
Stats 231 / CS229T Homework 1 Solutions

Question 1 (Moment generating functions of squares): In this question, we investigate sub-
exponential and sub-Gaussian random variables. We let [t]+ = max{0, t} denote the positive part,
and say that 1/0 = +∞.

(a) Let Z be N(0, σ2). Show that

E[eλZ
2
] =

1√
[1− 2λσ2]+

.

(b) Let X be a mean-zero σ2-sub-Gaussian random variable. Show that

E[eλX
2
] ≤ 1√

[1− 2λσ2]+

for λ ≥ 0.

Hint: Introduce an independent Gaussian Z (with some particular variance) and compute
E[eZX ].

(c) Let Z ∼ N(0, σ2). Show that Z2−E[Z2] is sub-exponential and give sub-exponential parameters
for it.

Answer:

(a) We write out the integrals. We have

E[eλZ
2
] =

1√
2πσ2

∫
exp

(
λz2 − 1

2σ2
z2
)
dz

=
1√

2πσ2

∫
exp

(
−1− 2λσ2

2σ2
z2
)
dz.

If 2λσ2 ≥ 1, clearly the last integral is +∞. Otherwise, we use that (by the normalization for

the Gaussian distribution)
∫
e−

1
2τ2

z2dz =
√

2πτ2, so∫
exp

(
−1− 2λσ2

2σ2
z2
)
dz =

√
2π

σ2

1− 2λσ2

assuming that 2λσ2 < 1. This is the result.

(b) We assume that λ > 0 as the result is trivial otherwise. Let Z ∼ N(0,
√

2λ). Then

E[eZX ] = E[eλX
2
]

by the standard MGF for a Gaussian. Thus we have

E[eλX
2
] = E[eZX ]

(i)

≤ E
[
exp

(
σ2Z2

2

)]
=

1√[
1− 2(σ2/2)

√
2λ

2
]
+

=
1√

[1− 2λσ2]+

by part (a).
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(c) For λ ∈ R we have that

E[exp(λ(Z2 − E[Z2]))] = exp

(
−1

2
log(1− 2λσ2)− λσ2

)
,

where we define log(t) = −∞ for t ≤ 0. By a Taylor expansion, we have log(1 − x) =
−x− 1

2x
2 +O(x3) as x→ 0, and moreover, log(1− x) ≥ −x− x2 for |x| ≤ 1

2 . Thus we have

E[exp(λ(Z2 − E[Z2]))] = exp

(
−1

2
log(1− 2λσ2)− λσ2

)
≤ exp

(
λσ2 + λ2σ4 − λσ2

)
= exp

(
λ2σ4

)
for |λ| ≤ 1

2
.

Recalling the definition of sub-exponential random variables, we say Y is (τ2, b)-sub-exponential

of E[eλY ] ≤ exp(λ
2τ2

2 ) for |λ| ≤ 1/b, we obtain that X = Z2−E[Z2] is (2σ4, 2)-sub-exponential.

Question 2 (Concentration inequalities): Let Xi be independent random variables with |Xi| ≤ c
and E[Xi] = 0.

(a) Let σ2i = Var(Xi). Prove that

E[eλXi ] ≤ exp

(
σ2i
c2

(eλc − 1− λc)
)
.

(b) Let h(u) = (1 + u) log(1 + u)− u and let σ2 = 1
n

∑n
i=1 σ

2
i . Prove Bennett’s inequality, that is,

for any t ≥ 0 we have

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
−nσ

2

c2
h

(
ct

nσ2

))
.

(c) Under the notation of part (b), prove Bernstein’s inequality, that is, that for any t ≥ 0

P

(
1

n

n∑
i=1

Xi ≥ t

)
∨ P

(
1

n

n∑
i=1

Xi ≤ −t

)
≤ exp

(
− nt2

2σ2 + 2ct/3

)
,

where a ∨ b = max{a, b}.

(d) When is Bernstein’s inequality tighter than the Hoeffding’s inequality for bounded random
variables? Recall that Hoeffding’s inequality states (under the above conditions on Xi) that

P

(∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣ ≥ t
)
≤ exp

(
−nt

2

2c2

)
.

Answer:
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(a) Let σ = σi for shorthand and Var(X) ≤ σ2. We perform a Taylor expansion:

E[eλX ] = 1 +
∞∑
k=2

E[Xk]λk

k!
≤ 1 +

∞∑
k=2

E[X2]ck−2λk

k!

= 1 +
σ2

c2

∞∑
k=2

ckλk

k!
= 1 +

σ2

c2

(
eλc − 1− λc

)
.

Using that 1 + x ≤ ex for all x gives the result.

(b) Applying the standard Chernoff bound technique, we have

P

(
n∑
i=1

Xi ≥ t

)
≤ E

[
exp

(
λ

n∑
i=1

Xi

)]
e−λt ≤ exp

(
nσ2

c2

(
eλc − 1− λc

)
− λt

)

for all λ ≥ 0, where we have used part (a). Note that φ(λ) = nσ2

c2
(eλc − 1− λc)− λt is convex

in λ, so that differentiating and setting to zero gives us its minimizer. We have

φ′(λ) =
nσ2

c

(
eλc − 1

)
− t = 0 so eλc = 1 +

ct

nσ2
or λ =

1

c
log

(
1 +

ct

nσ2

)
.

Substituting in the preceding display gives

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
− t
c

log

(
1 +

ct

nσ2

)
+
nσ2

c2

(
ct

nσ2
− log

(
1 +

ct

nσ2

)))
= exp

(
−nσ

2

c2

(
1 +

ct

nσ2

)
log

(
1 +

ct

nσ2

)
+
nσ2

c2
ct

nσ2

)
= exp

(
−nσ

2

c2
h

(
ct

nσ2

))
as desired.

(c) We ignore the lower (negative) tail as its proof is identical to the positive tail in part (b). We
must show

− nσ2

c2
h

(
ct

σ2

)
≤ − nt2

2σ2 + 2ct/3
or − σ2

c2
h

(
ct

σ2

)
≤ − t2

2σ2 + 2ct/3
(1)

for all t ≥ 0. Letting u = ct/σ2, then inequality (1) holds if and only if

−σ
2

ct
h

(
ct

σ2

)
≤ − ct

2σ2 + 2ct/3
iff − σ2

ct
h

(
ct

σ2

)
≤ −

ct
σ2

2 + 2
3
ct
σ2

iff − 1

u
h(u) ≤ − u

2 + 2
3u
,

or

h(u) ≥ u2

2 + 2
3u

for all u ≥ 0. (2)

At u = 0, inequality (2) holds because both sides are zero. If we can show that the derivative
of h(u) is larger than that of u2/(2 + 2u/3) for all u ≥ 0, this is sufficient.

With that in mind, we have that inequality (2) holds if for all u ≥ 0, we have

log(1 + u) = h′(u) ≥ 2u

2 + 2
3u
−

2
3u

2

(2 + 2
3u)2

=
4u+ 2

3u
2

(2 + 2
3u)2

=
u+ 1

6u
2

(1 + 1
3u)2

=
u+ 1

6u
2

1 + 2
3u+ 1

9u
2
.
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Taking second derivatives, we have that it is sufficient that for all u ≥ 0, we have

1

1 + u
≥

1 + 1
3u

(1 + 1
3u)2

−
2(u+ 1

6u
2)

3(1 + 1
3u)3

=
1

1 + 1
3u
−

2(u+ 1
6u

2)

3(1 + 1
3u)3

or

−2u

(1 + u)(3 + u)
≥ −

2(u+ 1
6u

2)

3(1 + 1
3u)3

i.e.
1

1 + u
≤

1 + 1
6u

(1 + 1
3u)2

i.e. 1 +
2

3
u+

1

9
u2 ≤ 1 +

7

6
u+

u2

6
.

The final inequality is clear.

An easier way to do this proof is to simply note that

eλ − λ− 1 ≤ λ2

2

∞∑
k=0

(
λ

3

)k
=

λ2

2(1− λ/3)
,

then choose λ = t
σ2+t/3

in the precursor to Bennett’s inequality.

(d) We solve
nt2

2σ2 + 2ct/3
=
nt2

2c2
or 2σ2 +

2ct

3
= 2c2

for t. Evidently,

0 ≤ t ≤ 3

c
(c2 − σ2) = 3c− 3

σ2

c

is sufficient for Bernstein’s inequality to be tighter—that is, for small t, it is better to use
variance-based-bounds. (Because we have σ2 ≤ c2 always.)

Question 3: In the realizable setting with binary classification (where the expected risk minimizer
h? satisfies L(h?) = 0 for the 0-1 error), we obtained excess risk bounds of O(1/n), but in the
unrealizable setting, we had O(

√
1/n). What if the learning problem is almost realizable, in that

L(h?) is small? This problem explores ways to interpolate between 1/n and 1/
√
n rates, showing

that (roughly)
√
L(h?)/n+1/n rates are possible by developing generalization bounds that depend

on the variance of losses (recall Question 2).

(a) Assume that the loss function `(y, t) takes values in [0, 1], where L(h) = E[`(Y, h(X))], and let
L̂n(h) = 1

n

∑n
i=1 `(Yi, h(Xi)). Show that for all ε ≥ 0 we have

P
(
L̂n(h)− L(h) ≥ ε

)
≤ exp

(
− nε2

2(L(h) + ε/3)

)
.

(Note that if L(h) = 0, this bound scales as e−nε � e−nε
2

for ε ≈ 0.)

(b) We now show that bad hypotheses usually look pretty bad. Fix any ε(h), ε ≥ 0, and assume
that

L(h) ≥ ε(h) + ε.

Show that

P
(
L̂n(h) ≤ ε(h)

)
≤ exp

(
− nε2

2(ε(h) + 4ε/3)

)
.
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(c) Assume card(H) < ∞ and let h? satisfy L(h?) = minh∈H L(h). Using the preceding parts,
conclude that if ĥn ∈ argminh∈H L̂n(h), then

P
(
L(ĥn)− L(h?) ≥ 2ε

)
≤ card(H) exp

(
− nε2

2(L(h?) + 7ε/3)

)
.

Show that this implies (for appropriate numerical constants c1, c2) that with probability at
least 1− δ, we have

L(ĥn) ≤ L(h?) + c1

√
L(h?) log card(H)

δ

n
+ c2

log card(H)
δ

n
.

(d) How does this bound compare with a more naive strategy based on applying Hoeffding’s in-
equality and a union bound?

Answer:

(a) First, we bound the variance of `(Y, h(X)). We have

Var[`(Y, h(X))] ≤ E[`(Y, h(X))2] ≤ E[`(Y, h(X))] = `(h),

where the first inequality is true of all random variables, the second inequality is because a2 ≤ a
for a ∈ [0, 1], and the last inequality is the bound on the expected value given in the problem
statement.

Now, nL̂n is the sum of n independent copies of `(Y, h(X)), each of which are bounded in [0, 1]
and have variance at most L(h). Therefore, by Bernstein inequality we have:

P[L̂n(h)− L(h) ≥ ε] ≤ exp

(
−nε2

2(L(h) + ε/3)

)
.

(b) Applying Bernstein’s inequality to −`(Y, h′(X)) gives us the same inequality as for `(Y, h′(X)),
except on the other side of the mean:

P[L̂n(h′)− L(h′) ≤ −ε′] ≤ exp

(
−nε′2

2(L(h′) + ε′/3)

)
.

Let us set ε′ to be L(h′)− ε(h). Then we have the bound

P[L̂n(h′) ≤ ε(h)] ≤ exp

(
−n(L(h′)− ε(h))2

2(L(h′) + (L(h′)− ε(h))/3)

)
.

We claim that
(L(h′)− ε(h))2

L(h′) + (L(h′)− ε(h))/3
≥ ε2

L(h′) + 4ε/3

for L(h′) ≥ ε(h) + ε, from which the result would follow.

To show this, consider the function f(L;E′) := (L−E′)2

L+(L−E′)/3 . It suffices to show that the function

f(·;E′) is monotonically increasing on [E′,∞). Taking the derivative with respect to L:

d

dL

(L− E′)2

L+ (L− E′)/3
=

2(L− E′)(L+ (L− E′)/3)− (4/3)(L− E′)2

(L+ (L− E′)/3)2
(3)

=
L− E′

(L+ (L− E′)/3)2
(
2(L+ (L− E′)/3)− 4(L− E′)/3

)
(4)

=
L− E′

(L+ (L− E′)/3)2
(
4L/3 + 2E′/3

)
, (5)
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which is positive whenever L > E′. This proves the claim of monotonicity of f(·;E′) on [E′,∞)
and thus the desired result.

(c) Consider the following two events:

(a) L̂n(h∗) ≥ L(h∗) + ε.

(b) L̂n(h) ≤ L(h∗) + ε for all h with L(h) ≥ E + 2ε.

Let P and Q be the probabilities of these two events holding, respectively. The probability of
either event happening is at most P +Q. Observe that if L(ĥ) ≥ L(h?) + 2ε happens, then one
of the two events must have happened. Therefore, P[L(ĥn)− L(h?) ≥ 2ε] ≤ P +Q.

P is easy to bound: just apply the result from (a) to get that

P ≤ exp

(
−nε2

L(h?) + ε/3

)
.

To bound Q, first note that for any h such that L(h) ≥ L(h?) + 2ε, the probability that

L̂(h) ≤ L(h?) + ε for any given h can be bounded by exp
(

−nε2
L(h?)+7ε/3

)
by applying part (b)

with ε(h) = L(h?) + ε (since we have the bound L(h) ≥ L(h?) + 2ε = ε(h) + ε in this case).
Then, there are at most |H| − 1 such h (since there are at most |H| hypotheses total and at
least one of them — namely, h∗ — has L(h) < L(h?) + 2ε). Therefore, we have,

Q ≤ (|H| − 1) exp

(
−nε2

L(h?) + 7ε/3

)
.

Combining these gives

P[L(ĥ)− E ≥ 2ε] ≤ P +Q ≤ |H| exp

(
−nε2

L(h?) + 7ε/3

)
, (6)

which yields the desired result.

(d) The realizable case gives a bound of |H| exp(−c1nε), and the regular Hoeffding bound gives a
bound of |H| exp(−c2nε2). The bound in part (c) is in some sense an interpolation between
them: when E is small compared to ε then the bound behaves like the bound in the realizable
case; when E is large compared to ε, it behaves like the regular Hoeffding bound. The range
of value of ε for which we get the same behavior as the realizable case depends on “how close”
to realizable we are.

Question 4 (VC Dimension):

(a) Let X = R2 and consider the hypothesis class of indicators for convex polygons, that is,

H = {hC(x) = 1 {x ∈ C} : C is a convex polygon} .

What is VC(H)?
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(b) A decision tree T is a binary tree that classifies points in Rd. Each internal node (non-leaf
node) v in T has an attribute jv ∈ {1, 2, . . . , d} and a threshold tv ∈ R. Each leaf node is
labeled with one of the two classes, +1 or -1. Given a point x ∈ Rd, we start from the root,
and every time we encounter an internal node v, we check the condition 1 {xjv ≥ tv}. We go to
the left child if the condition is not met, and the right child otherwise. We repeat such process
until we reach a leaf node, and classifies the point according to the label of the node.

Show that the VC dimension of the hypothesis class corresponding to all depth-k decision trees
defined above is Ω(2k log d).

Answer:

(a) For p = 1, we can only shatter 2 points. For other p, H has infinite VC dimension, for p ≥ 2.
Consider any n distinct points on the p-dimensional sphere x1, . . . , xn so that ‖xi‖2 = 1. We
can assign positive labels to any subset of m ≤ n points x1, . . . , xm, by using the hypothesis
h(x) = I[x ∈ Convex-hull(x1, . . . , xm)] ∈ H. To show that any other point xj , j > m with norm
1 will be assigned a negative label, we can show that ‖x‖2 < 1 for x ∈ Convex-hull(x1, . . . , xm),
x /∈ {x1:m}. For a non-vertex point in the convex-hull x =

∑m
i=1 θixi, for 1 > θi ≥ 0 and∑m

i=1 θi = 1, then

‖x‖22 =

m∑
i=1

m∑
j=1

θiθjxi · xj <
m∑
i=1

m∑
j=1

θiθj = 1

The strict inequality comes from distinctness as well as x being a non-vertex. An intuitive
argument is sufficient for the problem as well.

(b) We first prove the case of k = 1, where we get to split the points (once) along a certain axis. In
this case, suppose we have n = blog2 dc points. We associate each of the d dimensions j with

a subset S(j) of the n points, and let x
(i)
j = 1 if i ∈ S(j) and −1 otherwise. In this way, each

desired labeling S(j) can be achieved using the condition I[xj ≥ 0]. Since we have at least 2n

dimensions, we can achieve all labelings.

For the general case, we show that increasing the depth of the tree by 1 allows us to at least
double the number of points we can shatter. If this is true, by induction we can shatter at least
2kblog2 dc points.

Suppose depth-k trees can shatter an n-element set A. Without loss of generality, x1 > 0
for all x ∈ A, which can be achieved by shifting the points. Depth-k trees can also shatter
A′ = {(−x1, x2, . . . , xd) : x ∈ A}. Thus, the set B = A ∪ A′ can be shattered by depth-(k + 1)
trees as follow: at the root, let the condition be I[x1 ≥ 0], splitting the points into A and A′,
and we can shatter both sets with depth-k trees by assumption.

Question 5 (Rademacher complexity): In many applications, for example, in natural language
processing (NLP), one has very sparse feature vectors in very high dimensions. Suppose that we
know that any feature vector x ∈ {0, 1}d satisfies ‖x‖1 ≤ k, i.e. there are at most k non-zeros.

(a) Give an example application and data representation where such characteristics might hold.

You decide to use a linear classifier for this “sparse x” problem, where you represent the classifier
by a weight vector w ∈ Rd so that f(x) = w>x, and you restrict your classifiers to be in a particular
norm ball {w : ‖w‖ ≤ B}.
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(b) Is using the `1-norm ball, i.e. F = {x 7→ f(x) = w>x : ‖w‖1 ≤ B} likely to be a good idea? In
a sentence or two, explain why or why not. (No need for serious mathematical derivations.)

(c) You decide instead to use dense feature vectors, restricting w to an `∞ norm ball, i.e.

F := {f | f(x) = w>x, ‖w‖∞ ≤ B}.

Give an upper bound on Rn(F), which should depend on k (the number of non-zeros), n, B,
and d.

Answer:

(a) In document classification, considering the binary features x ∈ Rp where xi = 0 if and only if
the document contains the i-th word. Since typically a document can only have a very small
fraction of words in dictionary, in this case, the features are sparse for the samples.

(b) It depends. Learning linear classifiers with l1 constrained w typically results in sparse weights
w. In document classification, sparse weighting of all dictionary words can get you extraction
of the key words that separate the two class of documents. Yet, it suffers the risk that when
B is too small, since already the feature space is sparse, a too sparse weighting of w can lose
important and useful features that discriminate the two classes.

(c) First, note that ‖x‖1 ≤ k. One can compute the Rademacher complexity:

Rn (F) = E

[
sup

w:‖w‖∞≤B

1

n

n∑
i=1

σi 〈w,Zi〉

]
=

1

n
E

[
sup

w:‖w‖∞≤B

〈
w,

n∑
i=1

σiZi

〉]
=
B

n
E

[∥∥∥∥∥
n∑
i=1

σiZi

∥∥∥∥∥
1

]

where the last equality follows from Hölder’s inequality, or the fact that ‖·‖1 is the dual norm
of ‖·‖∞. Each Zi has at most k 1’s, so there are a total of at most kn 1’s, spread across the
d dimensions. Let aj be total number of 1’s among Z1, Z2, . . . , Zn in the j-th dimension, so
a1 + a2 + . . .+ ad ≤ nk. Moreover, the expected value of the j-th dimension of

∑n
i=1 σiZi can

be upper bounded by

E

[
|
aj∑
l=1

σl|

]
≤

√√√√√E

( aj∑
l=1

σl

)2
 =

√√√√√E

 aj∑
l1,l2=1

σl1σl2

 =
√
ai

where the first inequality follows from the bound E[|A|] ≤
√
E[A2] (due to Jensen’s inequality).

Since the 1-norm is the sum of absolute values of each dimension, by linearity of expectation,

Rn (F) ≤ B

n

d∑
i=1

√
ai ≤

B

n

√√√√ d∑
i=1

ai

d∑
i=1

1 ≤ B
√
kd√
n

where the second step uses Cauchy-Schwartz.
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