHS H from the functions {k(x, ·) : x ∈
X}.

– First, define H0 to contain all finite linear combinations of the form

f(x) =
n∑
i=1

αik(xi, x), (411)

for all n, α1:n, x1:n. By construction, H0 is a vector space (not necessarily complete
though).
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– Second, define the inner product between f(x) =
∑n

i=1 αik(xi, x) and g(x) =∑n′

j=1 βjk(x′j, x) as follows:

〈f, g〉 def
=

n∑
i=1

n′∑
j=1

αiβjk(xi, x
′
j). (412)

Let’s check that our definition of 〈·, ·〉 is an actual inner product:

∗ Symmetry (〈f, g〉 = 〈g, f〉): by symmetry of k

∗ Linearity (〈α1f1 + α2f2, g〉 = α1 〈f1, g〉+ α2 〈f2, g〉): by definition of f and g
(they are just a linear sum of terms).

∗ Positive definiteness (〈f, f〉 ≥ 0 with equality only if f = 0):

· For any f ∈ H0, we have 〈f, f〉 = α>Kα ≥ 0 by the positive semidefinite
property of kernels.

· Now we will show that 〈f, f〉 = 0 implies f = 0. Let f(x) =
∑n

i=1 αik(xi, x).
Take any x ∈ X and define c = [k(x1, x), . . . , k(xn, x)]>. Since(

K c
c> k(x, x)

)
� 0, (413)

we must have that

α>Kα + 2bc>α + b2k(x, x) ≥ 0 (414)

for all b. Note that 〈f, f〉 = α>Kα = 0. We now argue that c>α = 0. If
c>α > 0, then as b approaches 0 from the negative side, we have that the
LHS of (414) is strictly negative, which is a contradiction. If c>α < 0,
then as b approaches 0 from the positive side, we get a contradiction as
well. Therefore, f(x) = c>α = 0.

– So far we have a valid Hilbert space, but we need to still check that all evaluation

functionals Lx are bounded to get an RKHS. Also, we should check that Rx
def
=

k(x, ·) is indeed a representer of function evaluationals. Take any f ∈ H0. Then:

f(x) =
n∑
i=1

αik(xi, x) [definition of f ] (415)

= 〈f, k(x, ·)〉 [definition of inner product] (416)

= 〈Rx, f〉 [definition of Rx]. (417)

– Finally, let H be the completion of H0 (by including all limit points of sequences
in H0). For details, see the references at the end of this section.

– This proves Theorem 23 because the RKHS H is an inner product space by
construction.
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• Summary

– A feature map φ : X → H: maps points in X to some inner product space H.

– A (positive semidefinite) kernel k : X × X → R: every derived kernel matrix K
is positive semidefinite

– A reproducing kernel Hilbert Space (RKHS) H containing functions f : X → R
such that function evaluations are bounded linear operators.

– Equivalences

∗ f(x) =
∑∞

i=1 αik(xi, x), Rx = k(x, ·): Moore-Aronszajn establishes connec-
tion between kernels and RKHSes

∗ φ(x) = Rx: can set feature map (not unique) to map x to the representer of
x in the RKHS

∗ k(x, x′) = 〈φ(x), φ(x′)〉: every kernel k corresponds to some inner product
(via RKHS) and vice-versa (easy)
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[begin lecture 15] (15)

5.5 Learning using kernels (Lecture 15)

• We have established that kernels k provide a space of functionsH; this is the hypothesis
class.17 Now let’s talk about learning, which is about combining the hypothesis class
H with actual data.

• Let’s start with kernelized ridge regression, where we obtain examples {(xi, yi)}ni=1,
and want to find a function f ∈ H that fits the data, where H is an RKHS. A natural
objective function is to penalize the squared loss plus a penalty for the complexity of
f , where the complexity is the RKHS norm:

f ∗ ∈ arg min
f∈H

n∑
i=1

1

2
(f(xi)− yi)2 +

λ

2
‖f‖2

H. (418)

• More generally, a learning problem can be posed as the following optimization problem:

f ∗ ∈ arg min
f∈H

L({(xi, yi, f(xi))}ni=1) +Q(‖f‖2
H), (419)

where

– L : (X × Y × R)n → R is an arbitrary loss function on n examples.

∗ Example (regression): L({(xi, yi, f(xi))}ni=1) =
∑n

i=1
1
2
(f(xi)− yi)2.

– Q : [0,∞)→ R is a strictly increasing function (regularizer).

∗ Example (quadratic): Q(‖f‖2
H) = λ

2
‖f‖2

H.

This optimization problem may seem daunting since it is optimizing over a potentially
very large function space H. But the following representer theorem reassures us that
all minimizers can be written as a linear combination of the kernel functions evaluated
at the training points.

• Theorem 26 (representer theorem)

– Let V denote the span of the representers of the training points:

V
def
= span({k(xi, ·) : i = 1, . . . , n}) =

{
n∑
i=1

αik(xi, ·) : α ∈ Rn

}
. (420)

– Then all minimizers f ∗ of (419) satisfy f ∗ ∈ V .

17For regression, our prediction at x is simply f(x), where f ∈ H. For classification and ranking problems,
we need to pass the function values through some non-linear transformation.
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• Proof

– FIGURE: [projection of f ∗ onto V ]

– The key is to use the fact that an RKHS has an inner product structure, which
allows us to use linear algebra.

– Define the orthogonal complement:

V⊥ = {g ∈ H : 〈f, g〉 = 0 for all f ∈ V }. (421)

– Any f ∈ H can be decomposed in to a part in the span of the examples and an
orthogonal part:

f ∗ = f + f⊥, (422)

where f ∈ V and f⊥ ∈ V⊥.

– The idea is that the loss is unchanged by f⊥ but the regularizer grows with non-
zero f⊥, so we must have f⊥ = 0.

– The loss depends on f ∗ only through {f ∗(xj) : j = 1, . . . , n}, which can be written
as:

f ∗(xj) = f(xj) + 〈f⊥, k(xj, ·)〉 . (423)

The second term is zero, so the loss doesn’t depend on f⊥.

– The regularizer:

Q(‖f ∗‖2
H) = Q(‖f‖2

H + ‖f⊥‖2
H). (424)

Since Q is strictly monotonic and f ∗ is a minimizer, we must have f⊥ = 0.

– Therefore, f ∗ ∈ V .

• Remark: the representer theorem does not require the loss function L to be convex.

• The representer theorem tells us α’s exist, but how to find the α’s depends on the
actual loss function and regularizer. Let’s now look at some examples.

• Example 29 (Kernelized ridge regression)

– Recall the optimization problem for regression:

min
f∈H

n∑
i=1

1

2
(f(xi)− yi)2 +

λ

2
‖f‖2

H. (425)

By the representer theorem, we have the equivalent optimization problem:

min
f∈H

n∑
i=1

1

2

(
n∑
j=1

αjk(xi, xj)− yi

)2

+
λ

2

n∑
i=1

n∑
j=1

αiαjk(xi, xj). (426)
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– Letting K ∈ Rn×n be the kernel matrix and Y ∈ Rn denote the vector of outputs,
we have:

min
α∈Rn

1

2
‖Kα− Y ‖2

2 +
λ

2
α>Kα. (427)

Differentiating with respect to α and setting to zero:

K(Kα− Y ) + λKα = 0. (428)

Rearranging:

K(K + λI)α = KY. (429)

Solving yields a solution:

α = (K + λI)−1Y. (430)

Note that the solution is not necessarily unique, since we could add any vector in
the null space of K, but there’s no reason to consider them.

– To predict on a new example x, we form kernel evaluations c ∈ Rn where ci =
k(xi, x), and then predict

y = c>α. (431)

• Example 30 (SVM classification)

– This was done in CS229, so we won’t go through it again.

– Primal (yi ∈ {−1,+1}):

min
f∈H

n∑
i=1

max{0, 1− yif(xi)}+
λ

2
‖f‖2

H. (432)

– Dual (define K̃ij = yiyjKij):

min
α∈Rn

−1>α + α>K̃α subject to 0 ≤ αi ≤
1

λ
, Y >α = 0. (433)

The dual is computed by taking the Lagrange dual of the primal optimization
problem.

• Example 31 (Kernel PCA)

– Review of PCA
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∗ Recall in (featurized) PCA, we want to find directions in our data with highest
variance.

∗ Suppose we have data points x1, . . . , xn and a feature map φ : X → Rd.

∗ Assume that the data points are centered at zero:
∑n

i=1 φ(xi) = 0.

∗ Define the empirical covariance matrix as follows:

C
def
=

1

n
Φ>Φ, (434)

where the i-th row of Φ is φ(xi).

∗ Then PCA seeks to find a eigendecomposition of C:

Cv = λv. (435)

In practice, we will compute the eigendecomposition of C and take the first
r eigenvectors v1, . . . , vr (principal components) as an approximation of the
entire feature space. Note that the vi’s form an orthonormal basis (have unit
norm and are orthogonal).

∗ The squared reconstruction error of a new point x is:∥∥∥∥∥
r∑
i=1

〈φ(x), vi〉 vi − φ(x)

∥∥∥∥∥
2

2

. (436)

For example, if we were doing anomaly detection, if a data point x has a large
reconstruction error, then x is an anomaly.

– Heuristic derivation of kernel PCA

∗ By the representer theorem (or even more simply, by inspecting the form of
the covariance matrix), we have v =

∑n
i=1 αiφ(xi) = Φ>α, so an equivalent

characterization is to project the vectors on the data points:

ΦCv = λΦv. (437)

∗ Using the definition of C and the fact that Φv = Kα, we have

1

n
K2α = λKα. (438)

Again, any solution to the following is a valid solution to the above (but we
can always add spurious vectors in the null space of K):

1

n
Kα = λα. (439)

∗ In practice, we compute the eigendecomposition of K and take the first r
eigenvectors as the approximation. For simplicity, let’s assume we just take
one principal component v ∈ H.
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– Computing in infinite dimensions

∗ Though the derivation assumed φ(x) ∈ Rd, the result is the same for φ(x) =
k(x, ·) ∈ H in general.

∗ We won’t go through the details, but the idea is to define a covariance operator
(rather than a matrix) C : H → H. The intuition is the same.

∗ Recall the principal component is now a function v ∈ H with ‖v‖H = 1,18

where v(x) =
∑n

i=1 αik(xi, x).

∗ The squared reconstruction error of a new point x is:

‖v(x)v − φ(x)‖2
H = v(x)2 − 2v(x)2 + k(x, x) = k(x, x)− v(x)2. (440)

As expected, all we need are kernel evaluations.

– Interpretation

∗ The point of PCA is to reduce the dimensionality of the data, so it might
seem strange at first we would want to use kernel PCA to first increase the
number of dimensions (possibly to infinity).

∗ This is actually okay, because the point of kernels is to reshape the data (in
non-linear ways). In doing so, we can expose better directions than those
present in the original data.

∗ For example, if we use a quadratic kernel, we are saying that we believe
the data lies close to a quadratic surface. Of course, with more dimensions,
statistical error in the directions could increase.

5.6 Fourier properties of shift-invariant kernels (Lecture 15)

• Having explored how kernels can be used in practice, let us turn back to studying
their theoretical properties. Specifically, we will use Fourier analysis to get a handle
on what information about the data a kernel is capturing. We will also see that this
leads to a new basis representation of kernels. In this section, we will focus on shift-
invariant kernels, which are kernels that don’t depend on the absolute position of the
data points.

• Definition 26 (shift-invariant kernel)

– A kernel k : X × X → R where X ⊆ Rb is shift invariant (a.k.a. stationary,
translation invariant) iff k can be written as k(x, x′) = h(x−x′) for some function
h.

– Example: Gaussian kernel

– Non-example: linear kernel ((x+ a)(x′ + a) 6= xx′)

18To make v a unit vector, we just rescale v by ‖v(x)‖−1H .
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• Our goal is to understand shift-invariant kernels in the frequency domain. In particular,
it will shed insight into the smoothness properties of the kernel.

• First, let’s warmup with some basic facts from Fourier analysis:

– FIGURE: [complex unit circle]

– eiωt = cos(ωt) + i sin(ωt)

– e−iωt = cos(ωt)− i sin(ωt)

– cos(ωt) = 1
2
eiωt + 1

2
e−iωt

– Here ω ∈ R is the frequency of the sinusoid.

– Note that everything thus far generalizes to ω ∈ Rb and t ∈ Rb; just replace ωt
with 〈ω, t〉.

• Now let’s try to construct a kernel using the Fourier basis:

– First define a feature map for a fixed ω: φ(x) = e−i〈ω,x〉 (note that this is complex-
valued, but that’s okay).

– Using this feature map, let’s define a kernel:

k(x, x′) = φ(x)φ(x′) = e−i〈ω,x−x
′〉, (441)

where ā denotes the complex conjugate of a. This kernel deems two points to be
similar if they are close modulo 2π/ω (for some fixed scalar frequency ω); clearly
this is a bit silly.

– To get more realistic kernels, we need to incorporate multiple frequencies. We can
do this by simply averaging over multiple kernels (recall that the sum of kernels is
a kernel). Specifically, let µ(·) be a finite non-negative measure over frequencies.
Then

k(x, x′) =

∫
e−i〈ω,x−x

′〉µ(dω). (442)

is also a valid kernel. Or in terms of h (recall that t = x− x′):

h(t) =

∫
e−i〈ω,t〉µ(dω). (443)

– The corresponding feature map consists of the following basis functions: {x 7→
e−i〈ω,x〉 : ω ∈ Rb}

– Intuitively µ tells us how much focus to put on various frequencies.

• Example 32 (constant)

– Let the spectral measure µ = δ0 place all its mass at 0.
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– Then k(x, x′) = h(t) = 1 is the constant kernel.

• Example 33 (single frequency)

– Suppose µ places mass only at −ω and ω:

µ =
1

2
(δ−ω + δω). (444)

– Then the resulting kernel is:

k(x, x′) = h(t) = cos(ωt). (445)

– In general, h(t) defined via µ might be complex-valued, but if µ is symmetric
(that is, µ(A) = µ(−A) for all measurable sets A), then h(t) will be real-valued.

• Example 34 (sinc)

– Let the spectral density s be the 1 over [−a, a] (that is, we only keep frequencies
below a):

s(ω) = I[−a ≤ ω ≤ a]. (446)

– Then the resulting kernel is:

h(t) =
2 sin(at)

t
. (447)

– Proof: just integrate:

h(t) =

∫ a

−a
e−iωtdω =

1

−it
(e−iat − eiat) =

1

−it
(−2i sin(at)). (448)

– Note: as a increases, we cover more frequencies. If a→∞, then h(t) converges to
a delta function at 0, which corresponds to the degenerate kernel k(x, x) = I[x =
x′].

• At first, it might seem that this is a funny way of defining certain types of kernels, but
what’s remarkable is that all shift-invariant kernels can be written in the form (442)
for some appropriate choice of µ. This statement is precisely Bochner’s theorem:

• Theorem 27 (Bochner’s theorem)

– Let k(x, x′) = h(x− x′) be a continuous shift-invariant kernel (x ∈ Rb).
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– Then there exists a unique finite non-negative measure µ (called the spectral
measure) on Rb such that

h(t) =

∫
e−i〈t,ω〉µ(dω). (449)

– Furthermore, if µ has a density s,

µ(dω) = s(ω)dω, (450)

then we call s the spectral density, and h is the Fourier transform of s.

• So far, we’ve defined kernels through various spectral measures µ. But we can also take
a given kernel and compute its spectral measure to study the properties of the kernel.
Given a candidate kernel function k(x, x′) = h(x − x′), take the Fourier transform of
h (which for symmetric functions is the inverse Fourier transform times 1/(2π)) to get
the spectral density s.

• Example 35 (box is not a kernel)

– Consider the following function:

h(t) = I[−1 ≤ t ≤ 1]. (451)

– The inverse Fourier transform times 1/(2π) is

s(ω) =
sin(ω)

πω
, (452)

reusing the result from above.

– But notice that s(ω) is negative in some places, which means, by Bochner’s theo-
rem, that h(t) is not a valid (positive semidefinite) kernel! Now we have another
way to check whether a shift-invariant function specifies a kernel—simply take
the inverse Fourier transform and see whether it’s non-negative everywhere.

• Example 36 (Gaussian kernel)

– Let the spectral density s be the density of the multivariate Gaussian distribution
with variance 1/σ2:

s(ω) =

(
2π

σ2

)−d/2
exp

(
−σ2‖ω‖2

2

2

)
. (453)
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– Then the resulting kernel is the Gaussian kernel with variance σ2 (note the in-
verting of the variance):

h(t) = exp

(
−‖t‖2

2

2σ2

)
. (454)

– Proof:

h(t) =

∫ (
2π

σ2

)−d/2
exp

(
(−σ2‖ω‖2

2 − 2i 〈ω, t〉 − σ−2i2‖t‖2
2) + σ−2i2‖t‖2

2

2

)
dω.

(455)

Complete the square and note that the Gaussian distribution (with mean it/σ)
integrates to 1.

– Intuition: the larger σ2 is, one can see from s(ω) that high frequency components
are dampened. Consequently, the smoother the kernel h(t) is.

• Example 37 (rational quadratic kernel)

– Motivation: with Gaussian kernels, how do we set the variance σ2?

– Putting on our Bayesian hats, let’s define a prior over τ = σ−2.

– Let kτ (x, x
′) be the Gaussian kernel with hyperparameter τ .

– Recalling that the sum of kernels is a kernel, we have that∫
kτ (x, x

′)p(τ)dτ (456)

is also a kernel for any p(τ).

– For mathematical convenience, let’s put a Gamma(α, β) prior on τ .

– By conjugacy, we can integrate a Gamma distribution against a Gaussian, which
yields a student-t distribution.

– Ignoring normalization constants, the kernel is the rational quadratic kernel
(derivation omitted):

h(t) =

(
1 +

βt2

2α

)−α
. (457)

– When α = 1 and β = 2, we have:

h(t) =
1

1 + t2
. (458)

– Compared with the Gaussian kernel:

∗ The area near zero is steeper, so the function can change rapidly.

∗ The tails decay slower, function values can have longer range dependencies.

This flexbility comes from integrating over values of σ2.

– Note that as α→∞, the rational quadratic approaches the Gaussian kernel.

145



[begin lecture 16] (16)

5.7 Efficient computation (Lecture 16)

• We saw how kernel methods could be used for learning: Given n points x1, . . . , xn, we
form the n × n kernel matrix K, and optimize an objective function whose variables
are α ∈ Rn. For example, in kernel ridge regression, we have α = (K + λI)−1Y ,
which requires O(n3) time. When we have large datasets (e.g., n = 106), this is
prohibitively expensive. On the other hand, when the feature vector φ(x) is high-
dimensional (especially infinite-dimensional), then scaling with n is the lesser of two
evils. But can we do better? Note that even merely computing the full kernel matrix
K takes O(n2) time, which is already too large, so we will probably have to cut some
corners.

• We will introduce two types of kernel approximations:

– Random features: We will write the kernel function as an integral, and using
Monte Carlo approximations of this integral. These approximations are of the
kernel function and are data-independent.

– Nyström method: We will sample a subset of the n points and use these points
to approximate the kernel matrix. These approximations are of the kernel matrix
and are data-dependent.

• Gaussian kernel intuitions

– Let’s get some intuition about when approximations might be a sensible thing to
do on a concrete scenario. Recall the Gaussian kernel:

k(x, x′) = exp

(
−‖x− x′‖2

2

2σ2

)
. (459)

– If the points x1, . . . , xn are far apart (relative to the bandwidth of σ2), then the
kernel matrix K will be roughly the identity matrix. In this case, we can’t possibly
hope for a low-rank approximation to capture everything.

– On the other hand, if the points are tightly clustered into m clusters, then the
kernel matrix (with sorted columns/rows) looks like a block diagonal matrix with
m blocks, where each block is a rank 1 all-ones matrix. Here, you would expect
a rank m approximation to be effective.

– In reality, the situation is somewhere in between. Of course, kernel methods are
exactly useful when the data are fairly complex, so we shouldn’t expect these
approximations to provide magical savings, unless the data is very redundant.

• Random Fourier features (Rahimi/Recht, 2008)
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– Our starting point is Bochner’s theorem (Theorem 27), which allows us to write
shift-invariant kernels in terms of an integral over some spectral measure µ:

k(x, x′) =

∫
φω(x)φω(x′)µ(dω), (460)

where φω(x) = e−i〈ω,x〉 is a single (Fourier) feature.

– The key idea is to replace the integral with a finite sum over m elements. For
simplicity, assume that µ is a probability distribution. If it is not, then we can
normalize it and then multiply the result by µ(Cb). Let ω1, . . . , ωm be drawn
i.i.d. from µ. Then, define the approximate kernel as:

k̂(x, x′) =
1

m

n∑
i=1

φωi(x)φωi(x). (461)

This kernel corresponds to having the following random feature map:

φ̂(x) = [φω1(x), . . . , φωm(x)] ∈ Cb. (462)

– As a concrete example, consider the Gaussian kernel, which has a Gaussian spec-
tral density (recall µ(dω) = s(ω)dω) with the inverse variance:

k(x, x′) = exp

(
−‖x− x′‖2

2

2σ2

)
, (463)

s(ω) =

(
2π

σ2

)−b/2
exp

(
−σ2‖ω‖2

2

2

)
. (464)

This means that each ωi ∼ N (0, σ−2I) is drawn from a Gaussian.

– Algorithm

∗ The practical upshot of random Fourier features on the Gaussian kernel is
that it is dirt simple.

∗ Before you get data, draw ω1, . . . , ωm ∼ N (0, σ−2I), which defines the random
feature map φ̂. This feature map is fixed once and for all.

∗ In training/test, given a new data point x, we can apply the feature map
φ̂(x), which simply involves m Gaussian projections.

– Note that the approximate kernel is unbiased (E[k̂(x, x′)] = k(x, x′)), so as m→
∞, we have that k̂(x, x′) converges to k(x, x′) for a fixed x, x′. We want this to
work well on average for all the data that we’re going to see, which smells almost
like uniform convergence. The following theorem quantifies this:

– Theorem 28 (random features (Rahimi/Recht, 2008))

∗ Let k be a shift-invariant kernel on x ∈ Rb.
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∗ Let

F def
=

{
x 7→

∫
α(ω)φω(x)µ(dω) : ∀ω, |α(ω)| ≤ C

}
(465)

be the subset of functions in the RKHS H with bounded Fourier coefficients
α(ω).

∗ Let

F̂ def
=

{
x 7→ 1

m

m∑
i=1

α(ωi)φωi(x) : ∀ω, |α(ω)| ≤ C

}
(466)

be the subset that is spanned by the random feature functions, where ω1:k be
drawn i.i.d. from µ.

∗ Let p∗ be any distribution over X = Rb.

∗ Define the inner product with respect to the data-generating distribution (this
is not the RKHS norm):

〈f, g〉 def
= Ex∼p∗ [f(x)g(x)]. (467)

∗ Let f ∗ ∈ F be any true function.

∗ Then with probability at least 1− δ, there exists f̂ ∈ F̂ that

‖f̂ − f ∗‖ ≤ C√
m

(
1 +

√
2 log(1/δ)

)
. (468)

– Proof of Theorem 28:

∗ This proof uses fairly standard tools: McDiarmid’s inequality and Jensen’s
inequality. The function we’re applying involves taking a norm of a function,
but we just need the bounded differences condition to hold.

∗ Fix f ∗ ∈ F with coefficients α(ω).

∗ Construct f̂ with the same coefficients, and note that f̂ ∈ F̂ and E[f̂ ] = f ∗.

∗ Define

D(ω1:m) = ‖f̂ − f ∗‖. (469)

Note that D satisfies the bounded differences inequality: letting ωi1:m = ω1:m

except on the i-th component, where it is ω′i:

|D(ω1:m)−D(ωi1:m)| ≤ ‖f̂ − f ∗‖ − ‖f̂ i − f ∗‖ (470)

≤ ‖f̂ − f̂ i‖ [triangle inequality] (471)

≤ 1

m
‖α(ωi)φωi − α(ω′i)φω′i‖ (472)

≤ 2C

m
. (473)

Note that the last line follows because |α(ωi)| ≤ C and φωi(x) = e−i〈ωi,x〉 and
|e−ia| = 1 for all a.
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∗ We can bound the mean by passing to the variance:

E[D(ω1:m)] ≤
√

E[D(ω1:m)2] [Jensen’s inequality] (474)

=

√√√√√E

∥∥∥∥∥ 1

m

m∑
i=1

(α(ωi)φωi − f ∗)

∥∥∥∥∥
2
 [expand] (475)

=

√√√√ 1

m2

m∑
i=1

E
[
‖α(ωi)φωi − f ∗‖

2] [variance of i.i.d. sum]

(476)

≤ C√
m

[use |α(ωi)| ≤ C]. (477)

∗ Applying McDiarmid’s inequality (Theorem 10), we get that

P
[
D(ω1:m) ≥ C√

m
+ ε

]
≤ exp

(
−2ε2∑m

i=1(2C/m)2

)
. (478)

Rearranging yields the theorem.

– Remark: the definition of α here differs from the Rahimi/Recht paper.

– Corollary:

∗ Suppose we had a loss function `(y, v) which is 1-Lipschitz in the second
argument. (e.g., the hinge loss). Define the expected risk in the usual way:

L(f)
def
= E(x,y)∼p∗ [`(y, f(x))]. (479)

Then the approximation ratio is bounded:

L(f̂)− L(f ∗) ≤ E[|`(y, f̂(x))− `(y, f ∗(x))|] [definition, add | · |] (480)

≤ E[|f̂(x)− f ∗(x)|] [fix y, ` is Lipschitz] (481)

≤ ‖f̂ − f ∗‖ [concavity of
√
·]. (482)

– So far, we have analyzed approximation error due to having a finite m, but as-
suming an infinite amount of data. Separately, there is the estimation error due
to having n data points:

L(f̂)− L(f̂ERM) ≤ Op

(
C√
n

)
, (483)

where f̂ERM minimzes the empirical risk over the random hypothesis class F̂ . So,
the total error, which includes approximation error and estimation error is

L(f̂ERM)− L(f ∗) = Op

(
C√
n

+
C√
m

)
. (484)
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This bound suggests that the approximation and estimation errors are balanced
when m and n are on the same order. One takeaway is that we shouldn’t over-
optimize one without the other. But one might also strongly object and say that if
m u n, then we aren’t really getting any savings! This is indeed a valid complaint,
and in order to get stronger results, we would need to impose more structure on
the problem.

• Dot product kernels (Kar/Karnick, 2012)

– We have seen that shift-invariant kernels admit an integral representation, which
allows us to use Monte Carlo to approximate it. What about non-shift invariant
kernels such as polynomial kernels, such as the following?

k(x, x′) = 〈x, x′〉p . (485)

– Although random Fourier features will not work, we can still try to write the
kernel as an expectation. The key is that if we draw a Rademacher variable ω ∈
{−1,+1}b (uniform), randomly projecting x onto ω yields an unbiased estimate
of the inner product:

〈x, x′〉 = E[〈ω, x〉 〈ω, x′〉]. (486)

Of course, this isn’t useful by itself, but it does reduce x to a scalar 〈ω, x〉, which
is useful.

– To generalize to polynomial kernels, we simply do the above construction p times
and multiply it all together. For the quadratic kernel, let ω1 and ω2 be two
independent Rademacher vectors. Then:

〈x, x′〉2 = E[〈ω1, x〉 〈ω1, x
′〉]E[〈ω2, x〉 〈ω2, x

′〉] (487)

= E[〈ω1, x〉 〈ω2, x〉 〈ω1, x
′〉 〈ω2, x

′〉], (488)

where the first line follows from the earlier calculation, and the second line follows
from independence of ω1 and ω2. Note that 〈ω1, x〉 〈ω2, x〉 is still just a number.

– More generally, if the kernel is a analytic function of the dot product, then it
admits the following Taylor expansion around 0:

k(x, x′) = f(〈x, x′〉), f(z) =
∞∑
j=0

ajz
j. (489)

– To construct a random feature,

∗ Choose J with probability proportional to aj (if we can’t sample from aj
exactly, then we can use importance weighting).
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∗ Choose ω1, . . . , ωJ Rademacher vectors, and let

φω1:J
(x) =

J∏
j=1

〈ωj, x〉 . (490)

– If we do this m times to form a m-dimensional feature vector, then we have a
Monte Carlo estimate of the kernel k. Note that in the process, we have to draw
an expected mbE[J ] Rademacher variables.

– At this point, we have only showed that we have an unbiased estimate of the
kernel. We still need to show that the variance isn’t too large. See the paper in
the references below for that.

• Nyström method (Williams/Seeger, 2000)

– In the above, we have constructed random features, which were independent of the
data. A technique that predates these, which can work better when the spectrum
of the kernel matrix is to form a low-rank approximation. This method applies
more generically to approximating large PSD matrices.

– Given a kernel matrix K ∈ Rn×n, we will sample a subset of the indices I ⊂
{1, . . . , n} with |I| = m, and let J = {1, . . . , n}\I be the other indices. We
then evaluate the kernel on points in I paired with all other points, for a total of
O(|I|n) evaluations. Then we can define the approximate kernel matrix:

K =

(
KII KIJ

KJI KJJ

)
u
(
KII KIJ

KJI KJIK
†
IIKIJ ,

)
= K̃ (491)

or more compactly:

K̃
def
= K·IK

†
IIKI·. (492)

Note that the difference KJJ−KJIK
†
IIKIJ is the Schur complement of KJJ . If we

interpret K as a covariance matrix of a Gaussian Z, then this is the conditional
variance Var(ZJ | ZI).

– Note that if K is rank m and and KII also contains linearly independent columns
(so that it captures the subspace of K), then the Schur complement is zero, and
the Nyström method is exact. If not, then the error stems from simply not being
able to capture the low rank solution by having a rank m matrix plus an error
from doing column sampling (which doesn’t yield the eigenvectors). We can think
of this as projecting the kernel matrix K on to the subspace of the data points in
I.

– How do we choose I? Two popular choices are uniform sampling and sampling
proportional to Kii = k(xi, xi), which corresponds to the squared magnitude of
xi. Intuitively, the weighted sampling focuses more energy on points which are
more important.
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– The following theorem formalizes the error bound:

– Theorem 29 (Nyström with non-uniform sampling (Drineas/Mahoney, 2005))

∗ Suppose we choose I by sampling (with replacement), choosing i ∈ {1, . . . , n}
with probability Kii/

∑n
j=1Kjj.

∗ Let K̃m be the best rank m approximation of K.

∗ Let K̃ be defined as in (491), but where we replace KII with the best rank
m approximation of KII .

∗ Then with probability at least 1− δ,

‖K − K̃‖2
F ≤ ‖K − K̃m‖2

F + 4(1 +
√

8 log(1/δ)) tr(K)2

√
m

|I|
. (493)

– Proof: follows from algebraic manipulation and concentration. Note that the
theorem statement is a correct version of Drineas and Mahoney’s Theorem 3,
where we just combined equation 31 with Lemma 9.

– The theorem suggests that we should take |I| > m, which gives us more oppor-
tunities to cover the column space of K̃m.

5.8 Universality (skipped in class)

• We have explored several different kernels, and we can (and should) certainly choose
one based on domain knowledge.

• But one can ask: is there a general purpose kernel k, in the sense that k can be used
to solve any learning problem given sufficient data? The notion of general purpose is
defined as follows.

• Definition 27 (universal kernel)

– Let X be a locally compact Hausdorff space (e.g., Rb or any discrete set, but not
infinite-dimensional spaces in general).

– Let k : X × X → R be a kernel.

– We say that k is a universal kernel (specifically, a c0-universal kernel) iff the
RKHS H with reproducing kernel k is dense in C0(X ), the set of all continuous
bounded functions on X (with respect to the uniform norm). In other words,
for any function f ∈ C0(X ) and ε > 0, there exists some g ∈ H such that
supx∈X ‖f − g‖ ≤ ε.

• The premise is that the target function we want to learn is in C0(X ), so by using
a universal kernel, we are defining an RKHS which can approximate any function in
C0(X ) as well as we want.
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• The following theorem characterizes universal kernels in terms of their Fourier proper-
ties:

• Theorem 30 (Carmeli, 2010)

– Let k be a shift-invariant kernel with spectral measure µ on X = Rd.

– If the support of µ is all of Rb, then k is a universal kernel.

Intuition: in order to represent any C0(X ) function, we must not have any gaps in our
spectrum.

• Example: the Gaussian kernel is universal; the sinc kernel is not universal.

• The final piece of the puzzle is universal consistency, which means that that a
learning algorithm will actually achieve the best possible error as the number of training
examples tends to infinity. Steinwart showed that using SVMs with a universal kernel
guarantees universal consistency. Of course, universality is only about how well we can
represent the target function; it says nothing about readily we can actually estimate
that function based on finite data.

5.9 RKHS embedding of probability distributions (skipped in class)

• So far, we’ve showed that kernels can be used for estimating functions for regression,
classification, dimensionality reduction (PCA), etc. Now we will show how kernels
can be used to represent and answer questions about probability distributions without
having to explicitly estimate them.

• As a motivating example, consider the problem of testing whether two probability
distributions P and Q are the same by only observing expectations under the distri-
butions.

• Given a distribution P , we can look at various moments of the distribution Ex∼P [f(x)]
for various functions f . For example, if f(x) = x, then we get the mean. Such a f only
gives us partial information about P : if two distributions differ in their mean, then
we know they are different, but if they have the same mean, we cannot conclude that
they are same.

• More generally, assume P and Q are defined on some locally compact Hausdorff space
X (e.g., Rb). Define the maximum mean discrepancy (MMD) as follows:

D(P,Q,F)
def
= sup

f∈F
(Ex∼P [f(x)]− Ex∼Q[f(x)]) , (494)

for some set of functions F . Shorthand: EP [f ] means Ex∼P [f(x)].
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• Can we find F so that

D(P,Q,F) = 0⇔ P = Q? (495)

Note that P = Q always implies D(P,Q,F), but the other direction requires some
work.

• If we knew P and Q were Gaussian, then it suffices to take F = {x 7→ x, x 7→ x2}, since
the first two moments define a Gaussian distribution. However, what about general P
and Q? We need a much larger class of functions F :

• Theorem 31 (Dudley, 1984)

– If F = C0(X ) (all continuous bounded functions), then D(P,Q,F) = 0 implies
P = Q.

• However, C0(X ) is a large and difficult set to work with. Fortunately, it suffices to
take F to be any set that is dense in C0(X ), in particular an RKHS:

• Theorem 32 (Steinwart, 2001)

– Let F = {f ∈ H : ‖f‖H ≤ 1}, where H is the RKHS defined by a universal kernel
k.

– Then D(P,Q,F) = 0 implies P = Q.

• Proof:

– Let P 6= Q be two distinct distributions.

– Then there exists f ∈ C0(X ) such that |EP [f ]− EQ[f ]| = ε > 0.

– Since H is universal (i.e., H is dense in C0(X ) with respect to the uniform norm),
there exists g ∈ H with g 6= 0 such that

‖f − g‖∞
def
= sup

x∈X
|f(x)− g(x)| ≤ ε/3. (496)

– This means |EP [f ]− EP [g]| ≤ ε/3 and |EQ[f ]− EQ[g]| ≤ ε/3.

– By the triangle inequality, |EP [g]− EQ[g]| ≥ ε/3 > 0.

– Rescale g: let u = g/‖g‖H ∈ F .

– We still have D(P,Q,F) ≥ |EP [u]− EQ[u]| > 0.

• Computing D(P,Q,F)

– We’ve established thatD(P,Q,F) contains sufficient information for testing whether
two distributions are equal. But how do we actually compute the max over F?
This seems daunting at first sight. Fortunately, we can compute D(P,Q,F) in
closed form by exploiting properties of the RKHS.
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– First, a general statement. By the reproducing property and linearity of the inner
product, we can express expected function value as an inner product:

Ex∼P [f(x)] = Ex∼P [〈k(·, x), f〉] =

〈
Ex∼P [k(x, ·)]︸ ︷︷ ︸

def
= µP

, f

〉
. (497)

Here, µP ∈ H is the RKHS embedding of the probability distribution P .

– We can now write the MMD solution as follows:

D(P,Q,F) = sup
f∈F
〈µP − µQ, f〉 = ‖µP − µQ‖H, (498)

where the sup is obtained by setting f to be a unit vector in the direction of
µP − µQ.

– Unpacking the square of the last expression and rewriting in terms of kernel
evaluations:

‖µP − µQ‖2
H = EP×P [k(x, x′)]− EP×Q[k(x, y)]− EQ×P [k(y, x)] + EQ×Q[k(y, y′)].

(499)

• Of course, in practice, we only have samples from P,Q: let x1, . . . , xn ∼ P and
y1, . . . , yn ∼ Q all be drawn independently.

• We can obtain an empirical estimate of D(P,Q,F) as a U-statistic (a U-statistic is a
function which is an average over some function applied to all pairs of points):

D̂n(P,Q,F) =
1(
n
2

)∑
i<j

[k(xi, xj)− k(xi, yj)− k(yi, xj) + k(yi, yj)]. (500)

This estimate is unbiased, since the expectation of each term is D(P,Q,F).

• Let the null hypothesis be that P = Q. Under the null hypothesis, as n → ∞, we

know that D̂n(P,Q,F)
P−→ 0, but in order to use D̂n as a test statistic for hypothesis

testing, we need to know its (approximate) distribution. (Recall that D̂n(P,Q,F) is a
random variable that is a function of the data points.)

• There are two ways to go about this:

– We can derive finite sample complexity bounds to bound the deviation of D̂(P,Q,F)
from its mean D(P,Q,F).

– We can show that D̂(P,Q,F) is asymptotically normal with some variance, and
use the normal as an approximation of the distribution.

• In the next section, we will develop the tools to analyze random variables such as these.
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5.10 Summary (Lecture 16)

• We began by noting that some algorithms (e.g., online gradient descent) do not require
arbitrary inner products between weight vectors and feature vectors, but only inner
products between feature vectors.

• This motivated the use of kernels (defined to be positive semidefinite functions), which
can provide both computational (ability to implicitly compute inner products between
infinite-dimensional feature vectors) and modeling advantages (thinking in terms of
similarities between two inputs).

• Taking a step back, we saw that all that matters at the end of the day are functions
evaluated at various inputs. This motivated the definition of reproducing kernel
Hilbert spaces (RKHS), in which two important properties hold: (i) function evalu-
ations were bounded (meaningful), and (ii) there is a nice inner product structure.

• We showed that the three distinct viewpoints above (features, kernels, functions) are
actually all equivalent (due to the Moore-Aronszajn theorem).

• The representer theorem shows that the optimum over an appropriately regularized
function space H is attained by a function in the span of the training data. This allows
us to derive kernelized SVMs, kernelized regression, kernel PCA, RKHS embeddings
of probability distributions.

• Bochner’s theorem, allows us to study the Fourier properties of shift-invariant ker-
nels, relating universality and smoothness properties of a kernel to the frequencies that
the kernel passes through.

• Bochner’s theorem allowed us to obtain computationally efficient ways to approximate
kernel methods by writing kernels as an integral over dot products of random fea-
tures. This leads to efficient algorithms. but have uncertainty estimates over function
values. Uncertainty estimates are critical for active learning and Bayesian optimization.
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[begin lecture 17] (17)

6 Neural networks

6.1 Motivation (Lecture 17)

• One major motivating factor for studying neural networks is that they have had a lot
of empirical success and attention in recent years. Here is the general recipe:

– Train on large amounts of data (Krizhevsky, 2012: 1 million examples).

– Use a very large neural network (Krizhevsky, 2012: 60 million parameters).

– Running simple stochastic gradient descent (with some (important) tweaks such
as step size control, sometimes momentum, dropout), and wait a moderately long
period of time (a week).

– Get state-of-the-art results across multiple domains.

∗ Object recognition (ImageNet): reduce error from 25.7% to 17.0% (Krizhevsky,
2012)

∗ Speech recognition (Switchboard): reduce error from 23% to 13% (Microsoft,
2009–2013)

Error reductions on these tasks/datasets are significant, since these are large real-
istic datasets (unlike MNIST) on which many serious people have tried to improve
accuracy.

• However, in theory, neural networks are poorly understood:

– The objective function is non-convex. SGD has no reason to work.

– What about the particular hypothesis class of neural networks makes them per-
form well across so many tasks? What types of functions are they good at repre-
senting?

This makes neural networks an important but challenging area to do new theoretical
research.

• Compared to the theory of online learning, uniform convergence, or kernel methods,
the theory of neural networks (“why/when do they work?”) is spotty at best. In
this lecture, we will attempt lay out the high-level important questions and provide
preliminary thrusts towards answering them, which in turn produces a series of more
concrete open questions.

• A caveat: there are many theorems that one could prove about neural networks. We
will write some of these down. However, most of these theorems only nibble off the
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corners of the problem, and do not really answer the hard questions. But that’s where
we are. We will try to point out the interpretation of these results, which is especially
important to recognize in this prehistoric stage of understanding.

6.2 Setup (Lecture 17)

• Definition

– Let x ∈ Rd be an input.

– A neural network defines a non-linear function on x. For concreteness, let us focus
on two-layer neural networks (which means it has one hidden layer).

– Let σ : R 7→ R be a non-linear function (called an activation or transfer function).
Examples:

∗ Logistic: z 7→ 1
1+e−z

(maps real numbers monotonically to [0, 1])

∗ Hyperbolic tangent (tanh): z 7→ ez−e−z
ez+e−z

(maps real numbers monotonically to
[−1, 1])

∗ Rectified linear: z 7→ max(0, z) (truncates negative numbers to zero)

We will extend σ to operate on vectors elementwise:

σ(x)
def
= [σ(x1), . . . , σ(xd)]. (501)

– An artificial neural network (not to be confused with and completely different
from the thing that’s in your brain) can be described by a function f : Rd 7→ R
which has the following form:

fθ(x) =
m∑
i=1

αiσ(wi · x+ bi). (502)

Here, the parameters are θ = (α1:m, w1:m, b1:m). In matrix notation:

fθ(x) = α · σ(Wx+ b), (503)

where the i-th row of W is wi ∈ Rd.

– A useful way to think about a neural network is that the first layer σ(Wx + b)
computes some non-linear features of the input and the second layer simply per-
forms a linear combination. So you can think of a neural network as parametrizing
the features as well as the weights α.

– FIGURE: [draw neural network]

• In practice, people use many layers (for example, in speech recognition, seven is not
uncommon). A three-layer neural network looks like this:

fθ(x) = σ(W2σ(W1x+ b1) + b2). (504)
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People also use convolutional neural networks in whichW has additional low-dimensional
structure. Recurrent neural networks are good for representing time series. We will
not discuss these here and focus on the two-layer neural networks in this lecture.

• Let F = {fθ} be the class of all neural networks as we range over values of θ.

• We can use F for regression or classification in the usual way by minimizing the loss
on the training set. For regression:

f̂ERM = arg min
fθ

L̂(θ), L̂(θ)
def
=

1

n

n∑
i=1

(fθ(x
(i))− y(i))2. (505)

• The surprising thing about neural networks is that people use stochastic gradient
descent (online gradient descent where we choose i ∈ {1, . . . , n} at each step randomly),
which converges to f̂SGD. Since the objective function L̂ is non-convex, f̂SGD will be
different from f̂ERM. so there is an additional optimization error in addition to
the usual approximation and estimation errors. The decomposition must be taken
with a grain of salt, because having suboptimal optimization effectively restricts the
hypothesis class, which actually improves estimation error (a simple example is early
stopping). So approximation and optimization error are perhaps difficult to tease apart
in methods whose success is tied to an algorithm not just an optimization problem.

oracle

H

h∗
ĥERM

approximation estimation optimization
ĥALG

Figure 6: Cartoon showing error decomposition into approximation, estimation, and opti-
mization errors.

6.3 Approximation error (universality) (Lecture 17)

• Question: which functions can be represented by two-layer neural networks? Answer:
basically all of them.

• We saw that Gaussian kernels were universal (Theorem 30) in the sense that they are
dense in C0(X ), the set of all continuous bounded functions on X .

• Functions defined by (Gaussain) kernels can be represented in terms of the partial
kernel evaluations

f(x) =
n∑
i=1

αik(xi, x). (506)
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or using Fourier features:

f(x) =
m∑
i=1

αie
−i〈wi,x〉. (507)

Note that these expressions resemble neural networks (502). All of these are linear
combinations of some non-linear basis functions. So we might expect that neural
networks would be universal. The following theorem answers affirmatively, which is
not hard to show:

• Theorem 33 (neural networks are universal)

– Consider X = [0, 1]d.

– Then the class of two-layer neural networks F is dense in C0(X ) in the uniform
metric: for every f ∗ ∈ C0(X ), and ε > 0, there exists an fθ ∈ F such that
maxx∈X |f ∗(x)− fθ(x)| ≤ ε.

• Proof of Theorem 33:

– Fix f ∗ ∈ F . Because f ∗ is continuous over a compact set (X ), it is uniformly
continuous, which means we can find a width δ such that |x1 − x2| ≤ δ implies
|f(x1)− f(x2)| ≤ ε.

– Grid X into regions Rj which are of the form: Rj = {x : |x− xj|∞ ≤ δ}.
– FIGURE: [1D function]

– Note that z 7→ σ(Cz) converges to the step function as C →∞.

– Let us construct 3d hidden units for each Rj. For d = 1, let Rj = [xj−δ, xj +δ] =
[aj, bj].

f ∗(xj)σ(C(x− aj)) + f ∗(xj)σ(C(bj − x))− f ∗(xj)σ(0). (508)

This function is approximately f ∗(xj) on Rj and zero elsewhere, So we we do this
for all regions, then we can approximate f ∗ uniformly well.

• Note that the number of hidden units is exponential in d, since the number of regions
is O((1

δ
)d). This is just a glorified nearest neighbors. So while this theorem holds, it

doesn’t really provide much insight into why neural networks work well and generalize.

• Depth: One argument made in favor of deep neural networks is that they more com-
pactly represent the data compared to a shallower one. To get intuition, let us think
about networks that perform arithmetic operations on the raw inputs via addition and
multiplication. Such networks define polynomial functions in a compact way, since
internal nodes represent factors. For example, the polynomial

f(x) = x1x
2
2x3 + x1x2x3x4 + x2

2x
3
3 + x2x

3
3x4 (509)

= (a+ b)(b+ c), (510)

where a = x1x2, b = x2x3, and c = x3x4 correspond to internal nodes.
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6.4 Generalization bounds (Lecture 17)

• The excess risk L(ĥ)−L(h∗) captures the estimation error (the generalization ability) of
an estimator ĥ. Recall that the excess risk is controlled by the Rademacher complexity
(215) of the function class, so it suffices to study the Rademacher complexity. We will
perform the analysis for two-layer neural networks.

• Theorem 34 (Rademacher complexity of neural networks)

– Let x ∈ Rd be the input vector with ‖x‖2 ≤ C2.

– Let wj ∈ Rd be the weights connecting to the j-th hidden unit, j = 1, . . . ,m

– Let α ∈ Rm be the weights connecting the hidden units to the output

– Let h : R→ R be a non-linear activation function with Lipschitz constant 1 such
that h(0) = 0; examples include

∗ Hyperbolic tangent: h(z) = tanh(z)

∗ Rectified linear: h(z) = max{0, z}
– For each set of weights (w, α), define the predictor:

fw,α(x) =
m∑
j=1

vjh(wj · x). (511)

– Let F be the class of prediction functions where the weights are bounded:

F = {fw,α : ‖α‖2 ≤ B′2, ‖wj‖2 ≤ B2 for j = 1, . . . ,m}. (512)

– Then

Rn(F) ≤ 2B2B
′
2C2

√
m√

n
. (513)

• Proof of Theorem 34:

– The key is that the composition properties of Rademacher complexity aligns very
nicely with the layer-by-layer compositionality of neural networks.

– The function mapping the input layer to a hidden unit is just a linear function:

Rn({x 7→ w · x : ‖w‖2 ≤ B2}) ≤
B2C2√
n
. (514)

– Sending each of these through the 1-Lipschitz non-linearity does not change the
upper bound on the complexity:

Rn({x 7→ h(w · x) : ‖w‖2 ≤ B2}) ≤
B2C2√
n
. (515)
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For convenience, define G as the set of vector-valued functions mapping the input
to the hidden activations, as w ranges over different values:

g(x) = [h(w1 · x), . . . , h(wm · x)]. (516)

– Now let us handle the second layer:

Rn(F) ≤ E

[
sup

‖α‖2≤B′2,g∈G

1

n

n∑
i=1

σi(α · g(Zi)).

]
(517)

– Applying Cauchy-Schwartz:

Rn(F) ≤ B′2E

[
sup
g∈G

∥∥∥∥∥ 1

n

n∑
i=1

σig(Zi)

∥∥∥∥∥
2

]
. (518)

– Using the fact that if a ∈ Rm then ‖a‖2 ≤
√
mmax1≤j≤m |aj|:

Rn(F) ≤ B′2
√
mE

[
max

1≤j≤m
sup

‖wj‖2≤B2

∣∣∣∣∣ 1n
n∑
i=1

σih(wj · Zi)

∣∣∣∣∣
]
. (519)

– This is the same as taking the sup over a single generic w subject to ‖w‖2 ≤ B2:

Rn(F) ≤ B′2
√
mE

[
sup

‖w‖2≤B2

∣∣∣∣∣ 1n
n∑
i=1

σih(w · Zi)

∣∣∣∣∣
]
. (520)

Note that the expectation on the RHS is almost the Rademacher complexity of
a single unit (515), but with absolute values. In some parts of the literature,
Rademacher complexity is actually defined with absolute values (including the
original Bartlett/Mendelson (2002) paper), but the absolute value version is a bit
harder to work with in general. For that definition, the Lipschitz composition
property still holds with an additional factor of 2 but requires that h(0) = 0 (see
point 4 of Theorem 12 of Bartlett/Mendelson (2002)). So therefore we can adapt
(515) and plug it into (520) to obtain:

Rn(F) ≤ B′2
√
m

(
2B2C2√

n

)
. (521)

• Interpretation: the bottom line of this theorem is that neural networks with non-
linearities which are smooth (Lipschitz) will generalize regardless of convexity.
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6.5 Approximation error for polynomials (Lecture 17)

• There are two problems with the previous analyses:

– First, we defined approximation error with respect to the set of all bounded con-
tinuous functions, which is clearly much too rich of a function class, and as a
result we get exponential dependence on the dimension d.

– Second, we have not yet said anything about optimization error.

• We will now present part of an ICML paper (Andoni/Panigrahy/Valiant/Zhang), which
makes some progress on both points. We will focus on using neural networks to ap-
proximate bounded-degree polynomials, which is a reasonable class of functions which
itself approximates Lipschitz functions. Further, we will show that choosing weights
W randomly and optimizing α (which is convex) is sufficient.

• Setup

– Monomial xJ = xJ1 · · ·xJd with degrees J = (J1, . . . , Jd)

∗ Example: J = (1, 0, 7), xJ = x1x
7
3

– A polynomial is f(x) =
∑

J bJx
J

∗ Example: b(1,0,7) = 3 and b(0,1,0) = −5, f(x) = 3x1x
7
3 − 5x2

– Degree of polynomial: deg(f) = maxbJ 6=0 |J |, |J |
def
=
∑d

i=1 Ji

• Inner product structure

– Let p∗(x) is the uniform distribution over C(R)d, where C(R) is set of complex
numbers c with norm at most R (|c| =

√
cc ≤ R).

– Define the inner product over functions and the associated norm:

〈f, g〉p∗
def
= Ex∼p∗ [f(x)g(x)] (522)

‖f‖p∗
def
=
√
〈f, f〉p∗ . (523)

• Neural network as an infinite polynomial

– Let σ(z) =
∑

j≥0 ajz
j

∗ Example: for σ(z) = ez, aj = 1
j!

– For w ∈ Cd, we define the basis function, which can be written as a weighted
combination of monomials xJ :

φw(x)
def
= σ(w · x) =

∑
j≥0

aj

(
d∑

k=1

wkxk

)j

def
=
∑
J

aJw
JxJ . (524)

Here, wJ =
∏d

k=1w
Jk is the product of the base weights.
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– The neural network is

f(x) =
m∑
i=1

αiφ
wi(x). (525)

– Note that weights {wJ} are orthogonal in the following sense:

Ew∼C(R)d [w
JwJ ′ ] =

{
R2|J | if J = J ′

0 otherwise.
(526)

This stems from the fact that each wj ∼ C(R) means wj = eit where t ∼
Uniform([0, 2π]); and Et∼Uniform([0,2π])[e

iateibt] = I[a = b].

• Theorem 35 (neural networks approximate bounded-degree polynomials)

– Choose w1, . . . , wm i.i.d. from C(1/
√
d)d.

– For any polynomial f ∗ of degree q and norm ‖f ∗‖ = 1, exists α1:m with ‖α1:m‖2 =∑m
i=1 |αi|2 = O(d2q/m) such that∥∥∥∥∥

m∑
i=1

αiφ
wi − f ∗

∥∥∥∥∥
p∗

= Op

(√
d2q

m

)
. (527)

• Proof of Theorem 35:

– Let the target function be:

f ∗(x) =
∑
J

bJx
J . (528)

– Construct an unbiased estimate of f ∗:

∗ For any x ∈ Cd and J ∈ Nd,

Ew∼C(R)d [φ
w(x)wJ ] = aJR

2|J |xJ , (529)

which follows from applying (526) to the expansion (524) and noting that all
random coefficients except wJ drop out.

∗ Define the coefficients

T (w) =
∑
J

bJwJ

aJR2|J | . (530)

∗ Then by construction, we have an unbiased estimate of the target polynomial:

Ew∼C(R)d [T (w)φw(x)] = f ∗(x). (531)
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– Now we would like to control the variance of the estimator.

∗ First, define the error:

η(x)
def
=

1

m

m∑
i=1

T (wi)φ
wi(x)− f ∗(x). (532)

∗ We can show that the variance falls as 1/m due to independence of w1, . . . , wm:

Ew1,...,wm∼C(R)d [‖η‖2
p∗ ] ≤

1

m
Ew∼C(R)d [|T (w)|2‖φw‖2

p∗ ]. (533)

∗ To bound the coefficients:

· Let a(q) = min|J |≤q |aJ | (property of the non-linear activation function)

· Let ‖f ∗‖1 =
∑

J |bJ | (property of the target function)

· Let q = deg(f ∗).

· Assume R ≤ 1.

· Then

|T (w)| ≤
∑
J

∣∣∣∣∣ bJwJaJR2|J |

∣∣∣∣∣ (534)

≤
∑
J

∣∣∣∣ bJ
aJR|J |

∣∣∣∣ [since |wJ | ≤ R|J |] (535)

≤
∑

J |bJ |
a(q)Rq

[since |J | ≤ q, a(q) ≤ |aJ |] (536)

=
‖f ∗‖1

a(q)Rq
. (537)

∗ Define the following bounds on the variance of the basis functions φw and the
1-norm of the target function f ∗, respectively:

β(q, R)
def
= Ew∼C(R)d

[‖φw‖2
p∗

R2q

]
, (538)

γ(q)
def
= max
‖f∗‖p∗=1

‖f ∗‖1. (539)

Then we have the following result (by plugging quantities in and applying
concavity of

√
·):

Ew1,...,wm∼C(R)d [‖η‖p∗ ] ≤

√
γ(q)2β(q, R)

a(q)2m
. (540)

– Finally, we specialize to σ(z) = ez and p∗ = C(1)d.
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∗ Claim: a(q) ≥ 1/q!

· We have aj = 1/j! and aJ is just aj times a positive integer stemming from
the multiplicities in J (for example, if J = (2, 0, 3), then aJ = 2!3!aj ≥ aj.

∗ Claim: β(q, R) = O(dq) if R = O(1/
√
d).

· We have that

Ew∼C(R)d,x∼C(1)d [φ
w(x)φw(x)] =

∑
J

a2
JR

2|J | (541)

= O(e2
√
dR). (542)

· Finally, β(q, R) = O(e2
√
dR/R2q) = O(dq) by definition of R. Note that

we need R to be small to fight the explosion stemming from e2
√
d.

∗ Claim: γ(q) = O(
√
dq)

∗ Claim: the coefficients are bounded:

m∑
i=1

|αi|2 =
1

m2

m∑
i=1

|T (wi)|2 ≤
‖f ∗‖2

1

ma(q)2R2q
= O(d2q/m). (543)

See the paper for more details.
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7 Method of moments

Note: only a small part of this unit was covered in class.

7.1 Motivation (Lecture 17)

• In the last section, with maximum likelihood estimation in exponential families, we
shifted from minimizing expected risk (where only the predictions of the model mat-
ter) to parameter estimation (where the parameters themselves matter). Parameter
estimation is a stronger requirement: if you can estimate the parameters accurately,
then you usually can predict accurately.
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• However, obtaining accurate parameter estimates is not needed for predicting accu-
rately. For example, consider a linear regression task with two identical features
(x ∈ R2 and x1 = x2 always). In this case, if we have two distinct parameters θ
and θ′ with θ1 + θ2 = θ′1 + θ′2, then the predictions are the same (θ · x = θ′ · x).

• For exponential families where all the variables are observed, parameter estimation via
maximum likelihood or maximum pseudolikelihood results in convex optimization prob-
lems. However, latent-variable models such as Gaussian mixture models (GMMs),
Hidden Markov Models (HMMs), and Latent Dirichlet Allocation (LDA) are quite use-
ful in practice, because latent-variables often provide more compact representations of
the data which are learned automatically.

• The main downside to latent-variabsle models is that standard estimation procedures
such as maximum likeihood result in non-convex optimization problems. In practice,
people use Expectation Maximization (EM) to optimize these objective functions,19

but EM is only guaranteed to converge to a local optimal setting of the parameters
which can be arbitrarily far away from the global optimum.

• In this section, we will explore alternative techniques for parameter estimation which
do not rely on likelihood-based estimation, but instead rely on method of moments.
The method of moments dates back to Karl Pearson from 1894, which was before the
maximum likelihood principle was fully developed by Fisher in the 1920s. Since then,
maximum likelihood has been the dominant paradigm for parameter estimation, mainly
due to its statistical efficiency and naturalness. There is more ad-hocness in the method
of moments, but it is exactly this ad-hocness that allows us to get computationally
efficient algorithms that converges in a sense to the globally optimal solution at
the price of reduced statistical efficiency, a theme that we saw already with maximum
likelihood and maximum pseudolikelihood.

• The abstract unsupervised learning problem is as follows:

– Let x be the observed variables and h be the hidden variable.

– Define model: pθ(x, h) for θ ∈ Θ ⊆ Rd

– Input: examples x(1), . . . , x(n) drawn i.i.d. from pθ∗

– Output: parameter estimates θ̂

– Throughout this section, we will assume that our models are well-specified, that
is, data is actually generated from our model.

As a concrete example, consider the following latent-variable model:

• Example 38 (Naive Bayes clustering model)

19 One can use other optimization methods such as gradient descent, L-BFGS. Bayesian formulations are
tackled by either variational inference, which also converge to only local optima, or MCMC methods are
guaranteed to converge in the limit, but can take exponentially long.
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– Let k be the number of possible document clusters.

– Let b be the number of possible word types in a vocabulary.

– Model parameters θ = (π,B)

∗ π ∈ ∆k: prior distribution over clusters.

∗ B = (β1, . . . , βk) ∈ (∆b)
k: distributions over words given cluster

Let Θ denote the set of valid parameters.

– The generative model is as follows: For each document i = 1, . . . , n:

∗ Sample the cluster: h(i) ∼ π

∗ For each word j = 1, . . . , L:

· Sample a word: x
(i)
j ∼ βh(i) .

• Maximum (marginal) likelihood is the standard approach to parameter estimation,
which is non-convex:

min
θ∈Θ

n∑
i=1

− log
k∑

h=1

pθ(h, x
(i)). (544)

A popular optimization algorithm is to use the EM algorithm, which can be shown to
be either a bound optimization algorithm (which repeatedly constructs a lower bound
and optimize) or coordinate-wise ascent on a related objective.

– E-step: for each example i, compute the posterior qi(h) = pθ(h
(i) = h | x(i)).

– M-step: optimize the expected log-likelihood: maxθ
∑n

i=1

∑k
h=1 qi(h) log pθ(h, x

(i)).

The EM algorithm is widely used and can get excellent empirical results, although there
are no theoretical guarantees in general that EM will converge to a global optimum,
and in practice, it can get stuck in bad local optima.

7.2 Method of moments framework (Lecture 17)

• The method of moments involves two steps:

– Step 1: define a moment mapping relating the model parameters to properties
(i.e., moments) of the data distribution specified by those parameters.

– Step 2: plug in the empirical moments and invert the mapping to get parameter
estimates.

• Moment mapping

– Let φ(x) ∈ Rp be an observation function which only depends on the observed
variables x.
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Θ

θ∗

θ̂ Rp

m∗

m̂

M

M−1

Figure 7: Schema for method of moments: We define a moment mapping M from pa-
rameters to moments. We estimate the moments (always easy) and invert the mapping to
recover parameter estimates (sometimes easy).

∗ Example: φ(x) = (x, x2).

– Define the moment mapping

M(θ)
def
= Ex∼pθ [φ(x)], (545)

which maps each parameter vector θ ∈ Rd to the expected value of φ(x) with
respect to pθ(x). This mapping is the key that links moments (which are simple
functions of the observed data) with the parameters (which are quantities that
we want to estimate).

– Example (Gaussian distribution):

∗ Suppose our model is a univariate Gaussian with parameters θ = (µ, σ2).

∗ Then for M defined above, the moment equations are as follows:

M((µ, σ2)) = Ex∼N (µ,σ2)[(x, x
2)] = (µ, σ2 + µ2). (546)

– Let’s see how moment mappings are useful. Suppose that someone told us some
moments m∗ (where m∗ = M(θ∗)). Then assuming M were invertible, we could
solve for θ∗ = M−1(m∗). Existence of the inverse is known as identifiability:

– Definition 28 (identifiability)

∗ Let Θ ⊆ Rd be a set of parameters.

∗ Define the confusable set for θ ∈ Θ as

S(θ)
def
= {θ′ ∈ Θ : M(θ) = M(θ′)}. (547)

This is the set of parameters that have the same moments as θ.

∗ We say that Θ is identifiable from φ if for almost θ ∈ Θ, we have |S(θ)| = 1.

– Example (Gaussian distribution): We can recover the parameters θ∗ = (µ∗, σ2∗)
from m∗ = (m∗1,m

∗
2) as follows:

∗ µ∗ = m∗1
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∗ σ2∗ = m∗2 −m2∗
1

Thus, the parameters are identifiable given the first two moments.

• Plug-in

– In practice, of course, we don’t have access to the true moments m∗. However,
the key behind the method of moments is that we can estimate it using a sample
average over the data points. These are the empirical moments:

m̂
def
=

1

n

n∑
i=1

φ(x(i)). (548)

– Given these empirical moments, we can simply plug in m̂ for m∗:

θ̂
def
= M−1(m̂). (549)

– How well does this procedure work? It is relatively easy to study how fast m̂
converges to m∗, at least in an asymptotic sense. We can show that (i) m̂ is close
to m∗, and then use that tho show that (ii) θ̂ is close to θ∗. The analysis reflects
the conceptual simplicity of the method of moments.

– First, since m̂ is just an average of i.i.d. variables, we can apply the central limit
theorem:

√
n(m̂−m∗) d−→ N (0,Varx∼p∗(φ(x))). (550)

– Second, assuming that M−1 is continuous around m∗, we can use the delta-method
to argue that θ̂ converges θ∗:

√
n(θ̂ − θ∗) d−→ N (0,∇M−1(m∗)Varx∼p∗(φ(x))∇M−1(m∗)>), (551)

where ∇M−1(m∗) ∈ Rd×p is the Jacobian matrix for the inverse moment mapping
M−1. Therefore, the parameter error depends on how sensitive M−1 is around
m∗. It is also useful to note that ∇M−1(m∗) = ∇M(θ∗)† (where † denotes pseu-
doinverse).

– These asymptotics are rough calculations that shed some light onto when we
would expect the method of moments to work well: ∇M(θ) ∈ Rp×d must have
full column rank and moreover, the first d singular values should be far away from
zero. Intuitively, if we perturb θ by a little bit, we want m to move a lot, which
coincides with our intuitions about the asymptotic error of parameter estimation.

• Example 39 (exponential families)
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– Recall the connection between moments and parameters in exponential families.
We will strengthen this connection by showing that maximum likelihood corre-
sponds to method of moments for exponential families.

– Consider the standard exponential family

pθ(x) = exp (θ · φ(x)− A(θ)) , (552)

where

∗ φ(x) ∈ Rd is the feature vector (observation function),

∗ θ ∈ Rd are the parameters, and

∗ A(θ) = log
∫
X exp(φ(x)>θ)dx is the log-partition function.

– Recall that the maximum likelihood estimator θ̂ is defined as follows:

θ̂ = arg max
θ

n∑
i=1

log pθ(x
(i)) (553)

= arg max
θ
{θ · µ̂− A(θ)}, (554)

µ̂ =
1

n

n∑
i=1

φ(x(i)). (555)

Taking derivatives and setting it to zero, we get that

θ̂ = M(µ̂), M(µ) = (∇A)−1(µ). (556)

– Maximum likelihood estimation is a convex optimization problem for exponential
families, but in general, maximum likelihood is not convex, nor does it coincide
with the method of moments for any feature function φ.

• In general, computing the inverse moment mapping M−1 is not easier than the maxi-
mum likelihood estimate. Method of moments is only useful if we can find an appro-
priate observation function φ such that:

– The moment mapping M is invertible, and hopefully has singular values that are
bounded below (M provides enough information about the parameters θ).

– The inverse moment mapping M−1 is computationally tractable.

7.3 Method of moments for latent-variable models (Lecture 17)

• Now that we have established the principles behind method of moments, let us tackle
the Naive Bayes clustering model (Example 38). Our strategy is to just start writing
some moments and see what kind of equations we get (they turn out to be product of
matrices).

171



• Preliminaries

– Assume each document has L ≥ 3 words (this is an unimportant technicality).

– For notational convenience, assume that each word xj ∈ Rb is represented as an
indicator vector which is equal to one in the entry of that word and zero elsewhere.

• Let’s start with the first-order moments:

M1
def
= E[x1] =

k∑
h=1

πhβh = Bπ. (557)

– Note that the moments require marginalizing out the latent variables, and marginal-
ization corresponds to matrix products.

– Interpretation: M1 ∈ Rb is a vector of marginal word probabilities.

– Clearly this is not enough information to identify the parameters.

• We can write the second-order moments:

M2
def
= E[x1x

>
2 ] =

k∑
h=1

πhβhβ
>
h = Bdiag(π)B>. (558)

– Interpretation: M2 ∈ Rd×d is a matrix of co-occurrence word probabilities. Specif-
ically, M2(u, v) is the probability of seeing word u with word v, again marginalizing
out the latent variables.

• It turns out that the model family is non-identifiable from second-order moments. So
proceed to third-order moments to get more information.

M3
def
= E[x1 ⊗ x2 ⊗ x3] =

k∑
h=1

πhβh ⊗ βh ⊗ βh. (559)

– Interpretation: M3 ∈ Rb×b×b is a rank-3 tensor of co-occurrence word probabilities.

– We will now show that three moments is sufficient for identifying the model pa-
rameters.

• Here is one approach for using M1,M2,M3 to identify θ = (π,B).

– Let η ∈ Rb be a random vector.

– Define the projection of M3 onto η as follows:

M3(η)
def
=

k∑
h=1

πhβh ⊗ βh(β>h η) = Bdiag(π) diag(B>η)B>. (560)
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– Think of M3(η) as M2 (they have the same row and column space), but some-
one has come in and tweaked the diagonal entries. Intuitively, this gives us two
different views of the latent variables.

– Now we show that given matrices M2 and M3(η), we can recover the parameters
θ = (π,B). But first, a useful lemma which captures the core computation:

– Lemma

∗ Suppose we observe matrices X = BDB> and Y = BEB> where

· D,E are diagonal matrices such that the ratios {Dii/Eii}ki=1 are all non-
zero and distinct.

· B ∈ Rb×k has full column rank (this is a reasonable condition which
intuitively says that all the clusters are different in a linear algebriac
sense). Note this automatically implies b ≥ k.

∗ Then we can recover B (up to permutation/scaling of its columns).

– Proof:

∗ Simple case

· Assume B is invertible (b = k).

· Then X and Y are also invertible.

· Compute

Y X−1 = BEB>B−>D−1B−1 = B ED−1︸ ︷︷ ︸
diagonal

B−1. (561)

· The RHS has the form of an eigendecomposition, so the eigenvectors of
Y X−1 are be exactly the columns of B up to permutation and scaling.
We actually know the scaling since the columns of B are probability
distributions and must sum to 1.

· Since the diagonal elements of ED−1 are distinct and non-zero by as-
sumption, the eigenvectors are distinct.

∗ Now suppose X and Y are not invertible. Note that X and Y have the same
column space, so we can basically project them down into that column space
where they will be invertible.

∗ Let U ∈ Rb×k be any orthonormal basis of the column space of B (taking
the SVD of M2 suffices: M2 = USU>). Note that U has full column rank by
assumption.

∗ Important: although B ∈ Rb×k is not invertible, B̃
def
= U>B ∈ Rk×k is invert-

ible.

∗ So let us project X and Y onto U by both left multiplying by U> and right
multiplying by U .

∗ Then we have the following decomposition:

· U>XU = B̃DB̃>
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· U>Y U = B̃EB̃>

∗ Now we are back in the simple case, which allows us to recover B̃. We can
obtain B = UB̃.

– We apply the lemma with X = M2 and Y = M3(η). Since η is chosen at random,
D = diag(π) and E = diag(π) diag(B>η) will have distinct ratios with probability
1.

– Once we have recovered B, then we can recover π easily by setting π = B†M1.

– We have demonstrated the essence of the method of moments approach [Anand-
kumar/Hsu/Kakade, 2012].

• We have so far that we can solve the moment equations for the Naive Bayes clustering
model and recover the parameters given the moments. These techniques can be fur-
ther extended to obtain consistent parameter estimates for Gaussian mixture models,
hidden Markov models, Latent Dirichlet allocation, restricted PCFGs, independent
component analysis, linear Bayesian networks, mixture of linear regressions, etc. An
active area of research is to extend these techniques to other model families.

• We have so far shown that if we had the true moments M2,M3 (in the limit of infinite
data), our algorithm would output the true parameters B (up to some permutation of
the columns). In practice, we do not have access to the true moments, but can estimate
them from data. We will still focus on the Naive Bayes clustering model (Example 38).
Here is the algorithm:20

• Algorithm 8 (method of moments for Naive Bayes clustering model)

– Input

∗ Observations {(x(i)
1 , x

(i)
2 , x

(i)
3 )}ni=1

∗ Unit vector η ∈ Rb (remains fixed for the algorithm, but can be chosen
uniformly at random)

– Step 1: Compute empirical moments M̂2, M̂3(η) ∈ Rb×b:

M̂2
def
=

1

n

n∑
i=1

x
(i)
1 ⊗ x

(i)>
2 (562)

M̂3(η)
def
=

1

n

n∑
i=1

x
(i)
1 x

(i)>
2 (x

(i)>
3 η). (563)

Note that without loss of generality, we can assume M̂2 is symmetric, since we
can replace M̂2 with 1

2
(M̂2 + M̂>

2 ), which is also a consistent estimator of M2.

Same goes for M̂3(η).

20This is an improved version, where rather than using eigendecomposition, we use SVD, which is algo-
rithmically simpler and more stable.
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– Step 2: Compute a whitening matrix Ŵ ∈ Rb×k: Compute the SVD (remember,
M̂2 is symmetric)

M̂2 = Û ŜÛ> (564)

and take the k largest singular values/vectors:

Ŵ = Û1:kŜ
− 1

2
1:k . (565)

– Step 3: Apply the whitening matrix to M̂3(η) and compute the SVD: Let v̂1, . . . , v̂k
be the left singular vectors of:

Ŵ>M̂3(η)Ŵ . (566)

– Step 4: Return parameters B̂ ∈ Rb×k:

B̂i ∝ (Ŵ>)†v̂i. (567)

Note that we know each column B̂i is a probability distribution, so we only need
it up to normalization constants.

• Our analysis of Algorithm 8 consists of two parts:

– Given infinite number of examples, does the algorithm output the correct param-
eters? We saw a preliminary analysis of this last time.

– Given finite number of examples, how does the error in the moment estimates af-
fect the error in the resulting parameters? This require some matrix perturbation
theory.

• Theorem 36 (correctness of Algorithm 8)

– Assume that B has full column rank and π � 0.

– In the limit of infinite data, Algorithm 8 outputs B̂ such that B̂
P−→ B (up to

permutation of the columns).

• Proof of Theorem 36

– In the limit of infinite data, we assume all the quantities are exact (so we replace
M̂2 with M2).

– To warmup, let’s start with first-order moments:

E[x1 | h] = βh, (568)

E[x1] =
k∑

h=1

πhβh = Bπ. (569)
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In computing second-order moments, we rely on the fact that x1 and x2 are
uncorrelated given h:

M2 = E[x1x
>
2 ] =

k∑
h=1

πhβhβ
>
h (570)

= B diag(π)B> (571)

= CC>. (572)

For convenience, let’s define C = B diag(π)
1
2 so that we have M2 = CC>. Now,

the third-order moments include a random scalar variable x>3 η, which just con-
tributes to the diagonal (η is some fixed random vector.)

M3(η) = E[x1x
>
2 (x>3 η)] =

k∑
h=1

πh(β
>
h η)βhβ

>
h (573)

= B diag(π) diag(B>η)B> (574)

= C diag(B>η)C>. (575)

– Since M2 is rank k, W actually whitens M2 in that W>M2W = I. This means
that (W>C)(W>C)> = I, so that W>C is an orthogonal matrix. This matrix
will play a significant role later, so we name it

F
def
= W>C. (576)

– Now, whitening M3(η) using the same W results in

W>M3(η)W = V diag(B>η)V >. (577)

This reveals that the columns of V are the singular vectors of W>M3(η)W . Recall,
that we also had

W>M3(η)W = F diag(B>η)F>. (578)

Since singular vectors are unique up to scaling z (and permutation, which is not
important), we can conclude that W>C = F = V diag(z).

– The final step is to unwhiten:

B diag(π)
1
2 = C = (W>)†V diag(z). (579)

The normalization constant is actually unnecessary since we know that the columns
of B must sum to 1, so we can write

Bi ∝ (W>)†Vi. (580)
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– For the singular vectors to be unique at each point, we required that B have rank
k and that diag(B>η) have distinct elements, which will happen with probability
1 if η is chosen at random.

• Towards sample complexity

– Now if we apply our algorithm on the estimated empirical moments M̂2, M̂3, how
close is the resulting parameters B̂ to the true parameters B?

– The way we should think about this issue is in terms of perturbation analysis.
If the algorithm is a relatively smooth function of its input, then we expect that
introducing noise to the inputs (replacing M2,M3 with M̂2, M̂3) will not alter the
parameter estimates B̂ too much.

– Now, we just need to study the error propagation through each step. The only
place where we deal with randomness is in the first step. After that, it’s mostly
bounding the spectral properties of matrices based on operations that are per-
formed on them. We will mostly be using the operator norm σ1(·) for matrices,
which is equal to the largest singular value.

• Theorem 37 (sample complexity of Algorithm 8)

– For sufficiently large n, we have with probability at least 1− δ (over randomness
in data) that the following holds: with probability at least 3/4 (over the random
choice of η), for each cluster i = 1, . . . , k:

‖B̂i −Bi‖2 = Op

(
k3
√

log(1/δ)

π2
minσk(B)3

√
n

)
. (581)

– Legend

∗ n: number of examples

∗ k: number of clusters

∗ pmin = mini πi: smallest prior probability of a cluster (hard to estimate pa-
rameters if we don’t get samples from that cluster very often)

∗ σk(B): k-th largest singular value of the conditional probabilities (if two
clusters are close, this value is small, meaning it’s hard to tell the clusters
apart)

– The probability of 3/4 isn’t a serious issue since we can repeat the procedure q
times with indepedently random choices of η to drive up this probability expo-
nentially to 1− (1/4)q.

• Proof sketch of Theorem 37

– The full proof is quite long and involved, so we refer the reader to the “Two SVDs
Suffice” paper. Instead, we will just highlight the structure of the proof and the
key ideas.
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– Recall that the plan is to study the propagation of error from the empirical mo-
ments all the way to the parameter estimates. In the process, we are multiplying,
adding, inverting matrices, taking SVDs. We need to understand the impact on
error each of these operations has.

– Here are a few basic identities regarding largest and smallest singular values to
get us started:

∗ Addition: given matrices A and B,

σ1(A+B) ≤ σ1(A) + σ1(B). (582)

∗ Multiplication: given matrices A and B,

σ1(AB) ≤ σ1(A)σ1(B). (583)

∗ Inverse: if A ∈ Rb×k have full column rank k

σ1(A) = σk(A
†)−1, (584)

where A† = (A>A)−1A> is the pseudo-inverse. Note that here the fact that
we are dealing with matrices requires some special care, as we go from first
singular value to the k-th.

– The next two are important theorems in matrix perturbation theory that allow
us to control the singular values and vectors of perturbed matrices, respectively:

∗ Weyl’s theorem:

· Let A,E ∈ Rb×k be matrices.

· Then for all i = 1, . . . , k:

|σi(A+ E)− σi(A)| ≤ σ1(E). (585)

· Interpretation: the amount by which the singular values of the perturbed
matrix A + E change is bounded by the largest singular value of the
perturbation E. We will invoke this theorem for σ1 and σk.

∗ Wedin’s theorem:

· Suppose A has the following SVD:

A =

 U1

U2

U3

 Σ1 0
0 Σ2

0 0

( V1

V2

)>
. (586)

· Let Â = A+E and let Û1, Û2, Û3, Σ̂1, Σ̂2, V̂1, V̂2 be the corresponding SVD
of Â.

· Let Φ be the matrix of canonical angles between U1 and Û1:

Φi,j = arccos(U>1;iÛ1;j). (587)
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· Suppose that for each i, σi(Σ̂1) ≥ α + δ and σi(Σi) ≤ α.

· Then

σ1(sin Φ) ≤ σ1(E)

δ
, (588)

where sin(Φ) is applied elementwise.

· Interpretation: this theorem allows us to control the error of the singular
vectors. If the first k singular values are significantly larger than the rest,
then the angles between the first k are bounded.

– Step 1: Bounding errors in moments M2, M3(η)

∗ Even though M2,M3(η) are matrices, we can bound their vectorized forms.

∗ Generically, let π be a probability vector and π̂ be an empirical average over
n multinomial draws from π. Then by the central limit theorem, we have

√
n(π̂ − π)

d−→ N (0,Cov(π)). (589)

For a multinomial, we have

Cov(π) = diag(π)− ππ>. (590)

Upper bounding the variance with the second moment and rewriting, we have:

π̂ − π = Op

(
π√
n

)
. (591)

∗ Now, applying this result to M2 and M3(η) to get a handle on the errors on
the moments:

εM2 = σ1(M̂2 −M2) = Op

(
σ1(M2)√

n

)
(592)

εM3(η) = σ1(M̂3(η)−M3(η)) = Op

(
σ1(M3(η))√

n

)
. (593)

The constants are tiny: for example, M2 is a distribution, so its singular
values are all bounded by 1.

∗ For the remainder of the proof, assume n is large enough so that

εM2 ≤
σk(M2)

2
. (594)

– Step 2: Bounding errors in the whitening matrix W

∗ Recall C = B diag(π)
1
2 and that M2 = CC>.

∗ Recall F = W>C and that FF> = W>M2W = I).
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∗ Let F̂ = Ŵ>C.

∗ Our goal is to bound

σ1(F − F̂ ). (595)

∗ Note that Ŵ doesn’t quite whiten M2, but in general, suppose we have
Ŵ>M2Ŵ = ADA> (some PSD matrix).

∗ Given this, we have:

· Ŵ = WAD
1
2A>

· F̂ = AD
1
2A>F

∗ Then

σ1(Ŵ )2 =
1

σk(M̂2)
(596)

≤ 1

σk(M2)− εM2

[Weyl’s theorem] (597)

≤ 2

σk(M2)
[assumption] (598)

≤ 2

σk(C)2
. (599)

∗ Then

σ1(F̂ − F ) ≤ σ1(F )σ1(I − AD
1
2A>) (600)

= σ1(I − AD
1
2A>) [σ1(F ) = 1] (601)

≤ σ1(I − ADA>) (602)

≤ σ1(Ŵ>(M̂2;1:k −M2)Ŵ ) (603)

≤ σ1(Ŵ )2[σ1(M̂2;1:k − M̂2) + σ1(M̂2 −M2)] (604)

= σ1(Ŵ )2[σk+1(M̂2) + σ1(M̂2 −M2)] (605)

≤ 2σ1(Ŵ )2εM2 [since M2 is rank k] (606)

≤ 4

σk(C)2
εM2 [substitute previous result]. (607)

∗ Similarly, we can show:

σ1(Ŵ † −W †) ≤ 6σ1(C)

σk(C)2
εM2 . (608)

and

σ1(Π− ΠW ) ≤ 4

σk(C)2
εM2 . (609)
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∗ For the higher-order moments, define the whitened versions:

· T = W>M3(η)W

· T̂ = Ŵ>M̂3(η)Ŵ

· εT = σ1(T̂ − T )

∗ Similarly, we can also bound the third-order moments:

εT = Op

(
εM2√

πminσk(C)2
+

εM3

σk(C)3
.

)
(610)

– Step 3: Bounding errors in the singular values and vectors

∗ Let σi and vi be the singular values and vectors of T .

∗ Let σ̂i and v̂i be the singular values and vectors of T̂ .

∗ First, a lemma that shows if the singular values are bounded from below and
separated, then the error in the singular values is small:

σi ≥ ∆ (611)

σi − σi+1 ≥ ∆. (612)

Then

‖vi − v̂i‖2 ≤
2
√
k

∆− εT
εT . (613)

∗ To show this, let θ = arccos(vi · v̂i) be the angle between the singular vectors.

‖vi − v̂i‖2
2 = 2(1− cos(θ)) ≤ 2(1− cos2(θ)) = 2 sin2(θ). (614)

By Weyl’s theorem,

|σ̂i − σj| ≥ |σi − σj| − εT ≥ ∆− εT . (615)

By Wedin’s theorem,

| sin(θ)| ≤
√

2k

∆− εT
εT . (616)

∗ Second, we show that if we choose η uniformly at random, then ∆ will be
sufficiently large. Specifically, with probability at least 1 − δ, we have ∆ ≥
Ω(δ/k2.5). For each pair of clusters, we can ensure the separation to be 1√

k

(sum of k independent variables), and we pay k2 more for a union bound over
all pairs of clusters.

∗ The final result is that with probability at least 1− δ,

‖vi − v̂i‖2 ≤ O

(
2k3

δ
εT

)
. (617)

– Step 4: Bounding errors in the parameters

∗ Application of the same ideas (see paper for more details).

181



7.4 Summary (Lecture 17)

• Computationally, the method of moments estimator is very efficient in that it requires
making one pass over the data to estimate the moments, whereas EM requires making
as many passes as necessary to get convergence.

• Statistically, the method of moments estimator is not efficient: that is, the asymptotic
variance of this estimator (551) will be higher than that of the maximum likelihood es-
timator (379). Intuitively this is because we are only using the first three moments and
higher-order moments provide more information. However, the statistical deficiency
is made up for by the computational gains. These methods are perfect for the large
data regime, where we really need to be able to process large amounts of data quickly.
For unsupervised learning using latent-variable models, this is exactly the regime we’re
in. In practice, lower statistical efficiency can be problematic. It is beneficial to use
the method of moments as initialization and run local optimization (EM), which will
improve the (empirical) log-likelihood.

• The method of moments provides a general framework for exploring new procedures.
By selecting different observation functions φ, we can reveal more or less information
about the data, making it harder or easier to invert the moment mapping to obtain
parameter estimates.

• The key idea of method of moments for these latent-variable models is to have three
views of h which are conditionally independent. Using two views allows us to identify
the column space, but not the parameters, while three views also pins down the exact
basis.

• In the context of latent-variable models where parameter estimation has traditionally
been intractable due to non-convexity, we see that method of moments can provide
a fresh perspective. By using just the first-, second-, and third-order moments, we
can obtain consistent parameter estimates efficiently by simply performing a spectral
decomposition.

7.5 References

• Anandkumar/Hsu/Kakade, 2012: A Method of Moments for Mixture Models and Hid-
den Markov Models

• Anandkumar/Foster/Hsu/Kakade/Liu, 2012: Two SVDs Suffice: Spectral decomposi-
tions for probabilistic topic modeling and latent Dirichlet allocation

• Anandkumar/Ge/Hsu/Kakade/Telgarsky, 2012: Spectral learning of latent-variable
models
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[begin lecture 18] (18)

8 Conclusions and outlook

8.1 Review (Lecture 18)

• The goal of this course is to provide a theoretical understanding of why machine learn-
ing algorithms work. To undertake this endeavor, we have developed many powerful
tools (e.g., convex optimization, uniform convergence) and applied them to the classic
machine learning setting: learning a predictor given a training set and applying to
unseen test examples.

• To obtain more clarity, it is useful to decompose the error into approximation, estima-
tion, and optimization error:

oracle

H

h∗
ĥERM

approximation estimation optimization
ĥALG

Figure 8: Cartoon showing error decomposition into approximation, estimation, and opti-
mization errors.

– Approximation error has to do with how much potential the hypothesis class has
(e.g., Gaussian kernel versus linear kernel, large norm versus smaller norm)

– Estimation error has to do with how well you’re able to learn, which depends on
the complexity of the hypothesis and the amount of data you have.

– Optimization error is how well your algorithm is able to approximate the perfect
optimizer (empirical risk minimizer).

Sometimes approximation and optimization error are hard to distinguish. For exam-
ple, in kernel methods, random Fourier features can be viewed as defining a smaller
hypothesis space or doing an approximate job optimizing the original kernel-based ob-
jective. An algorithm implicity defines a class of hypotheses which are accessible by
the algorithm.

• In the batch setting, we wish to study the generalization ability of learning algorithms.
The key quantity was excess risk

L(ĥ)− L(h∗). (618)
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– We could use uniform convergence, which studies

sup
h∈H
|L(h)− L̂(h)|. (619)

∗ FIGURE: [empirical and expected risk, convergence]

∗ Key ideas:

· Concentration: moment generating function of sub-Gaussian random vari-
ables

· Measures of complexity of hypothesis class: Rademacher complexity, cov-
ering numbers, VC dimension

– We could also use asymptotic statistics to get

L(θ̂) = L(θ∗) + (θ̂ − θ∗)>∇L2(θ∗)(θ̂ − θ∗) + · · · (620)

θ̂ − θ∗ = −∇2L̂(θ∗)∇L̂(θ∗) + · · · , (621)

which vastly simplifies the calculations needed.

• In online learning, nature adversarily chooses convex loss functions f1, . . . , fT . The
online mirror descent learner produces

wt = arg min
w∈S

{
ψ(w) +

t−1∑
i=1

w · zi

}
, (622)

We analyze the regret:

Regret(u) =
T∑
t=1

[ft(wt)− ft(u)]. (623)

The decomposition into approximation, estimation, and optimization errors is not per-
fect here.

– Key ideas:

∗ Convexity allows us to linearize losses to produce an upper bound on regret

∗ Strongly convex regularizer: tradeoff stability with fitting the data

∗ ψ allows us to adapt to the geometry of the problem and arrive at algorithsm
such as EG

• Results

– Our results for estimation error depend on both the hypothesis class H and the
number of examples. The exact dependence depends on the structure of the
problem, which we summarize here (there are analogues both in the online and
the batch settings):
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∗ Classic parametric rate: 1/
√
n

∗ If we have realizability or strong convexity: 1/n

∗ Default dependence on dimension: d

∗ If we assume sparsity (k nonzeros): k log d

∗ In infinite dimensions (RKHS), we depend on the norm of the weight vector:
‖w‖2

• But machine learning isn’t all about prediction where training and test examples are
drawn i.i.d. from the same distribution. In the following, we will point out a few other
directions.

8.2 Changes at test time (Lecture 18)

• Suppose we train a predictor, and deploy it in real-life. Theory says that as long as the
test distribution doesn’t deviate from training, we have guarantees on the predictor’s
behavior. But we do not live in a stationary world.

• Example: Google Flu Trends

– Trained on 2003–2008 data, predict flu based on (50M) common queries, got 97%
accuracy.

– In 2009, vastly underestimated (due to swine flu, people searched differently).

– In 2011–2013, overpredicted.

• Online learning doesn’t solve this problem

– One might think that online learning doesn’t place distribution over the data, so
it’s robust.

– But the analyses are with respect to an expert which is static, and if the world is
changing under you, being static is a pretty lame thing to do. So the bounds do
hold, but the statements are quite weak.

• Covariate shift

– Training distribution: x ∼ p∗

– Test distribution: x ∼ q∗

∗ Example: object recognition in different lighting conditions / camera

– Assume p∗(y | x) is fixed across both training and test

– Assume lots of unlabeled examples drawn from both p∗ and q∗ which can be used
to estimate the marginal distributions.

– Instance weighting (simplest approach)

∗ Idea: upweight examples that are underrepresented at training time.
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∗ Estimator:

θ̂ = arg min
θ
L̂(θ), , L̂(θ) =

1

n

n∑
i=1

ŵ(x)`((x, y); θ). (624)

∗ If we had infinite unlabeled data, we could use the weights ŵ(x) = p∗(x)/q∗(x),
from which it’s easy to check that θ̂ is an unbiased estimator of the general-
ization error at test time.

∗ There are two problems with this:

· First, in practice, we don’t have infinite unlabeled data, so we would need
to estimate ŵ(x).

· Second, we need to assume that q∗ is absolutely continuous with respect
to p∗ (must see all test examples at training time). Otherwise, we have
no hope of doing well.

∗ There are several procedures that address these problems as well as analyses.
For example, one can use asymptotic statistics:

· Shimodaira: Improving predictive inference under covariate shift by weight-
ing the log-likelihood function

• Domain adaptation / multi-task learning

– In domain adaptation, even p∗(y | x) might be different between train and test.

∗ Example: my email and your email

– Techniques

∗ The general idea is to solve joint ERM problem where assume that weight
vectors are close. Let W = [w1, . . . , wT ] ∈ Rd×T be the matrix of weights for
T tasks.

∗ We can think about performing joint learning where we regularize W using
one of the following:

· Assume weight vectors are similar in Euclidean distance:
∑

i 6=j ‖wi−wj‖2

· Assume weight vectors lie in the same low-dimensional subspace: use
trace norm ‖W‖∗
· Assume there exists a sparse set of features that is shared by all tasks:

use block norm ‖W‖2,1, which is the sum of the L2 norms of the rows.

∗ Neural networks provide a natural and compelling solution: just have all the
tasks share the same hidden layer.

– As far as theoretical analyses, the key intuition is that the regularizer reduces the
effective hypothesis space from T independent weight vectors to T highly-related
weight vectors.

∗ Maurer, 2006: Bounds for Linear Multi-Task Learning
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• Example: deep neural networks are non-robust

– Szegedy/Zaremba/Sutskever/Bruna/Erhan/Goodfellow/Fergus, 2014: Intriguing
properties of neural networks

– This paper shows that one can take a high-accuracy neural network for object
recognition, perturb the input by a very small adversarial amount to make the
predictor incorrect. The perturbation is inperceptible to the naked eye and is
obtained via an optimization problem like this:

min
r∈Rd

(f(x+ r)− ywrong)2 + λ‖r‖2, (625)

where r is the perturbation, f is the trained neural network, and x is the input.

– Note that if we had a classifier based on a Gaussian kernel, we couldn’t do this,
because the Gaussian kernel is smooth.

• Robustness at test time

– At test time, suppose that up to K features can be zeroed out adversarily.

– We can optimize for this using robust optimization. The following paper shows
that for classification, the robust optimization version results in a quadratic pro-
gram.

– Globerson/Roweis, 2006: Nightmare at Test Time: Robust Learning by Feature
Deletion

8.3 Alternative forms of supervision (Lecture 18)

• Active learning (learner chooses examples non i.i.d.)

– Example: learning binary classifiers in 1D

∗ Suppose data is generated according to y = I[x ≥ θ] for some unknown θ.

∗ If we sample i.i.d. from some distribution over x, our expected risk falls as
O(1/n).

∗ However, if we actively choose points (using binary search), our expected risk
falls as O(e−cn), which is exponentially faster.

– Intuition: query examples that we are most uncertain about. In reality, we have
noise, and sampling random i.i.d. is not terrible in the beginning.

– Dasgupta, 2006: Coarse sample complexity bounds for active learning

– Bach, 2007: Active learning for misspecified generalized linear models

• Semi-supervised learning

– Motivation: labeled data is expensive, unlabeled data is cheap
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– But how does knowing p∗(x) (from unlabeled data) help you with p∗(y | x) (pre-
diction problem). There is no free lunch, so we need to make some assumptions
about the relationship between p∗(x) and p∗(y | x). For example, in classification,
we can assume that the decision boundary defined by [p∗(y | x) ≥ 1

2
] doesn’t cut

through high-density regions of p∗.

– Theory

∗ p∗(x) + assumptions about relationship defines a compatibility function χ(h)

∗ Reduced hypothesis class H to ones which are compatible {h ∈ H : χ(h) = 1}
∗ Unlabeled data helps because we’re reducing the hypothesis class

– Balcan/Blum, 2009: A Discriminative Model for Semi-Supervised Learning

8.4 Interaction between computation and statistics (Lecture 18)

• This class is mostly about the statistical properties of learning algorithms, for which
there is by now quite solid theory for. One of the most interesting avenues for future
research is how computation plays a role in this story. The situation is rather complex.

• Favorable relationship: large optimization error results in smaller effective hypothesis
space and actually controls estimation error.

– Early stopping: relate to L2 regularization

– Low-rank kernel approximations

• Unfavorable relationship: good estimators are hard to compute

– Graphical models (partition function): pseudolikelihood

∗ Suppose x ∈ {0, 1}d.
∗ pθ(x) = Wθ(x)/Z(θ)

∗ The partition function Z(θ) =
∑

xWθ(x) is computationally expensive, tak-
ing in the worst case O(2d) time.

∗ However, we can maximize the pseudolikelihood
∏d

i=1 pθ(xi | x−i), which takes
O(d) time.

∗ Pseudolikelihood is computationally more efficient, but statistically less effi-
cient.

– Learning latent variable models (e.g., Gaussian mixture models):

∗ Maximum likelihood is non-convex and hard to compute.

∗ The method of moments estimator (which works under some assumptions) is
easy to compute but statistically less efficient.

– Other constraints on learning: communication, memory, privacy

• Neural networks
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– Here, the story is a bit more complex.

– On one hand, neural networks are difficult to train. People often talk about the
vanishing gradient problem in the context of gradient-based optimization, where
we are nowhere near a good solution, and yet the gradient is near zero. This
happens when the weights wj are too large, which saturates the sigmoid. To
avoid this, careful initialization and step size selection are important.

– On the other hand, if we fully optimized existing neural network models, there is
some chance they would just overfit, and the fact that we’re not fully optimizing
is actually central to their ability to generalize.
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A Appendix

A.1 Notation

In general, we will not be religious about using uppercase letters to denote random variables
or bold letters to denote vectors or matrices. The type should hopefully be clear from
context.

• General definitions

– [n] = {1, . . . , n}
– For a sequence v1, . . . , vn:

∗ Let vi:j = (vi, vi+1, . . . , vj−1, vj) be the subsequence from i to j inclusive.

∗ Let v<i = v1:i−1.

– ∇f : gradient of a differentiable function f

– ∂f(v): set of subgradients of a convex function f

– Indicator (one-zero) function:

I[condition]
def
=

{
1 if condition is true

0 otherwise.
(626)

– Probability simplex:

∆d
def
=

{
w ∈ Rd : w � 0 and

d∑
i=1

wi = 1

}
. (627)

– Euclidean projection:

ΠS(w)
def
= arg min

u∈S
‖u− w‖2 (628)

is the closest point (measured using Euclidean distance) to w that’s in S.

• Linear algebra

– Inner (dot) product: given two vectors u, v ∈ Rn, the dot product is u>v = u ·v =
〈u, v〉 =

∑n
i=1 uivi.

– Outer product: for a vector v ∈ Rn, let v⊗ = vv>

– Positive semidefinite (PSD) matrix: a square matrix A ∈ Rn×n is PSD iff A is
symmetric and v>Av ≥ 0 for all vectors v ∈ Rn.

– Eigenvalues: for a PSD matrix A ∈ Rn×n, let λ1(A), . . . , λn(A) be the eigenvalues
of A, sorted in decreasing order.
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– tr(A): for a square matrix A ∈ Rn×n, tr(A) denotes the trace of A, the sum of
the diagonal entries (tr(A) =

∑n
i=1 Aii).

∗ tr(ABC) = tr(BCA), but tr(ABC) 6= tr(BAC) in general

∗ tr(A) =
∑n

i=1 λi(A)

– diag(v): for a vector v ∈ Rd, a matrix whose diagonal entries are the components
of v and off-diagonal entries are zero.

• Probability and statistics

– Probability measure: P
– Expectation:

∗ E[m(x)] =
∫
X m(x)p(x)dx, where p(x) is a density function

∗ E[m(x)] =
∑

x∈X m(x)p(x), where p(x) is a probability mass function

• Functional analysis

– Definition 29 (Cauchy sequence)

A Cauchy sequence in a metric space (X, ρ) is (xi)i≥1 such that for any ε > 0,
there exists an integer n such that all i, j > n, ρ(xi, xj) < ε.

– Definition 30 (complete metric space)

A complete metric space (X, ρ) is one where every Cauchy sequence (xi)i≥1 con-
verges to a limit point x∗ ∈ X. Intuition: if the elements of the sequence are
getting arbitrarily close to each other, they are getting close to some particular
point in the space.

– Lp(X ) is the space of all measurable functions f with finite p-norm:

‖f‖p
def
=

(∫
|f(x)|pdx

)1/p

<∞. (629)

– Example: if X = R, f(x) = 1 is not in Lp for any p <∞.

– L2(X ) is the set of all square integrable functions.

– L∞(X ) is the set of all bounded functions.

• We will try to stick with the following conventions:

– x: input

– y: output

– d: dimensionality

– n: number of examples

– t: iteration number
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– T : total number of iterations

– f : (convex) function

– w: weight vector

– θ: parameters

– L: Lipschitz constant

– λ: amount of regularization

– η: step size

– p∗(x, y): true distribution of data

– In general:

∗ v∗ denotes the optimal value of some variable v.

∗ v̂ denotes an empirical estimate of some variable v based on training data.

A.2 Basic theorems

• Jensen’s inequality

– For any convex function f : Rd → R and random variable X ∈ Rd,

f(E[X]) ≤ E[f(X)]. (630)

• Hölder’s inequality

– For any real vectors u, v ∈ Rd,

|u · v| ≤ ‖u‖p‖v‖q, (631)

for 1/p+ 1/q = 1, where ‖u‖p = (
∑d

j=1 |uj|p)1/p is the p-norm.

– For p = q = 2, this is the Cauchy-Schwartz inequality.

– Another important case is p = 1 and q =∞.

– Note that this result holds in greater generality (for Lp spaces).
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