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1 Background and (sort of) basics

1.1 Probability

Question 1: Let Xi ∈ R be i.i.d. according to a distribution with CDF F , which for simplicity
we assume to be continuous. Let Fn be the empirical CDF given by Fn(t) = 1

n

∑n
i=1 1 {Xi ≤ t}.

Without appealing to the Glivenko-Cantelli theorem, show that

sup
t∈R
|Fn(t)− F (t)| p→ 0.

Hint: Use the fact that F and Fn are non-decreasing and consider subsets of R.

Question 2 (Moment generating function background): A mean zero random variable X is

σ2-sub-Gaussian if E[exp(λX)] ≤ exp(λ
2σ2

2 ) for all λ ∈ R.

(a) Show that if Z is mean-zero Gaussian with variance σ2, then E[exp(λZ)] = exp(λ
2σ2

2 ).

(b) Show that if Xi, i = 1, . . . , n, are i.i.d. mean zero σ2-sub-Gaussian random variables, then
E[maxi≤nXi] ≤

√
2σ2 log n.

Question 3 (Moment generating functions of squares): In this question, we investigate sub-
exponential and sub-Gaussian random variables. We let [t]+ = max{0, t} denote the positive part,
and say that 1/0 = +∞.

(a) Let Z be N(0, σ2). Show that

E[eλZ
2
] =

1√
[1− 2λσ2]+

.

(b) Let X be a mean-zero σ2-sub-Gaussian random variable. Show that

E[eλX
2
] ≤ 1√

[1− 2λσ2]+

for λ ≥ 0.

Hint: Introduce an independent Gaussian Z (with some particular variance) and compute
E[eZX ].

(c) Let Z ∼ N(0, σ2). Show that Z2−E[Z2] is sub-exponential and give sub-exponential parameters
for it.

Question 4 (An independent error bound): You have a classifier that has a probability α of
making a mistake on a random example drawn from some probability distribution P . You run the
classifier on n i.i.d. examples from P . You want to ensure that the classifier errs at least once with
probability at least 1−δ. How large does n have to be (as a function of α and δ) for this to happen?

Question 5 (Asymptotics): Suppose we have two sequences of i.i.d. random variables X1, . . . , Xn

and Y1, . . . , Yn. All 2n random variables are jointly independent and each random variable has mean
µ and variance σ2. Define the average difference:

Dn =
1

n

n∑
i=1

(Xi − Yi).

Compute the probability that Dn deviates by some amount determined by some c > 0:
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(a) limn→∞ P[Dn ≥ c]

(b) limn→∞ P[Dn ≥ c√
n

].

Express your answers in terms of the cumulative density function (CDF) Φ of the standard normal
distribution (Φ(z) = P[Z ≤ z] for Z ∼ N(0, 1)).

Question 6 (Moments):

(a) The variance of a random variable X is Var(X) = E[(X − E[X])2]. Show that

Var(X) = inf
b∈R

E[(X − b)2] = E[(X − E[X])2],

that is, E[X] minimizes E[(X − b)2] over all b ∈ R.

(b) Suppose X1 and X2 are two independent random variables with variances σ2
1 and σ2

2. Compute
Var(αX1 + βX2) for α, β ∈ R.

(c) Let X and Y be real-valued random variables and f be some arbitrary function function. Show
that the following decomposition holds:

E[(f(X)− Y )2] = E[(f(X)− E[Y | X])2] + E[Var(Y | X)]

where
Var(Y | X) = E[(Y − E[Y | X])2 | X]

is the variance of Y conditioned on X.

1.2 Convex analysis

Question 7 (Convexity): A function f : Rn → R is convex if for all x, y ∈ Rn and λ ∈ [0, 1]
we have f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). You may use that if f is twice continuously
differentiable, then f is convex if and only if ∇2f(x) � 0, that is, the Hessian ∇2f is positive
semi-definite.

(a) Show that f(x) = aTx+ b is convex for any a ∈ Rn and b ∈ R.

(b) Show that if A ∈ Rn×m is a matrix and b ∈ Rn is a vector, then f(Ax+ b) is convex whenever
f is.

(c) Show that the function f(t) = log(1 + e−t) is convex.

(d) Show that if f1, f2, . . . , fk are convex functions, then f(x) = max{f1(x), . . . , fk(x)} is convex.

Question 8 (Subgradients): The subgradient set of a convex function f : Rn → R at a point x
is defined by

∂f(x) :=
{
g ∈ Rn | f(y) ≥ f(x) + gT (y − x) for all y ∈ Rn

}
.

It is a theorem that at any point in the interior of its domain, a convex function f has a non-empty
subgradient set, and moreover, ∂f(x) = {∇f(x)} at all points where f is differentiable.

(a) Draw a picture of a convex function with at least one point where it is non-differentiable, and
draw lines defined by some of the linear functions f̂(y) = f(x) + gT (y − x) for g ∈ ∂f(x).
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(b) Let f(x) = |x|. Give formulae for ∂f(x) for all x ∈ R.

(c) Let f(x) = max{0, x}. Give formulae for ∂f(x) for all x ∈ R.

(d) Let f(x) = 1
2x

2. Give formulae for ∂f(x) for all x ∈ R.

(e) Let f(x) = g(Ax+ b), where g is convex. Show that

∂f(x) ⊂ AT∂g(Ax+ b),

where AX = {Ax : x ∈ X} for a set X . (Generally, this containment is an equality.)

Question 9 (Subgradients and convexity): Consider the prediction problem of mapping some
input x ∈ Rd to output y (in regression, we have y ∈ R; in classification, we have y ∈ {−1,+1}).
A linear predictor is governed by a weight vector w ∈ Rd, and we typically wish to choose w
to minimize the cumulative loss over a set of training examples. Two popular loss functions for
classification and regression are defined (on a single example (x, y)) as follows:

• Squared loss: `(w;x, y) = 1
2(y − w · x)2.

• Hinge loss: `(w;x, y) = max{1− yw · x, 0}.

Let’s study some properties of these loss functions. These will be used throughout the entire class,
so it’s important to obtain a good intuition for them.

(a) Show that each of the two loss functions is convex. Hint: whenever possible, use the composi-
tional properties of convexity (i.e., sum of two convex functions is convex, etc.).

(b) Compute the subgradient of each of the two loss functions with respect to w.

(c) Suppose that |y| ≤ 1, ‖w‖2 ≤ B, and ‖x‖2 ≤ C for some constants B,C <∞. Give bounds on
the `2-norms ‖·‖2 of the subgradients g of each of the losses.

(In this class, many of the generalization bounds rely on control of the norms of the gradients,
so it’s important to get a feel for these dependencies.)

Question 10 (Exponential families): Recall that an exponential family is a collection of prob-
ability distributions over x ∈ X (for simplicity, assume X is finite), parameterized by θ ∈ Rd and
a sufficient statistic (feature vector) φ : X → Rd. The density (probability mass function) of the
exponential family has the form

p(x; θ) = exp
(
θTφ(x)−A(θ)

)
,

and A(θ) = log
∑

x∈X exp(θTφ(x)) is the log-partition function.

(a) Compute ∇A(θ).

(b) Compute ∇2A(θ).

(c) Give a probabilistic interpretation of each of these quantities.

(d) Argue that A(θ) is convex in θ.
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1.3 Linear algebra

Question 11 (Linear algebra):

(a) In linear regression, we are given a design matrix X ∈ Rn×d where each row corresponds to a
data point, and a vector of responses Y ∈ Rn. Define the estimator as follows:

θ̂ = argmin
θ∈Rd

‖Xθ − Y ‖22 + λ ‖θ‖22 .

Assume λ > 0. Compute the closed form solution for θ̂.

The dual norm ‖·‖∗ of a norm ‖·‖ is

‖w‖∗ := sup
v:‖v‖≤1

vTw.

(b) The `1-norm ‖·‖1 of a vector v ∈ Rn is ‖v‖1 =
∑n

j=1 |vj |. Compute the dual norm of the
`1-norm.

(c) The Cauchy-Schwartz inequality is that

uT v ≤ ‖u‖2 ‖v‖2

for any u, v. Using that ‖αu+ βv‖22 ≥ 0 for all α, β ∈ R, prove the Cauchy-Schwartz inequality.

(d) Compute the dual norm of the `2-norm.

(e) Show for any x, y ∈ R and any p ∈ [1,∞] with q ∈ [1,∞] such that 1/p+ 1/q = 1 that

xy ≤ ηp

p
|x|p +

1

ηqq
|y|q

for all η ≥ 0. [Hint: Either use the concavity of the logarithm or minimize the preceding
expression in η]

(f) For p ∈ [1,∞], compute the dual norm of the `p-norm where ‖v‖p = (
∑n

j=1 |vj |p)1/p. [Hint:
Give an upper bound on

∑n
j=1 vjuj and minimize it.]

(g) The nuclear norm of a matrix A ∈ Rm×n is |||A|||∗ :=
∑m∧n

i=1 |σi(A)|, where the σi(A) are the
singular values of A. Show that the nuclear norm of a symmetric positive semi-definite matrix
A is equal to its trace (tr(A) =

∑n
i=1Aii). (For this reason, the nuclear norm is sometimes

called the trace norm.) [Hint : use the fact that tr(ABC) = tr(BCA).]

(h) Hard but fun: The `2-operator norm of a matrix A, |||A|||op, is its maximum singular value.
Show that the nuclear and operator norms are dual to one another when we define the inner
product between m× n matrices by 〈A,B〉 = tr(ATB).
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2 Concentration and generalization

Question 12 (Concentration inequalities): Let Xi be independent random variables with |Xi| ≤ c
and E[Xi] = 0.

(a) Let σ2
i = Var(Xi). Prove that

E[eλX ] ≤ exp

(
σ2
i

c2
(eλc − 1− λc)

)
.

(b) Let h(u) = (1 + u) log(1 + u)− u and let σ2 = 1
n

∑n
i=1 σ

2
i . Prove Bennett’s inequality, that is,

for any t ≥ 0 we have

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
−nσ

2

c2
h

(
ct

nσ2

))
.

(c) Under the notation of part (b), prove Bernstein’s inequality, that is, that for any t ≥ 0

P

(
1

n

n∑
i=1

Xi ≥ t

)
∨ P

(
1

n

n∑
i=1

Xi ≤ −t

)
≤ exp

(
− nt2

2σ2 + 2ct/3

)
,

where a ∨ b = max{a, b}.

(d) When is Bernstein’s inequality tighter than the Hoeffding’s inequality for bounded random
variables? Recall that Hoeffding’s inequality states (under the above conditions on Xi) that

P

(∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣ ≥ t
)
≤ exp

(
−nt

2

2c2

)
.

Question 13: In the realizable setting with binary classification (where the expected risk mini-
mizer h? satisfies L(h?) = 0 for the 0-1 error), we obtained excess risk bounds of O(1/n), but in the
unrealizable setting, we had O(

√
1/n). What if the learning problem is almost realizable, in that

L(h?) is small? This problem explores ways to interpolate between 1/n and 1/
√
n rates, showing

that (roughly)
√
L(h?)/n+1/n rates are possible by developing generalization bounds that depend

on the variance of losses (recall Question 12).

(a) Assume that the loss function `(y, t) takes values in [0, 1], where L(h) = E[`(Y, h(X))], and let
L̂n(h) = 1

n

∑n
i=1 `(Yi, h(Xi)). Show that for all ε ≥ 0 we have

P
(
L̂n(h)− L(h) ≥ ε

)
≤ exp

(
− nε2

2(L(h) + ε/3)

)
.

(Note that if L(h) = 0, this bound scales as e−nε � e−nε
2

for ε ≈ 0.)

(b) We now show that bad hypotheses usually look pretty bad. Fix any ε(h), ε ≥ 0, and assume
that

L(h) ≥ ε(h) + ε.

Show that

P
(
L̂n(h) ≤ ε(h)

)
≤ exp

(
− nε2

2(ε(h) + 4ε/3)

)
.
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(c) Assume card(H) < ∞ and let h? satisfy L(h?) = minh∈H L(h). Using the preceding parts,
conclude that if ĥn ∈ argminh∈H L̂n(h), then

P
(
L(ĥn)− L(h?) ≥ 2ε

)
≤ card(H) exp

(
− nε2

2(L(h?) + 7ε/3)

)
.

Show that this implies (for appropriate numerical constants c1, c2) that with probability at
least 1− δ, we have

L(ĥn) ≤ L(h?) + c1

√
L(h?) log card(H)

δ

n
+ c2

log card(H)
δ

n
.

(d) How does this bound compare with a more naive strategy based on applying Hoeffding’s in-
equality and a union bound?

Question 14 (VC Dimension):

(a) Let X = R2 and consider the hypothesis class of indicators for convex polygons, that is,

H = {hC(x) = 1 {x ∈ C} : C is a convex polygon} .

What is VC(H)?

(b) A decision tree T is a binary tree that classifies points in Rd. Each internal node (non-leaf
node) v in T has an attribute jv ∈ {1, 2, . . . , d} and a threshold tv ∈ R. Each leaf node is
labeled with one of the two classes, +1 or -1. Given a point x ∈ Rd, we start from the root,
and every time we encounter an internal node v, we check the condition 1 {xjv ≥ tv}. We go to
the left child if the condition is not met, and the right child otherwise. We repeat such process
until we reach a leaf node, and classifies the point according to the label of the node.

Show that the VC dimension of the hypothesis class corresponding to all depth-k decision trees
defined above is Ω(2k log d).

Question 15 (Rademacher complexity): In many applications, for example, in natural language
processing (NLP), one has very sparse feature vectors in very high dimensions. Suppose that we
know that any feature vector x ∈ {0, 1}d satisfies ‖x‖1 ≤ k, i.e. there are at most k non-zeros.

(a) Give an example application and data representation where such characteristics might hold.

You decide to use a linear classifier for this “sparse x” problem, where you represent the classifier
by a weight vector w ∈ Rd so that f(x) = w>x, and you restrict your classifiers to be in a particular
norm ball {w : ‖w‖ ≤ B}.

(b) Is using the `1-norm ball, i.e. F = {x 7→ f(x) = w>x : ‖w‖1 ≤ B} likely to be a good idea? In
a sentence or two, explain why or why not. (No need for serious mathematical derivations.)

(c) You decide instead to use dense feature vectors, restricting w to an `∞ norm ball, i.e.

F := {f | f(x) = w>x, ‖w‖∞ ≤ B}.

Give an upper bound on Rn(F), which should depend on k (the number of non-zeros), n, B,
and d.
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Question 16 (Rademacher and Gaussian complexity): In some situations it may be easier to
control the Gaussian complexity of a set of functions than the Rademacher complexity. Given
points x1, . . . , xn, the (unnormalized) empirical Gaussian complexity is

Ĝn(F) := E

[
sup
f∈F

n∑
i=1

gif(xi) | x1:n

]

where gi
iid∼ N(0, 1) are independent standard Gaussians. The Gaussian complexity is the expected

version of the empirical complexity Gn(F) = E[Ĝn(F)]. Show that, assuming that F is symmetric
in the sense that if f ∈ F then −f ∈ F ,

nR̂n(F) ≤
√
π

2
Ĝn(F).

Question 17 (Gaussian comparisons and contractions): The Sudakov-Fernique bound is a com-
parison inequality for Gaussian processes that allows substantial control over Gaussian processes,
including more powerful contraction inequalities than are available for Rademacher complexities.
Recall that a collection {Xt}t∈T of random variables is a Gaussian process if Xt is normally dis-
tributed for all T and all pairs (Xt, Xs), where s, t ∈ T , are jointly normally distributed. Let
{Xt}t∈T and {Yt}t∈T be Gaussian processes indexed by a set T .1 The Sudakov-Fernique inequality
is that if

E[Xt] = E[Yt] = 0 and E[(Xt −Xs)
2] ≤ E[(Yt − Ys)2] for all s, t ∈ T (1)

then

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Yt

]
.

This is perhaps intuitive: the condition (1) suggests that Xt is somehow more tightly correlated
with itself than Yt, so that we expect Yt to be “bigger” in some way.

(a) Prove Slepian’s inequality from the Sudakov-Fernique bound. Slepian’s inequality is that

E[XtXs] ≥ E[YtYs] and E[X2
t ] = E[Y 2

t ] for all s, t ∈ T

implies E[supt∈T Xt] ≤ E[supt∈T Yt].

Now, let us use the Sudakov-Fernique condition (1) to give contraction inequalities for Gaussian
complexity.

(b) Let φi : Rd → R be Mi-Lipschitz for i = 1, 2, . . . , n. Let gi
iid∼ N(0, 1) be independent stan-

dard Gaussians and Zi
iid∼ N(0, Id) be independent Rd-valued Gaussian vectors with identity

covariance. Define the empirical Gaussian complexities

Ĝn(φ ◦Θ) := E

[
sup
θ∈Θ

n∑
i=1

giφi(θ)

]
and Ĝn(Θ) := E

[
sup
θ∈Θ

n∑
i=1

MiZ
T
i θ

]
.

Show that for a numerical constant C <∞ (specify your constant)

Ĝn(φ ◦Θ) ≤ C · Ĝn(Θ).

1Technically T must be finite, but in our settings we can approximate T by finite subsets so that everything holds.

8



(c) Let ` : Θ × Rd → R satisfy `(θ, x) = φ(θTx) where φ is M -Lipschitz. Define F to be the loss
class F := {`(θ, ·) : θ ∈ Θ}. Show that

Ĝn(F) ≤ Ĝn(Θ) := ME

[
sup
θ∈Θ

n∑
i=1

giθ
Txi

]

(d) Fix θ? ∈ Θ ⊂ Rd, and suppose that we instead use the centered loss class

F := {`(θ, ·)− `(θ?, ·) | θ ∈ Θ}.

In addition, let Θε = {θ ∈ Θ | ‖θ − θ?‖2 ≤ ε}. Under the conditions of part (c), give an explicit
upper bound on

Ĝn(F) := E

[
sup
θ∈Θε

n∑
i=1

gi(`(θ;xi)− `(θ?;xi))

]
.

What is your bound’s dependence on ε, the Lipschitz constant M , n, and the dimension d of
Θ? How does this compare to the localized Rademacher complexity result we gave in class?

Question 18 (Multiclass Gaussian complexity): In multiclass classification problems (i.e. there
are k ≥ 3 classes), a natural margin-based formulation—analogous to the formulation for binary
problems—is to have φ : Rk → R be convex, where φ is symmetric and increasing in its last k − 1
arguments and non-increasing in its first argument. As examples, we might take

φlog(v) = log

(
k∑
l=1

evl−v1

)
or φhinge(v) = [1− v1]+ +

k∑
l=2

[1 + vl]+ .

We would like to learn a weight vector wl ∈ Rd for each class l ∈ {1, . . . , k}, so that given a label
y ∈ {1, . . . , k} and point x we classify the pair (x, y) correctly if wTy x > wTl x for all l 6= y. Let el
denote the lth standard basis vector. Given a label y ∈ {1, . . . , k}, define the permutation matrix

Πy = [ey e1 e2 · · · ey−1 ey+1 · · · ek] ∈ {0, 1}k×k so Πyv =
[
vy v1 · · · vy−1 vy+1 · · · vk

]T
,

that is, Πy moves the yth position to the first coordinate and shifts the others approriately. We then
define the loss of the matrix W = [w1 · · · wk] ∈ Rd×k on the pair (x, y) by `(W ;x, y) = φ(ΠyW

Tx).

(a) In about one sentence, explain why this choice of loss may be a good idea.

(b) Show that each of φlog and φhinge are convex.

(c) Give explicit formulae for `(W ;x, y) = φlog(ΠyW
Tx) and φhinge(ΠyW

Tx).

(d) Let F = {`(W ; ·)−`(W ?; ·) |W ∈ W} be a centered loss class for a loss of the form `(W ;x, y) =
φ(ΠyW

Tx), where W ⊂ Rd×k. Assume also that φ is M -Lipschitz with respect to the `2-norm.
Show that the empirical Gaussian complexity of F satisfies

Ĝn(F) := E

[
sup
W∈W

n∑
i=1

gi (`(W ;xi, yi)− `(W ?;xi, yi))

]
≤ME

[
sup
W∈W

n∑
i=1

ZTi (W −W ?)Txi

]

for Zi
iid∼ N(0, Ik) and gi

iid∼ N(0, 1), where W ? ∈ Rd×k is some fixed matrix.
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(e) Suppose that W = {W ∈ Rd×k | ‖W −W ?‖Fr ≤ r}, where ‖·‖Fr denotes the Frobenius norm.

Give an upper bound on Ĝn(F) from part (d) depending only on a numerical constant and
(possibly a subset of) the terms n, d, k,M, r.

(f) Suppose that

W = {W = [w1 · · · wk] ∈ Rd×k | ‖wl‖1 ≤ r for l = 1, . . . , k}

and let W ? = 0. Give an upper bound on Ĝn(F) from part (d) depending only on a numerical
constant and (possibly a subset of) the terms n, d, k,M, r.
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3 Online learning and stochastic optimization

Question 19 (Adaptive stepsizes): Consider an online learning problem in which we receive a
sequence of convex functions ft : X → R, where X ⊂ Rd is a compact convex set. Let Dh(x, y) =
h(x)− h(y)− 〈∇h(y), x− y〉 be the usual Bregman divergence, and assume that

Dh(x, y) ≤ D2
X for all x, y ∈ X.

As usual, we define the regret of a sequence of plays x1, x2, . . . by

RegT :=
T∑
t=1

[ft(xt)− ft(x?)]

where x? ∈ argminx∈X
∑T

t=1 ft(x). We consider the usual online mirror descent algorithm

xt+1 = argmin
x∈X

{
〈gt, x〉+

1

αt
Dh(x, xt)

}
where gt ∈ ∂ft(xt).

Assume that h : X → R is strongly convex with respect to the norm ‖·‖ with dual norm ‖·‖∗, so
that Dh(x, y) ≥ 1

2 ‖x− y‖
2 for all x, y ∈ X.

(a) Show that for any (nonnegative) sequence of non-increasing stepsizes α1, α2, . . ., we have

RegT =

T∑
t=1

[ft(xt)− ft(x?)] ≤
D2
X

αT
+

T∑
t=1

αt
2
‖gt‖2∗ .

(b) Suppose that we choose a fixed stepsize αt ≡ α for all t. Give the value of

inf
α≥0

{
T∑
t=1

D2
X

α
+

T∑
t=1

α

2
‖gt‖2∗

}
.

(c) Let {at}Tt=1 be an arbitrary sequence of non-negative numbers. Define bt =
∑t

τ=1 aτ . Prove
that

T∑
t=1

at√
bt
≤ 2
√
bT = 2

√√√√ T∑
t=1

at,

where we treat 0/0 as 0.

(d) Based on parts (b) and (c), give a sequence of stepsizes αt, which depend only on the subgra-
dients {gτ}tτ=1 through time t and the diameter DX , such that

D2
X

αT
+

T∑
t=1

αt
2
‖gt‖2∗ ≤ O(1) · inf

α≥0

{
D2
X

α
+
α

2

T∑
t=1

‖gt‖2∗

}
.

Question 20 (AdaGrad): We investigate subgradient methods that change the metric they use
throughout the iterations. In particular, we consider a sequence Ht ∈ Rd×d of symmetric, diagonal,
positive definite matrices, which we generate sequentially (this is AdaGrad) as follows:
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i. Receive ft and compute gt ∈ ∂ft(xt)

ii. Set Gt =
∑t

τ=1 diag(gτ )2 and Ht = G
1
2
t

iii. Update

xt+1 = argmin
x∈X

{
〈gt, x〉+

1

2α
(x− xt)THt(x− xt)

}
.

Here α > 0 is a fixed multiplier.

(a) Show that for any x? ∈ X,

T∑
t=1

[ft(xt)− ft(x?)] ≤
1

2α
tr(HT ) sup

x,y∈X
‖x− y‖2∞ +

T∑
t=1

α

2
‖gt‖2H−1

t

where ‖x‖2A = xTAx is the usual Mahalanobis norm

(b) Let D∞ = supx,y∈X ‖x− y‖∞. Show that the choice α = D∞ yields

T∑
t=1

[ft(xt)− ft(x?)] ≤ 2 tr(HT )D∞.

(c) Suppose that X = [−1, 1]d is the `∞-box in Rd of radius 1 and that ‖gt‖2 ≤ 1 for all t. Give an
upper bound on the regret of AdaGrad in this case. How does it compare to the regret bound
one would achieve using the standard projected subgradient method?

(d) Suppose that X = [−1, 1]d as above and that instead of the fully adversarial setting, the
functions ft are drawn i.i.d. with expectation F = E[ft] and that the subgradients gt ∈ ∂ft(xt)
are sparse as follows. We have gt ∈ {−1, 0, 1}d, with coordinates gt,j ∈ {−1, 0, 1}, and

P(gt,j 6= 0) = j−β

for some β ∈ [0, 2]. Give an upper bound on

i. The expected regret of AdaGrad.

ii. The expected regret of the standard projected subgradient method.

In which circumstances is one better than the other?

Question 21 (Strongly convex regret): Assume that we have an online convex optimization
problem where each ft : X → R is λ-strongly convex, meaning

ft(y) ≥ ft(x) + 〈gt, y − x〉+
λ

2
‖x− y‖22 for gt ∈ ∂f(x) and x, y ∈ X.

Assume that each ft is also M -Lipschitz, so that ‖g‖2 ≤ M for all g ∈ ∂f(x), x ∈ X. Prove that
for the usual projected gradient algorithm,

xt+1 = πX(xt − αtgt),
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where gt ∈ ∂ft(xt) and we choose the stepsize αt = 1
λt , we have

RegT ≤
M2

λ
log(T + 1).

Question 22 (Low regret algorithms prove von-Neumann’s Minimax Theorem): A minor exten-
sion of the von-Neumann minimax theorem is as follows. Let A ∈ Rm×n be an arbitrary matrix,
and let X ⊂ Rm and Y ⊂ Rn be arbitrary convex compact sets. Then

inf
x∈X

sup
y∈Y

xTAy = sup
y∈Y

inf
x∈X

xTAy. (2)

In fact, we can say more: there exists a saddle point x?, y? such that

inf
x∈X

xTAy? = x?TAy? = sup
y∈Y

x?TAy.

In this question, we show how online learning gives a proof of the von-Neumann minimax theorem.
Throughout this question, with no loss of generality, we assume that |||A|||op ≤ 1 and ‖x− x′‖2 ≤ 1,
‖y − y′‖2 ≤ 1 for all x, x′ ∈ X and y, y′ ∈ Y .

(a) Show the “easy” direction
sup
y∈Y

inf
x∈X

xTAy ≤ inf
x∈X

sup
y∈Y

xTAy.

Consider the following so-called “best response” game: beginning from an arbitrary x1 ∈ X, at
each iteration t = 1, 2, . . ., we play

yt = argmax
y∈Y

{
xTt Ay

}
and update

xt+1 = argmin
x∈X

{
xTAyt +

1

2α
‖x− xt‖22

}
,

or xt+1 = πX(xt − αAyt), the projection of xt − αAyt onto X.

(b) Defining ft(x) = xTAyt, give an upper bound on

RegT := sup
x∈X

T∑
t=1

[ft(xt)− ft(x)]

that, for appropriate choice of α, satisfies RegT ≤
√
T .

(c) Show that for xT = 1
T

∑T
t=1 xt and yT = 1

T

∑T
t=1 yt, we have

sup
y∈Y

xTTAy ≤ inf
x∈X

xTAyT +
1√
T
.

Show that this gives von-Neumann’s result (2). (It turns out that by moving to subsequences
if necessary, this argument also shows that xT → x? and yT → y? as T →∞.)

13



4 Kernels and representations

Question 23: Let k : X × X → R be a valid kernel function. Define

knorm(x, z) :=
k(x, z)√

k(x, x)
√
k(z, z)

.

Is knorm a valid kernel? Justify your answer.

Question 24: Consider the class of functions

H :=
{
f : f(0) = 0, f ′ ∈ L2([0, 1])

}
,

that is, functions f : [0, 1] → R with f(0) = 0 that are almost everywhere differentiable, where∫ 1
0 (f ′(x))2dx <∞. On this space of functions, we define the inner product by

〈f, g〉 =

∫ 1

0
f ′(x)g′(x)dx.

Show that k(x, z) = min{x, z} is the reproducing kernel for H, so that it is (i) positive semidefinite
and (ii) a valid kernel.

Question 25: Consider the Sobolev space Fk, which is defined as the set of functions that are
(k − 1)-times differentiable and have kth derivative almost everywhere on [0, 1], where the kth
derivative is square-integrable. That is, we define

Fk :=
{
f : [0, 1] | f (k)(x) ∈ L2([0, 1])

}
.

We define the inner product on Fk by

〈f, g〉 =

k−1∑
i=0

f (i)(x)g(i)(x) +

∫ 1

0
f (k)(x)g(k)(x)dx.

(a) Find the representer of evaluation for this Hilbert space, that is, find a function rx : [0, 1]→ R
(defined for each x ∈ [0, 1]) such that rx ∈ Fk and

〈rx, f〉 = f(x)

for all x.

(b) What is the reproducing kernel k(x, z) associated with this space? (Recall that k(x, z) = 〈rx, rz〉
for an RKHS.)

(c) Show that Fk is a Hilbert space, meaning that ‖f‖2 = 〈f, f〉 defines a norm and that Fk is
complete for the norm.

Question 26: The variation distance between probability distributions P and Q on a space X is
defined by ‖P −Q‖TV = supA⊂X |P (A)−Q(A)|.

(a) Show that
2 ‖P −Q‖TV = sup

f :‖f‖∞≤1
{EP [f(X)]− EQ[f(X)]}

where the supremum is taken over all functions with f(x) ∈ [−1, 1], and the first expectation
is taken with respect to P and the second with respect to Q. You may assume that P and Q
have densities.
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Question 27: In a number of experimental situations, it is valuable to determine if two distri-
butions P and Q are the same or different. For example, P may be the distribution of widgets
produced by one machine, Q the distributions of widgets by a second machine, and we wish to
test if the two distributions are the same (to within allowable tolerances). Let H be an RKHS of
functions with domain X and reproducing kernel k, and let P and Q be distributions on X .

(a) Let ‖·‖H denote the norm on the Hilbert space H. Show that

Dk(P,Q)2 := sup
f :‖f‖H≤1

{
|EP [f(X)]− EQ[f(Z)]|2

}
= E[k(X,X ′)] + E[k(Z,Z ′)]− 2E[k(X,Z)]

where X,X ′
iid∼ P and Z,Z ′

iid∼ Q.

(b) A kernel k : X × X → R is called universal if the induced RKHS H of functions f : X → R
can arbitrarily approximate continuous functions. That is, for any φ : X → R continuous and
ε > 0, there is some f ∈ H such that

sup
x∈X
|f(x)− φ(x)| ≤ ε.

Show that if k is universal, then

Dk(P,Q) = 0 if and only if P = Q.

You may assume X is a metric space and that P = Q iff P (A) = Q(A) for all compact A ⊂ X .

(c) You wish to estimate Dk(P,Q) given samples from each of the distributions. Assume that

k(x, z) ∈ [−B,B] for all x, z ∈ X . Let Xi
iid∼ P , i = 1, . . . , n1 and Zi

iid∼ Q, i = 1, . . . , n2. Define

K̂(X1:n1) :=

(
n1

2

)−1 ∑
1≤i<j≤n1

k(Xi, Xj), K̂(Z1:n2) :=

(
n2

2

)−1 ∑
1≤i<j≤n2

k(Zi, Zj),

and

K̂(X1:n1 , Z1:n2) :=
1

n1n2

n1∑
i=1

n2∑
j=1

k(Xi, Zj).

Show that E[K̂(X1:n)] = E[k(X,X ′)] and E[K̂(X1:n1 , Z1:n2)] = E[k(X,Z)] for X,X ′
iid∼ P and

Z,Z ′
iid∼ Q. Show for some numerical constant c > 0 that for all t ≥ 0,

P
(∣∣∣K̂(X1:n)− E[k(X,X ′)]

∣∣∣ ≥ t) ≤ 2 exp

(
−cnt

2

B2

)
and

P
(∣∣∣K̂(X1:n1 , Z1:n2)− E[k(X,Z)]

∣∣∣ ≥ t) ≤ 2 exp

(
−cn1t

2

B2

)
+ 2 exp

(
−cn2t

2

B2

)
.

(d) Define the empirical Hilbert distances

D̂2
k(P,Q) :=

(
n1

2

)−1 ∑
1≤i<j≤n1

k(Xi, Xj) +

(
n2

2

)−1 ∑
1≤i<j≤n2

k(Zi, Zj)−
2

n1n2

n1∑
i=1

n2∑
j=1

k(Xi, Zj).

Show that for all t ≥ 0,

P
(∣∣∣D̂2

k(P,Q)−D2
k(P,Q)

∣∣∣ ≥ t) ≤ C exp

(
−cmin{n1, n2}t2

B2

)
where 0 < c, C <∞ are numerical constants.
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