## Stats 231 / CS229T Homework 1 Solutions

Question 1 (Moment generating functions of squares): In this question, we investigate subexponential and sub-Gaussian random variables. We let $[t]_{+}=\max \{0, t\}$ denote the positive part, and say that $1 / 0=+\infty$.
(a) Let $Z$ be $\mathrm{N}\left(0, \sigma^{2}\right)$. Show that

$$
\mathbb{E}\left[e^{\lambda Z^{2}}\right]=\frac{1}{\sqrt{\left[1-2 \lambda \sigma^{2}\right]_{+}}} .
$$

(b) Let $X$ be a mean-zero $\sigma^{2}$-sub-Gaussian random variable. Show that

$$
\mathbb{E}\left[e^{\lambda X^{2}}\right] \leq \frac{1}{\sqrt{\left[1-2 \lambda \sigma^{2}\right]_{+}}} \text {for } \lambda \geq 0 .
$$

Hint: Introduce an independent Gaussian $Z$ (with some particular variance) and compute $\mathbb{E}\left[e^{Z X}\right]$.
(c) Let $Z \sim \mathrm{~N}\left(0, \sigma^{2}\right)$. Show that $Z^{2}-\mathbb{E}\left[Z^{2}\right]$ is sub-exponential and give sub-exponential parameters for it.

## Answer:

(a) We write out the integrals. We have

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda Z^{2}}\right] & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int \exp \left(\lambda z^{2}-\frac{1}{2 \sigma^{2}} z^{2}\right) d z \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int \exp \left(-\frac{1-2 \lambda \sigma^{2}}{2 \sigma^{2}} z^{2}\right) d z
\end{aligned}
$$

If $2 \lambda \sigma^{2} \geq 1$, clearly the last integral is $+\infty$. Otherwise, we use that (by the normalization for the Gaussian distribution) $\int e^{-\frac{1}{2 \tau^{2}}{ }^{2}} d z=\sqrt{2 \pi \tau^{2}}$, so

$$
\int \exp \left(-\frac{1-2 \lambda \sigma^{2}}{2 \sigma^{2}} z^{2}\right) d z=\sqrt{2 \pi \frac{\sigma^{2}}{1-2 \lambda \sigma^{2}}}
$$

assuming that $2 \lambda \sigma^{2}<1$. This is the result.
(b) We assume that $\lambda>0$ as the result is trivial otherwise. Let $Z \sim \mathrm{~N}(0, \sqrt{2 \lambda})$. Then

$$
\mathbb{E}\left[e^{Z X}\right]=\mathbb{E}\left[e^{\lambda X^{2}}\right]
$$

by the standard MGF for a Gaussian. Thus we have

$$
\mathbb{E}\left[e^{\lambda X^{2}}\right]=\mathbb{E}\left[e^{Z X}\right] \stackrel{(i)}{\leq} \mathbb{E}\left[\exp \left(\frac{\sigma^{2} Z^{2}}{2}\right)\right]=\frac{1}{\sqrt{\left[1-2\left(\sigma^{2} / 2\right) \sqrt{2 \lambda}^{2}\right]_{+}}}=\frac{1}{\sqrt{\left[1-2 \lambda \sigma^{2}\right]_{+}}}
$$

by part (a).
(c) For $\lambda \in \mathbb{R}$ we have that

$$
\mathbb{E}\left[\exp \left(\lambda\left(Z^{2}-\mathbb{E}\left[Z^{2}\right]\right)\right)\right]=\exp \left(-\frac{1}{2} \log \left(1-2 \lambda \sigma^{2}\right)-\lambda \sigma^{2}\right)
$$

where we define $\log (t)=-\infty$ for $t \leq 0$. By a Taylor expansion, we have $\log (1-x)=$ $-x-\frac{1}{2} x^{2}+O\left(x^{3}\right)$ as $x \rightarrow 0$, and moreover, $\log (1-x) \geq-x-x^{2}$ for $|x| \leq \frac{1}{2}$. Thus we have

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda\left(Z^{2}-\mathbb{E}\left[Z^{2}\right]\right)\right)\right] & =\exp \left(-\frac{1}{2} \log \left(1-2 \lambda \sigma^{2}\right)-\lambda \sigma^{2}\right) \\
& \leq \exp \left(\lambda \sigma^{2}+\lambda^{2} \sigma^{4}-\lambda \sigma^{2}\right)=\exp \left(\lambda^{2} \sigma^{4}\right) \quad \text { for }|\lambda| \leq \frac{1}{2}
\end{aligned}
$$

Recalling the definition of sub-exponential random variables, we say $Y$ is $\left(\tau^{2}, b\right)$-sub-exponential of $\mathbb{E}\left[e^{\lambda Y}\right] \leq \exp \left(\frac{\lambda^{2} \tau^{2}}{2}\right)$ for $|\lambda| \leq 1 / b$, we obtain that $X=Z^{2}-\mathbb{E}\left[Z^{2}\right]$ is $\left(2 \sigma^{4}, 2\right)$-sub-exponential.

Question 2 (Concentration inequalities): Let $X_{i}$ be independent random variables with $\left|X_{i}\right| \leq c$ and $\mathbb{E}\left[X_{i}\right]=0$.
(a) Let $\sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)$. Prove that

$$
\mathbb{E}\left[e^{\lambda X_{i}}\right] \leq \exp \left(\frac{\sigma_{i}^{2}}{c^{2}}\left(e^{\lambda c}-1-\lambda c\right)\right) .
$$

(b) Let $h(u)=(1+u) \log (1+u)-u$ and let $\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}$. Prove Bennett's inequality, that is, for any $t \geq 0$ we have

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left(-\frac{n \sigma^{2}}{c^{2}} h\left(\frac{c t}{n \sigma^{2}}\right)\right) .
$$

(c) Under the notation of part (b), prove Bernstein's inequality, that is, that for any $t \geq 0$

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq t\right) \vee \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \leq-t\right) \leq \exp \left(-\frac{n t^{2}}{2 \sigma^{2}+2 c t / 3}\right)
$$

where $a \vee b=\max \{a, b\}$.
(d) When is Bernstein's inequality tighter than the Hoeffding's inequality for bounded random variables? Recall that Hoeffding's inequality states (under the above conditions on $X_{i}$ ) that

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right| \geq t\right) \leq \exp \left(-\frac{n t^{2}}{2 c^{2}}\right) .
$$

## Answer:

(a) Let $\sigma=\sigma_{i}$ for shorthand and $\operatorname{Var}(X) \leq \sigma^{2}$. We perform a Taylor expansion:

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda X}\right]=1+\sum_{k=2}^{\infty} \frac{\mathbb{E}\left[X^{k}\right] \lambda^{k}}{k!} & \leq 1+\sum_{k=2}^{\infty} \frac{\mathbb{E}\left[X^{2}\right] c^{k-2} \lambda^{k}}{k!} \\
& =1+\frac{\sigma^{2}}{c^{2}} \sum_{k=2}^{\infty} \frac{c^{k} \lambda^{k}}{k!}=1+\frac{\sigma^{2}}{c^{2}}\left(e^{\lambda c}-1-\lambda c\right)
\end{aligned}
$$

Using that $1+x \leq e^{x}$ for all $x$ gives the result.
(b) Applying the standard Chernoff bound technique, we have

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq t\right) \leq \mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} X_{i}\right)\right] e^{-\lambda t} \leq \exp \left(\frac{n \sigma^{2}}{c^{2}}\left(e^{\lambda c}-1-\lambda c\right)-\lambda t\right)
$$

for all $\lambda \geq 0$, where we have used part (a). Note that $\phi(\lambda)=\frac{n \sigma^{2}}{c^{2}}\left(e^{\lambda c}-1-\lambda c\right)-\lambda t$ is convex in $\lambda$, so that differentiating and setting to zero gives us its minimizer. We have

$$
\phi^{\prime}(\lambda)=\frac{n \sigma^{2}}{c}\left(e^{\lambda c}-1\right)-t=0 \text { so } e^{\lambda c}=1+\frac{c t}{n \sigma^{2}} \text { or } \lambda=\frac{1}{c} \log \left(1+\frac{c t}{n \sigma^{2}}\right) .
$$

Substituting in the preceding display gives

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq t\right) & \leq \exp \left(-\frac{t}{c} \log \left(1+\frac{c t}{n \sigma^{2}}\right)+\frac{n \sigma^{2}}{c^{2}}\left(\frac{c t}{n \sigma^{2}}-\log \left(1+\frac{c t}{n \sigma^{2}}\right)\right)\right) \\
& =\exp \left(-\frac{n \sigma^{2}}{c^{2}}\left(1+\frac{c t}{n \sigma^{2}}\right) \log \left(1+\frac{c t}{n \sigma^{2}}\right)+\frac{n \sigma^{2}}{c^{2}} \frac{c t}{n \sigma^{2}}\right)=\exp \left(-\frac{n \sigma^{2}}{c^{2}} h\left(\frac{c t}{n \sigma^{2}}\right)\right)
\end{aligned}
$$

as desired.
(c) We ignore the lower (negative) tail as its proof is identical to the positive tail in part (b). We must show

$$
\begin{equation*}
-\frac{n \sigma^{2}}{c^{2}} h\left(\frac{c t}{\sigma^{2}}\right) \leq-\frac{n t^{2}}{2 \sigma^{2}+2 c t / 3} \text { or }-\frac{\sigma^{2}}{c^{2}} h\left(\frac{c t}{\sigma^{2}}\right) \leq-\frac{t^{2}}{2 \sigma^{2}+2 c t / 3} \tag{1}
\end{equation*}
$$

for all $t \geq 0$. Letting $u=c t / \sigma^{2}$, then inequality (1) holds if and only if

$$
-\frac{\sigma^{2}}{c t} h\left(\frac{c t}{\sigma^{2}}\right) \leq-\frac{c t}{2 \sigma^{2}+2 c t / 3} \text { iff }-\frac{\sigma^{2}}{c t} h\left(\frac{c t}{\sigma^{2}}\right) \leq-\frac{\frac{c t}{\sigma^{2}}}{2+\frac{2}{3} \frac{c t}{\sigma^{2}}} \text { iff }-\frac{1}{u} h(u) \leq-\frac{u}{2+\frac{2}{3} u},
$$

or

$$
\begin{equation*}
h(u) \geq \frac{u^{2}}{2+\frac{2}{3} u} \text { for all } u \geq 0 \tag{2}
\end{equation*}
$$

At $u=0$, inequality (2) holds because both sides are zero. If we can show that the derivative of $h(u)$ is larger than that of $u^{2} /(2+2 u / 3)$ for all $u \geq 0$, this is sufficient.
With that in mind, we have that inequality (2) holds if for all $u \geq 0$, we have

$$
\log (1+u)=h^{\prime}(u) \geq \frac{2 u}{2+\frac{2}{3} u}-\frac{\frac{2}{3} u^{2}}{\left(2+\frac{2}{3} u\right)^{2}}=\frac{4 u+\frac{2}{3} u^{2}}{\left(2+\frac{2}{3} u\right)^{2}}=\frac{u+\frac{1}{6} u^{2}}{\left(1+\frac{1}{3} u\right)^{2}}=\frac{u+\frac{1}{6} u^{2}}{1+\frac{2}{3} u+\frac{1}{9} u^{2}}
$$

Taking second derivatives, we have that it is sufficient that for all $u \geq 0$, we have

$$
\frac{1}{1+u} \geq \frac{1+\frac{1}{3} u}{\left(1+\frac{1}{3} u\right)^{2}}-\frac{2\left(u+\frac{1}{6} u^{2}\right)}{3\left(1+\frac{1}{3} u\right)^{3}}=\frac{1}{1+\frac{1}{3} u}-\frac{2\left(u+\frac{1}{6} u^{2}\right)}{3\left(1+\frac{1}{3} u\right)^{3}}
$$

or

$$
\frac{-2 u}{(1+u)(3+u)} \geq-\frac{2\left(u+\frac{1}{6} u^{2}\right)}{3\left(1+\frac{1}{3} u\right)^{3}} \text { i.e. } \frac{1}{1+u} \leq \frac{1+\frac{1}{6} u}{\left(1+\frac{1}{3} u\right)^{2}} \text { i.e. } 1+\frac{2}{3} u+\frac{1}{9} u^{2} \leq 1+\frac{7}{6} u+\frac{u^{2}}{6} \text {. }
$$

The final inequality is clear.
An easier way to do this proof is to simply note that

$$
e^{\lambda}-\lambda-1 \leq \frac{\lambda^{2}}{2} \sum_{k=0}^{\infty}\left(\frac{\lambda}{3}\right)^{k}=\frac{\lambda^{2}}{2(1-\lambda / 3)},
$$

then choose $\lambda=\frac{t}{\sigma^{2}+t / 3}$ in the precursor to Bennett's inequality.
(d) We solve

$$
\frac{n t^{2}}{2 \sigma^{2}+2 c t / 3}=\frac{n t^{2}}{2 c^{2}} \quad \text { or } \quad 2 \sigma^{2}+\frac{2 c t}{3}=2 c^{2}
$$

for $t$. Evidently,

$$
0 \leq t \leq \frac{3}{c}\left(c^{2}-\sigma^{2}\right)=3 c-3 \frac{\sigma^{2}}{c}
$$

is sufficient for Bernstein's inequality to be tighter-that is, for small $t$, it is better to use variance-based-bounds. (Because we have $\sigma^{2} \leq c^{2}$ always.)

Question 3: In the realizable setting with binary classification (where the expected risk minimizer $h^{\star}$ satisfies $L\left(h^{\star}\right)=0$ for the $0-1$ error), we obtained excess risk bounds of $O(1 / n)$, but in the unrealizable setting, we had $O(\sqrt{1 / n})$. What if the learning problem is almost realizable, in that $L\left(h^{\star}\right)$ is small? This problem explores ways to interpolate between $1 / n$ and $1 / \sqrt{n}$ rates, showing that (roughly) $\sqrt{L\left(h^{\star}\right) / n}+1 / n$ rates are possible by developing generalization bounds that depend on the variance of losses (recall Question 2).
(a) Assume that the loss function $\ell(y, t)$ takes values in $[0,1]$, where $L(h)=\mathbb{E}[\ell(Y, h(X))]$, and let $\widehat{L}_{n}(h)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, h\left(X_{i}\right)\right)$. Show that for all $\epsilon \geq 0$ we have

$$
\mathbb{P}\left(\widehat{L}_{n}(h)-L(h) \geq \epsilon\right) \leq \exp \left(-\frac{n \epsilon^{2}}{2(L(h)+\epsilon / 3)}\right) .
$$

(Note that if $L(h)=0$, this bound scales as $e^{-n \epsilon} \ll e^{-n \epsilon^{2}}$ for $\epsilon \approx 0$.)
(b) We now show that bad hypotheses usually look pretty bad. Fix any $\varepsilon(h), \epsilon \geq 0$, and assume that

$$
L(h) \geq \varepsilon(h)+\epsilon .
$$

Show that

$$
\mathbb{P}\left(\widehat{L}_{n}(h) \leq \varepsilon(h)\right) \leq \exp \left(-\frac{n \epsilon^{2}}{2(\varepsilon(h)+4 \epsilon / 3)}\right) .
$$

(c) Assume $\operatorname{card}(\mathcal{H})<\infty$ and let $h^{\star}$ satisfy $L\left(h^{\star}\right)=\min _{h \in \mathcal{H}} L(h)$. Using the preceding parts, conclude that if $\widehat{h}_{n} \in \operatorname{argmin}_{h \in \mathcal{H}} \widehat{L}_{n}(h)$, then

$$
\mathbb{P}\left(L\left(\widehat{h}_{n}\right)-L\left(h^{\star}\right) \geq 2 \epsilon\right) \leq \operatorname{card}(\mathcal{H}) \exp \left(-\frac{n \epsilon^{2}}{2\left(L\left(h^{\star}\right)+7 \epsilon / 3\right)}\right) .
$$

Show that this implies (for appropriate numerical constants $c_{1}, c_{2}$ ) that with probability at least $1-\delta$, we have

$$
L\left(\widehat{h}_{n}\right) \leq L\left(h^{\star}\right)+c_{1} \sqrt{\frac{L\left(h^{\star}\right) \log \frac{\operatorname{card}(\mathcal{H})}{\delta}}{n}}+c_{2} \frac{\log \frac{\operatorname{card}(\mathcal{H})}{\delta}}{n} .
$$

(d) How does this bound compare with a more naive strategy based on applying Hoeffding's inequality and a union bound?

## Answer:

(a) First, we bound the variance of $\ell(Y, h(X))$. We have

$$
\operatorname{Var}[\ell(Y, h(X))] \leq \mathbb{E}\left[\ell(Y, h(X))^{2}\right] \leq \mathbb{E}[\ell(Y, h(X))]=\ell(h),
$$

where the first inequality is true of all random variables, the second inequality is because $a^{2} \leq a$ for $a \in[0,1]$, and the last inequality is the bound on the expected value given in the problem statement.
Now, $n \widehat{L}_{n}$ is the sum of $n$ independent copies of $\ell(Y, h(X))$, each of which are bounded in $[0,1]$ and have variance at most $L(h)$. Therefore, by Bernstein inequality we have:

$$
\mathbb{P}\left[\widehat{L}_{n}(h)-L(h) \geq \epsilon\right] \leq \exp \left(\frac{-n \epsilon^{2}}{2(L(h)+\epsilon / 3)}\right) .
$$

(b) Applying Bernstein's inequality to $-\ell\left(Y, h^{\prime}(X)\right)$ gives us the same inequality as for $\ell\left(Y, h^{\prime}(X)\right)$, except on the other side of the mean:

$$
\mathbb{P}\left[\widehat{L}_{n}\left(h^{\prime}\right)-L\left(h^{\prime}\right) \leq-\epsilon^{\prime}\right] \leq \exp \left(\frac{-n \epsilon^{\prime 2}}{2\left(L\left(h^{\prime}\right)+\epsilon^{\prime} / 3\right)}\right)
$$

Let us set $\epsilon^{\prime}$ to be $L\left(h^{\prime}\right)-\varepsilon(h)$. Then we have the bound

$$
\mathbb{P}\left[\widehat{L}_{n}\left(h^{\prime}\right) \leq \varepsilon(h)\right] \leq \exp \left(\frac{-n\left(L\left(h^{\prime}\right)-\varepsilon(h)\right)^{2}}{2\left(L\left(h^{\prime}\right)+\left(L\left(h^{\prime}\right)-\varepsilon(h)\right) / 3\right)}\right) .
$$

We claim that

$$
\frac{\left(L\left(h^{\prime}\right)-\varepsilon(h)\right)^{2}}{L\left(h^{\prime}\right)+\left(L\left(h^{\prime}\right)-\varepsilon(h)\right) / 3} \geq \frac{\epsilon^{2}}{L\left(h^{\prime}\right)+4 \epsilon / 3}
$$

for $L\left(h^{\prime}\right) \geq \varepsilon(h)+\epsilon$, from which the result would follow.
To show this, consider the function $f\left(L ; E^{\prime}\right):=\frac{\left(L-E^{\prime}\right)^{2}}{L+\left(L-E^{\prime}\right) / 3}$. It suffices to show that the function $f\left(\cdot ; E^{\prime}\right)$ is monotonically increasing on $\left[E^{\prime}, \infty\right)$. Taking the derivative with respect to $L$ :

$$
\begin{align*}
\frac{d}{d L} \frac{\left(L-E^{\prime}\right)^{2}}{L+\left(L-E^{\prime}\right) / 3} & =\frac{2\left(L-E^{\prime}\right)\left(L+\left(L-E^{\prime}\right) / 3\right)-(4 / 3)\left(L-E^{\prime}\right)^{2}}{\left(L+\left(L-E^{\prime}\right) / 3\right)^{2}}  \tag{3}\\
& =\frac{L-E^{\prime}}{\left(L+\left(L-E^{\prime}\right) / 3\right)^{2}}\left(2\left(L+\left(L-E^{\prime}\right) / 3\right)-4\left(L-E^{\prime}\right) / 3\right)  \tag{4}\\
& =\frac{L-E^{\prime}}{\left(L+\left(L-E^{\prime}\right) / 3\right)^{2}}\left(4 L / 3+2 E^{\prime} / 3\right), \tag{5}
\end{align*}
$$

which is positive whenever $L>E^{\prime}$. This proves the claim of monotonicity of $f\left(\cdot ; E^{\prime}\right)$ on $\left[E^{\prime}, \infty\right)$ and thus the desired result.
(c) Consider the following two events:
(a) $\widehat{L}_{n}\left(h^{*}\right) \geq L\left(h^{*}\right)+\epsilon$.
(b) $\widehat{L}_{n}(h) \leq L\left(h^{*}\right)+\epsilon$ for all $h$ with $L(h) \geq E+2 \epsilon$.

Let $P$ and $Q$ be the probabilities of these two events holding, respectively. The probability of either event happening is at most $P+Q$. Observe that if $L(\hat{h}) \geq L\left(h^{\star}\right)+2 \epsilon$ happens, then one of the two events must have happened. Therefore, $\mathbb{P}\left[L\left(\widehat{h}_{n}\right)-L\left(h^{\star}\right) \geq 2 \epsilon\right] \leq P+Q$.
$P$ is easy to bound: just apply the result from (a) to get that

$$
P \leq \exp \left(\frac{-n \epsilon^{2}}{L\left(h^{\star}\right)+\epsilon / 3}\right) .
$$

To bound $Q$, first note that for any $h$ such that $L(h) \geq L\left(h^{\star}\right)+2 \epsilon$, the probability that $\hat{L}(h) \leq L\left(h^{\star}\right)+\epsilon$ for any given $h$ can be bounded by $\exp \left(\frac{-n \epsilon^{2}}{L\left(h^{\star}+7 \epsilon / 3\right.}\right)$ by applying part (b) with $\varepsilon(h)=L\left(h^{\star}\right)+\epsilon$ (since we have the bound $L(h) \geq L\left(h^{\star}\right)+2 \epsilon=\varepsilon(h)+\epsilon$ in this case). Then, there are at most $|\mathcal{H}|-1$ such $h$ (since there are at most $|\mathcal{H}|$ hypotheses total and at least one of them - namely, $h^{*}$ - has $L(h)<L\left(h^{\star}\right)+2 \epsilon$ ). Therefore, we have,

$$
Q \leq(|\mathcal{H}|-1) \exp \left(\frac{-n \epsilon^{2}}{L\left(h^{\star}\right)+7 \epsilon / 3}\right)
$$

Combining these gives

$$
\begin{equation*}
\mathbb{P}[L(\hat{h})-E \geq 2 \epsilon] \leq P+Q \leq|\mathcal{H}| \exp \left(\frac{-n \epsilon^{2}}{L\left(h^{\star}\right)+7 \epsilon / 3}\right) \tag{6}
\end{equation*}
$$

which yields the desired result.
(d) The realizable case gives a bound of $|\mathcal{H}| \exp \left(-c_{1} n \epsilon\right)$, and the regular Hoeffding bound gives a bound of $|\mathcal{H}| \exp \left(-c_{2} n \epsilon^{2}\right)$. The bound in part (c) is in some sense an interpolation between them: when $E$ is small compared to $\epsilon$ then the bound behaves like the bound in the realizable case; when $E$ is large compared to $\epsilon$, it behaves like the regular Hoeffding bound. The range of value of $\epsilon$ for which we get the same behavior as the realizable case depends on "how close" to realizable we are.

Question 4 (VC Dimension):
(a) Let $\mathcal{X}=\mathbb{R}^{2}$ and consider the hypothesis class of indicators for convex polygons, that is,

$$
\mathcal{H}=\left\{h_{C}(x)=\mathbf{1}\{x \in C\}: C \text { is a convex polygon }\right\} .
$$

What is $\operatorname{VC}(\mathcal{H})$ ?
(b) A decision tree $T$ is a binary tree that classifies points in $\mathbb{R}^{d}$. Each internal node (non-leaf node) $v$ in $T$ has an attribute $j_{v} \in\{1,2, \ldots, d\}$ and a threshold $t_{v} \in \mathbb{R}$. Each leaf node is labeled with one of the two classes, +1 or -1 . Given a point $x \in \mathbb{R}^{d}$, we start from the root, and every time we encounter an internal node $v$, we check the condition $\mathbf{1}\left\{x_{j_{v}} \geq t_{v}\right\}$. We go to the left child if the condition is not met, and the right child otherwise. We repeat such process until we reach a leaf node, and classifies the point according to the label of the node.
Show that the VC dimension of the hypothesis class corresponding to all depth- $k$ decision trees defined above is $\Omega\left(2^{k} \log d\right)$.

## Answer:

(a) For $p=1$, we can only shatter 2 points. For other $p, \mathcal{H}$ has infinite VC dimension, for $p \geq 2$. Consider any $n$ distinct points on the $p$-dimensional sphere $x_{1}, \ldots, x_{n}$ so that $\left\|x_{i}\right\|_{2}=1$. We can assign positive labels to any subset of $m \leq n$ points $x_{1}, \ldots, x_{m}$, by using the hypothesis $h(x)=\mathbb{I}\left[x \in \operatorname{Convex}-\operatorname{hull}\left(x_{1}, \ldots, x_{m}\right)\right] \in \mathcal{H}$. To show that any other point $x_{j}, j>m$ with norm 1 will be assigned a negative label, we can show that $\|x\|_{2}<1$ for $x \in \operatorname{Convex}-h u l l\left(x_{1}, \ldots, x_{m}\right)$, $x \notin\left\{x_{1: m}\right\}$. For a non-vertex point in the convex-hull $x=\sum_{i=1}^{m} \theta_{i} x_{i}$, for $1>\theta_{i} \geq 0$ and $\sum_{i=1}^{m} \theta_{i}=1$, then

$$
\|x\|_{2}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{m} \theta_{i} \theta_{j} x_{i} \cdot x_{j}<\sum_{i=1}^{m} \sum_{j=1}^{m} \theta_{i} \theta_{j}=1
$$

The strict inequality comes from distinctness as well as $x$ being a non-vertex. An intuitive argument is sufficient for the problem as well.
(b) We first prove the case of $k=1$, where we get to split the points (once) along a certain axis. In this case, suppose we have $n=\left\lfloor\log _{2} d\right\rfloor$ points. We associate each of the $d$ dimensions $j$ with a subset $S(j)$ of the $n$ points, and let $x_{j}^{(i)}=1$ if $i \in S(j)$ and -1 otherwise. In this way, each desired labeling $S(j)$ can be achieved using the condition $\mathbb{I}\left[x_{j} \geq 0\right]$. Since we have at least $2^{n}$ dimensions, we can achieve all labelings.
For the general case, we show that increasing the depth of the tree by 1 allows us to at least double the number of points we can shatter. If this is true, by induction we can shatter at least $2^{k}\left\lfloor\log _{2} d\right\rfloor$ points.
Suppose depth- $k$ trees can shatter an $n$-element set $A$. Without loss of generality, $x_{1}>0$ for all $x \in A$, which can be achieved by shifting the points. Depth- $k$ trees can also shatter $A^{\prime}=\left\{\left(-x_{1}, x_{2}, \ldots, x_{d}\right): x \in A\right\}$. Thus, the set $B=A \cup A^{\prime}$ can be shattered by depth- $(k+1)$ trees as follow: at the root, let the condition be $\mathbb{I}\left[x_{1} \geq 0\right]$, splitting the points into $A$ and $A^{\prime}$, and we can shatter both sets with depth- $k$ trees by assumption.

Question 5 (Rademacher complexity): In many applications, for example, in natural language processing (NLP), one has very sparse feature vectors in very high dimensions. Suppose that we know that any feature vector $x \in\{0,1\}^{d}$ satisfies $\|x\|_{1} \leq k$, i.e. there are at most $k$ non-zeros.
(a) Give an example application and data representation where such characteristics might hold.

You decide to use a linear classifier for this "sparse $x$ " problem, where you represent the classifier by a weight vector $w \in \mathbb{R}^{d}$ so that $f(x)=w^{\top} x$, and you restrict your classifiers to be in a particular norm ball $\{w:\|w\| \leq B\}$.
(b) Is using the $\ell_{1}$-norm ball, i.e. $\mathcal{F}=\left\{x \mapsto f(x)=w^{\top} x:\|w\|_{1} \leq B\right\}$ likely to be a good idea? In a sentence or two, explain why or why not. (No need for serious mathematical derivations.)
(c) You decide instead to use dense feature vectors, restricting $w$ to an $\ell_{\infty}$ norm ball, i.e.

$$
\mathcal{F}:=\left\{f \mid f(x)=w^{\top} x,\|w\|_{\infty} \leq B\right\} .
$$

Give an upper bound on $R_{n}(\mathcal{F})$, which should depend on $k$ (the number of non-zeros), $n, B$, and $d$.

## Answer:

(a) In document classification, considering the binary features $x \in \mathbb{R}^{p}$ where $x_{i}=0$ if and only if the document contains the $i$-th word. Since typically a document can only have a very small fraction of words in dictionary, in this case, the features are sparse for the samples.
(b) It depends. Learning linear classifiers with $l_{1}$ constrained $w$ typically results in sparse weights $w$. In document classification, sparse weighting of all dictionary words can get you extraction of the key words that separate the two class of documents. Yet, it suffers the risk that when $B$ is too small, since already the feature space is sparse, a too sparse weighting of $w$ can lose important and useful features that discriminate the two classes.
(c) First, note that $\|x\|_{1} \leq k$. One can compute the Rademacher complexity:
$R_{n}(\mathcal{F})=\mathbb{E}\left[\sup _{w:\|w\|_{\infty} \leq B} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left\langle w, Z_{i}\right\rangle\right]=\frac{1}{n} \mathbb{E}\left[\sup _{w:\|w\|_{\infty} \leq B}\left\langle w, \sum_{i=1}^{n} \sigma_{i} Z_{i}\right\rangle\right]=\frac{B}{n} \mathbb{E}\left[\left\|\sum_{i=1}^{n} \sigma_{i} Z_{i}\right\|_{1}\right]$
where the last equality follows from Hölder's inequality, or the fact that $\|\cdot\|_{1}$ is the dual norm of $\|\cdot\|_{\infty}$. Each $Z_{i}$ has at most $k 1$ 's, so there are a total of at most $k n 1$ 's, spread across the $d$ dimensions. Let $a_{j}$ be total number of 1's among $Z_{1}, Z_{2}, \ldots, Z_{n}$ in the $j$-th dimension, so $a_{1}+a_{2}+\ldots+a_{d} \leq n k$. Moreover, the expected value of the $j$-th dimension of $\sum_{i=1}^{n} \sigma_{i} Z_{i}$ can be upper bounded by

$$
\mathbb{E}\left[\left|\sum_{l=1}^{a_{j}} \sigma_{l}\right|\right] \leq \sqrt{\mathbb{E}\left[\left(\sum_{l=1}^{a_{j}} \sigma_{l}\right)^{2}\right]}=\sqrt{\mathbb{E}\left[\sum_{l_{1}, l_{2}=1}^{a_{j}} \sigma_{l_{1}} \sigma_{l_{2}}\right]}=\sqrt{a_{i}}
$$

where the first inequality follows from the bound $\mathbb{E}[|A|] \leq \sqrt{\mathbb{E}}\left[A^{2}\right]$ (due to Jensen's inequality). Since the 1-norm is the sum of absolute values of each dimension, by linearity of expectation,

$$
R_{n}(\mathcal{F}) \leq \frac{B}{n} \sum_{i=1}^{d} \sqrt{a_{i}} \leq \frac{B}{n} \sqrt{\sum_{i=1}^{d} a_{i} \sum_{i=1}^{d} 1} \leq \frac{B \sqrt{k d}}{\sqrt{n}}
$$

where the second step uses Cauchy-Schwartz.

