
Stats 231 / CS229T Homework 2 Solutions

Question 1 (Rademacher and Gaussian complexity): In some situations it may be easier to
control the Gaussian complexity of a set of functions than the Rademacher complexity. Given
points x1, . . . , xn, the (unnormalized) empirical Gaussian complexity is

Ĝn(F) := E

[
sup
f∈F

n∑
i=1

gif(xi) | x1:n

]

where gi
iid∼ N(0, 1) are independent standard Gaussians. The Gaussian complexity is the expected

version of the empirical complexity Gn(F) = E[Ĝn(F)]. Show that, assuming that F is symmetric
in the sense that if f ∈ F then −f ∈ F ,

nR̂n(F) ≤
√
π

2
Ĝn(F).

Answer: Let εi denote a Rademacher random variable, taking values uniformly in {−1,+1}. We
use the fact that εi|gi| ∼ N(0, 1), where gi ∼ N(0, 1), and that

E[|gi|] =
1√
2π

∫ ∞
−∞
|g| exp

{
−g2/2

}
dg =

2√
2π

∫ ∞
0

g exp
{
−g2/2

}
dg =

√
2/π. (1)

Then

Ĝn(F) = E

[
sup
f∈F

n∑
i=1

gif(xi)

∣∣∣∣x1:n

]

= Eε

[
Eg

[
sup
f∈F

n∑
i=1

εi|gi|f(xi)

∣∣∣∣ε1:n, x1:n

]]
(i)

≥ E

[
sup
f∈F

n∑
i=1

E[|gi|]εif(xi)

]
(ii)
=

√
2

π
E

[
sup
f∈F

n∑
i=1

εif(xi)

]
(iii)
=

√
2

π
E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣
]

=

√
2

π
nR̂n(F),

where (i) is from Jensen’s inequality applied to the inner expectation and the convex supremum
function, (ii) is from (1), and (iii) is by the symmetry of F .

Question 2 (Gaussian comparisons and contractions): The Sudakov-Fernique bound is a com-
parison inequality for Gaussian processes that allows substantial control over Gaussian processes,
including more powerful contraction inequalities than are available for Rademacher complexities.
Recall that a collection {Xt}t∈T of random variables is a Gaussian process if Xt is normally dis-
tributed for all T and all pairs (Xt, Xs), where s, t ∈ T , are jointly normally distributed. Let
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{Xt}t∈T and {Yt}t∈T be Gaussian processes indexed by a set T .1 The Sudakov-Fernique inequality
is that if

E[Xt] = E[Yt] = 0 and E[(Xt −Xs)
2] ≤ E[(Yt − Ys)2] for all s, t ∈ T (2)

then

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Yt

]
.

This is perhaps intuitive: the condition (2) suggests that Xt is somehow more tightly correlated
with itself than Yt, so that we expect Yt to be “bigger” in some way.

(a) Prove Slepian’s inequality from the Sudakov-Fernique bound. Slepian’s inequality is that

E[XtXs] ≥ E[YtYs] and E[X2
t ] = E[Y 2

t ] for all s, t ∈ T

implies E[supt∈T Xt] ≤ E[supt∈T Yt].

Now, let us use the Sudakov-Fernique condition (2) to give contraction inequalities for Gaussian
complexity.

(b) Let φi : Rd → R be Mi-Lipschitz for i = 1, 2, . . . , n. Let gi
iid∼ N(0, 1) be independent stan-

dard Gaussians and Zi
iid∼ N(0, Id) be independent Rd-valued Gaussian vectors with identity

covariance. Define the empirical Gaussian complexities

Ĝn(φ ◦Θ) := E

[
sup
θ∈Θ

n∑
i=1

giφi(θ)

]
and Ĝn(Θ) := E

[
sup
θ∈Θ

n∑
i=1

MiZ
T
i θ

]
.

Show that for a numerical constant C <∞ (specify your constant)

Ĝn(φ ◦Θ) ≤ C · Ĝn(Θ).

(c) Let ` : Θ × Rd → R satisfy `(θ, x) = φ(θTx) where φ is M -Lipschitz. Define F to be the loss
class F := {`(θ, ·) : θ ∈ Θ}. Show that

Ĝn(F) ≤ Ĝn(Θ) := ME

[
sup
θ∈Θ

n∑
i=1

giθ
Txi

]

(d) Fix θ? ∈ Θ ⊂ Rd, and suppose that we instead use the centered loss class

F := {`(θ, ·)− `(θ?, ·) | θ ∈ Θ}.

In addition, let Θε = {θ ∈ Θ | ‖θ − θ?‖2 ≤ ε}. Under the conditions of part (c), give an explicit
upper bound on

Ĝn(F) := E

[
sup
θ∈Θε

n∑
i=1

gi(`(θ;xi)− `(θ?;xi))

]
.

What is your bound’s dependence on ε, the Lipschitz constant M , n, and the dimension d of
Θ? How does this compare to the localized Rademacher complexity result we gave in class?

Answer:
1Technically T must be finite, but in our settings we can approximate T by finite subsets so that everything holds.
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(a) Assume E[Xt] = E[Yt] = 0 for all t, which is all that is needed for this problem. It is easy to
see that the Slepian assumption implies the Sudakov-Fernique assumption:

E[(Xt −Xs)
2] = E[X2

t ]− 2E[XtXs] + E[X2
s ] ≤ E[Y 2

t ]− 2E[YtYs] + E[Y 2
s ] = E[(Yt − Ys)2].

Therefore we can apply the Sudakov-Fernique inequality and conclude E[supt∈T Xt] ≤ E[supt∈T Yt].

(b) Let Xθ be the mean-zero Gaussian process defined by Xθ =
∑n

i=1 giφi(θ), and similarly define
Yθ =

∑n
i=1MiZ

T
i θ. We must verify the Sudakov-Fernique condition for Xθ and Yθ. We compute

E[(Xθ1 −Xθ2)2] = E

( n∑
i=1

gi(φi(θ1)− φi(θ2))

)2


(i)
= E

[
n∑
i=1

g2
i (φi(θ1)− φi(θ2))2

]
(ii)

≤
n∑
i=1

E[g2
i ]M

2
i ‖θ1 − θ2‖2

= ‖θ1 − θ2‖2
n∑
i=1

M2
i ,

where (i) is because gi are uncorrelated so the cross terms disappear and (ii) is from the
Mi-Lipschitzness of φi. Similarly,

E(Yθ1 − Yθ2)2] = E

( n∑
i=1

MiZ
T
i (θ1 − θ2)

)2
 = ‖θ1 − θ2‖2

n∑
i=1

M2
i .

So the condition is satisfied, and the conclusion follows from the Sudakov-Fernique inequality.
The constant is C = 1.

(c) In a similar manner to part (b), define Xθ =
∑n

i=1 giφ(θTxi) and Yθ = M
∑n

i=1 giθ
Txi. Then

by the Lipschitz assumption,

E[(Xθ1 −Xθ2)2] = E

( n∑
i=1

gi(φi(θ
T
1 xi)− φi(θT2 xi))

)2


= E

[
n∑
i=1

g2
i (φi(θ

T
1 xi)− φi(θT2 xi))2

]

≤ E

[
n∑
i=1

g2
iM

2(θ1 − θ2)Txi)
2

]

= M2
n∑
i=1

((θ1 − θ2)Txi)
2

We also compute

E[(Yθ1 − Yθ2)2] = E

(M n∑
i=1

gi(θ1 − θ2)Txi

)2
 = M2

n∑
i=1

((θ1 − θ2)Txi)
2.
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So the condition E[(Xθ1 −Xθ2)2] ≤ E[(Yθ1 − Yθ2)2] is satisfied, and the conclusion follows from
the Sudakov-Fernique inequality.

(d) Applying the result from part (c), we find

Ĝn(F) = E

[
sup
θ∈Θε

n∑
i=1

gi(`(θ;xi)− `(θ?;xi))

]
≤ME

[
sup
θ∈Θε

n∑
i=1

gi(θ − θ?)Txi

]

= ME

[
sup
θ∈Θε

ε

∥∥∥∥ n∑
i=1

gixi

∥∥∥∥
2

]
(i)

≤ Mε

√√√√E

[
n∑
i=1

‖gixi‖22

]
= Mε

√
n

√√√√ 1

n

n∑
i=1

‖xi‖22

where inequality (i) is Jensen’s inequality and uses the fact that E[gigjx
T
i xj ] = 0 for i 6= j.

In the case that the data xi are bounded in `2-norm, by (say) r this yields

Ĝn(F) ≤Mr
√
nε,

which is tighter than the local Rademacher complexity results we have given (which grow with

dimension, as R̂n(F) ≤Mε
√

d
n).

Question 3 (Adaptive stepsizes): Consider an online learning problem in which we receive a
sequence of convex functions ft : X → R, where X ⊂ Rd is a compact convex set. Let Dh(x, y) =
h(x)− h(y)− 〈∇h(y), x− y〉 be the usual Bregman divergence, and assume that

Dh(x, y) ≤ D2
X for all x, y ∈ X.

As usual, we define the regret of a sequence of plays x1, x2, . . . by

RegT :=
T∑
t=1

[ft(xt)− ft(x?)]

where x? ∈ argminx∈X
∑T

t=1 ft(x). We consider the usual online mirror descent algorithm

xt+1 = argmin
x∈X

{
〈gt, x〉+

1

αt
Dh(x, xt)

}
where gt ∈ ∂ft(xt).

Assume that h : X → R is strongly convex with respect to the norm ‖·‖ with dual norm ‖·‖∗, so
that Dh(x, y) ≥ 1

2 ‖x− y‖
2 for all x, y ∈ X.

(a) Show that for any (nonnegative) sequence of non-increasing stepsizes α1, α2, . . ., we have

RegT =
T∑
t=1

[ft(xt)− ft(x?)] ≤
D2
X

αT
+

T∑
t=1

αt
2
‖gt‖2∗ .

(b) Suppose that we choose a fixed stepsize αt ≡ α for all t. Give the value of

inf
α≥0

{
T∑
t=1

D2
X

α
+

T∑
t=1

α

2
‖gt‖2∗

}
.
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(c) Let {at}Tt=1 be an arbitrary sequence of non-negative numbers. Define bt =
∑t

τ=1 aτ . Prove
that

T∑
t=1

at√
bt
≤ 2
√
bT = 2

√√√√ T∑
t=1

at,

where we treat 0/0 as 0.

(d) Based on parts (b) and (c), give a sequence of stepsizes αt, which depend only on the subgra-
dients {gτ}tτ=1 through time t and the diameter DX , such that

D2
X

αT
+

T∑
t=1

αt
2
‖gt‖2∗ ≤ O(1) · inf

α≥0

{
D2
X

α
+
α

2

T∑
t=1

‖gt‖2∗

}
.

Answer:

(a) This is the standard regret bound. We have

RegT =

T∑
t=1

[ft(xt)− ft(x?)]
(i)

≤
T∑
t=1

〈gt, xt − x?〉

=

T∑
t=1

〈gt, xt+1 − x?〉+

T∑
t=1

〈gt, xt − xt+1〉

(ii)

≤
T∑
t=1

1

αt
〈∇h(xt+1)−∇h(xt), x

? − xt+1〉+

T∑
t=1

〈gt, xt − xt+1〉

where the inequality (i) used convexity and inequality (ii) used that〈
gt +

1

αt
[∇h(xt+1)−∇h(xt)], y − xt+1

〉
≥ 0 for all y ∈ X

by the standard optimality conditions for convex problems and definition of the update for
xt+1.

Now we use our standard Bregman divergence identity that

〈∇h(z)−∇h(x), y − z〉 = Dh(y, x)−Dh(y, z)−Dh(z, x)

applied with y = x?, z = xt+1, and x = xt to obtain the following upper bound on the regret:

RegT ≤
T∑
t=1

1

αt
[Dh(x?, xt)−Dh(x?, xt+1)−Dh(xt+1, xt)] +

T∑
t=1

〈gt, xt − xt+1〉 .

Using the Fenchel-Young inequality as in class, we have

〈gt, xt − xt+1〉 ≤
αt
2
‖gt‖2∗ +

1

2αt
‖xt − xt+1‖2 ≤

αt
2
‖gt‖2∗ +

1

αt
Dh(xt+1, xt),
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which gives us the bound

RegT ≤
T∑
t=1

1

αt
[Dh(x?, xt)−Dh(x?, xt+1)] +

T∑
t=1

αt
2
‖gt‖2∗

=

T∑
t=2

(
1

αt
− 1

αt−1

)
Dh(x?, xt) +

1

α1
Dh(x?, x1)− 1

αT
Dh(x?, xT ) +

T∑
t=1

αt
2
‖gt‖2∗

(iii)

≤
T∑
t=2

(
1

αt
− 1

αt−1

)
D2
X +

1

α1
D2
X +

T∑
t=1

αt
2
‖gt‖2∗

=
1

αT
D2
X +

T∑
t=1

αt
2
‖gt‖2∗ ,

where inequality (iii) follows because αt ≤ αt−1 and D2
X ≥ Dh(x?, xt) ≥ 0.

(b) We have for any a, b ≥ 0 that

inf
α≥0

{ a
α

+ bα
}

= 2
√
ab

by taking derivatives and setting to zero, as 1/α is convex and so is b · α (we take α =
√
a/b).

Thus

inf
α≥0

{
T∑
t=1

D2
X

α
+

T∑
t=1

α

2
‖gt‖2∗

}
=

√√√√2D2
X

T∑
t=1

‖gt‖2∗.

(c) We prove the result inductively. The base case is immediate: we certainly have a1/
√
a1 ≤√

a1 ≤ 2
√
a1. For the induction assume that

∑t−1
τ=1

aτ√
bτ
≤ 2
√
bt−1. We have

t∑
τ=1

aτ√
bτ
≤ 2
√
bt−1 +

at√
bt
.

The first-order concavity inequality that φ(y) ≤ φ(x) + φ′(x)(y − x) for φ concave applies to√
·, guaranteeing that

√
x+ δ ≤

√
x+ 1

2
√
x
δ. Thus we have

√
bt−1 =

√
bt − at ≤

√
bt −

at

2
√
bt

so 2
√
bt−1 +

at√
bt
≤ 2
√
bt −

at

2
√
bt

+
at√
bt

= 2
√
bt,

which is the inductive result we desired.

(d) Take stepsizes

αt =
DX√∑t
τ=1 ‖gτ‖

2
∗

.

Then we have

RegT ≤ DX

√√√√ T∑
t=1

‖gt‖2∗ +
DX

2

T∑
t=1

‖gt‖2∗√∑t
τ=1 ‖gτ‖

2
∗

≤ DX

√√√√ T∑
t=1

‖gt‖2∗ +DX

√√√√ T∑
t=1

‖gt‖2∗

where we have applied part (c) with at = ‖gt‖2∗. The constant O(1) term is thus O(1) ≤
√

2.
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Question 4 (AdaGrad): We investigate subgradient methods that change the metric they use
throughout the iterations. In particular, we consider a sequence Ht ∈ Rd×d of symmetric, diagonal,
positive definite matrices, which we generate sequentially (this is AdaGrad) as follows:

i. Receive ft and compute gt ∈ ∂ft(xt)

ii. Set Gt =
∑t

τ=1 diag(gτ )2 and Ht = G
1
2
t

iii. Update

xt+1 = argmin
x∈X

{
〈gt, x〉+

1

2α
(x− xt)THt(x− xt)

}
.

Here α > 0 is a fixed multiplier.

(a) Show that for any x? ∈ X,

T∑
t=1

[ft(xt)− ft(x?)] ≤
1

2α
tr(HT ) sup

x,y∈X
‖x− y‖2∞ +

T∑
t=1

α

2
‖gt‖2H−1

t

where ‖x‖2A = xTAx is the usual Mahalanobis norm

(b) Let D∞ = supx,y∈X ‖x− y‖∞. Show that the choice α = D∞ yields

T∑
t=1

[ft(xt)− ft(x?)] ≤ 2 tr(HT )D∞.

(c) Suppose that X = [−1, 1]d is the `∞-box in Rd of radius 1 and that ‖gt‖2 ≤ 1 for all t. Give an
upper bound on the regret of AdaGrad in this case. How does it compare to the regret bound
one would achieve using the standard projected subgradient method?

(d) Suppose that X = [−1, 1]d as above and that instead of the fully adversarial setting, the
functions ft are drawn i.i.d. with expectation F = E[ft] and that the subgradients gt ∈ ∂ft(xt)
are sparse as follows. We have gt ∈ {−1, 0, 1}d, with coordinates gt,j ∈ {−1, 0, 1}, and

P(gt,j 6= 0) = j−β

for some β ∈ [0, 2]. Give an upper bound on

i. The expected regret of AdaGrad.

ii. The expected regret of the standard projected subgradient method.

In which circumstances is one better than the other?

Answer:
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(a) By following the usual calculation as done in the lecture notes (see mirror descent slides), we
find that the progress of a single update is

ft(xt)− ft(x?) ≤
1

2α

[
‖xt − x?‖2Ht − ‖xt+1 − x?‖2Ht

]
+
α

2
‖gt‖2H−1

t
.

The sum over t is then

T∑
t=1

[ft(xt)− ft(x?)] ≤
1

2α

[
‖x1 − x?‖2H1

+
T∑
t=2

[
‖xt − x?‖2Ht − ‖xt − x

?‖2Ht−1

]]
︸ ︷︷ ︸

(∗)

+
α

2

T∑
t=1

‖gt‖2H−1
t

where (∗) is

(∗) = (x1 − x?)TH1(x1 − x?) +

T∑
t=2

(xt − x?)T (Ht −Ht−1)(xt − x?)

≤ D2
∞ tr(H1) +

T∑
t=2

D2
∞(tr(Ht)− tr(Ht−1)) = D2

∞ tr(HT ),

since each Ht is diagonal with elements greater than those of Ht−1. (Here we have denoted
D∞ = supx,y∈X ‖x− y‖∞.) This produces the desired bound

T∑
t=1

[ft(xt)− ft(x?)] ≤
1

2α
D2
∞ tr(HT ) +

α

2

T∑
t=1

‖gt‖2Ht−1
.

(b) By definition of the Mahalanobis norm,

T∑
t=1

‖gt‖2H−1
t

=

T∑
t=1

d∑
j=1

g2
t,j√∑t
τ=1 g

2
τ,j

≤ 2

d∑
j=1

√√√√ T∑
t=1

g2
t,j = 2

d∑
j=1

HT,j = 2 tr(HT ),

where we have reversed the sums and applied the result of Problem 3(c). Now if α = D∞, the
bound from part (a) becomes

T∑
t=1

[ft(xt)− ft(x?)] ≤
Dα

2
tr(HT ) +

Dα

2

T∑
t=1

‖gt‖2H−1
t
≤ 2D∞ tr(HT ).

(c) In this case D∞ = 2, and ‖gt‖2 ≤ 1 implies

tr(HT ) =
d∑
j=1

√√√√ T∑
t=1

g2
t,j ≤

√√√√d
T∑
t=1

d∑
j=1

g2
t,j ≤

√
dT .

Therefore, the regret bound from part (b) is 4
√
dT .

This has the same
√
dT dependence as the standard projected subgradient method.
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(d) The expected regret is bounded by

E

[
T∑
i=1

[ft(xt)− ft(x?)]

]
≤ 2D∞E[tr(HT )] ≤ 2D∞

d∑
j=1

√√√√ T∑
t=1

E[g2
t,j ] = 2

√
T

d∑
j=1

j−β/2 ≤ C
√
Td1−β/2,

for some constant C.

From class, the expected regret of the standard projected subgradient method is bounded above
by DX

√
TM where where DX = supx,y∈X ‖x− y‖2 = 2

√
d, and

M2 =

d∑
j=1

P(gt,j 6= 0) =

d∑
j=1

j−β �


1 if β > 1

log d if β = 1

d1−β if β < 1.

Ignoring the logarithmic case for simplicity, we have M � d[1−β]+/2, so that

E

[
T∑
t=1

[ft(xt)− ft(x?)]

]
≤ DX

√
TM .

√
Td

1
2

+[1−β]+/2.

Evidently, this is worse than AdaGrad’s d1−β/2 dependence for all β ≥ 1.

Question 5 (Strongly convex regret): Assume that we have an online convex optimization
problem where each ft : X → R is λ-strongly convex, meaning

ft(y) ≥ ft(x) + 〈gt, y − x〉+
λ

2
‖x− y‖22 for gt ∈ ∂f(x) and x, y ∈ X.

Assume that each ft is also M -Lipschitz, so that ‖g‖2 ≤ M for all g ∈ ∂f(x), x ∈ X. Prove that
for the usual projected gradient algorithm,

xt+1 = πX(xt − αtgt),

where gt ∈ ∂ft(xt) and we choose the stepsize αt = 1
λt , we have

RegT ≤
M2

2λ
log(T + 1).

Answer: We follow our usual proof for these types of results—we expand the error 1
2 ‖xt+1 − x‖22.

We have for any x ∈ X that

1

2
‖xt+1 − x‖22 ≤

1

2
‖xt − αtgt − x‖22

=
1

2
‖xt − x‖22 − αt 〈gt, xt − x〉+

α2
t

2
‖gt‖22

≤ 1

2
‖xt − x‖22 − αt

[
ft(xt)− ft(x) +

λ

2
‖xt − x‖22

]
+
α2
t

2
‖gt‖22 ,
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where the final step used the definition of strong convexity. Rearranging and dividing by αt yields

ft(xt)− ft(x) ≤ 1

2αt
‖xt − x‖22 −

1

2αt
‖xt+1 − x‖22 −

λ

2
‖xt − x‖22 +

αt
2
‖gt‖22 .

Noting that ‖gt‖2 ≤M by assumption, we sum the preceding inequality from t = 1 to T to obtain

T∑
t=1

[ft(xt)− ft(x)] ≤
T∑
t=2

(
1

2αt
− 1

2αt−1

)
‖xt − x‖22 +

1

2α1
‖x1 − x‖22 −

1

2αT
‖xT+1 − x‖22

−
T∑
t=1

λ

2
‖xt − x‖22 +

T∑
t=1

αt
2
M2

=
T∑
t=1

λ

2
‖xt − x‖22 −

T∑
t=1

λ

2
‖xt − x‖22 −

1

2αT
‖xT+1 − x‖22 +

T∑
t=1

αt
2
M2

≤
T∑
t=1

αt
2
M2,

where the equality uses that 1
αt

= tλ. Noting that
∑T

t=1
1
t ≤

∫ T+1
1

1
t dt = log(T + 1) gives the

result.

Question 6 (Low regret algorithms prove von-Neumann’s Minimax Theorem): A minor extension
of the von-Neumann minimax theorem is as follows. Let A ∈ Rm×n be an arbitrary matrix, and
let X ⊂ Rm and Y ⊂ Rn be arbitrary convex compact sets. Then

inf
x∈X

sup
y∈Y

xTAy = sup
y∈Y

inf
x∈X

xTAy. (3)

In fact, we can say more: there exists a saddle point x?, y? such that

inf
x∈X

xTAy? = x?TAy? = sup
y∈Y

x?TAy.

In this question, we show how online learning gives a proof of the von-Neumann minimax theorem.
Throughout this question, with no loss of generality, we assume that |||A|||op ≤ 1 and ‖x− x′‖2 ≤ 1,
‖y − y′‖2 ≤ 1 for all x, x′ ∈ X and y, y′ ∈ Y .

(a) Show the “easy” direction
sup
y∈Y

inf
x∈X

xTAy ≤ inf
x∈X

sup
y∈Y

xTAy.

Consider the following so-called “best response” game: beginning from an arbitrary x1 ∈ X, at
each iteration t = 1, 2, . . ., we play

yt = argmax
y∈Y

{
xTt Ay

}
and update

xt+1 = argmin
x∈X

{
xTAyt +

1

2α
‖x− xt‖22

}
,

or xt+1 = πX(xt − αAyt), the projection of xt − αAyt onto X.
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(b) Defining ft(x) = xTAyt, give an upper bound on

RegT := sup
x∈X

T∑
t=1

[ft(xt)− ft(x)]

that, for appropriate choice of α, satisfies RegT ≤
√
T .

(c) Show that for xT = 1
T

∑T
t=1 xt and yT = 1

T

∑T
t=1 yt, we have

sup
y∈Y

xTTAy ≤ inf
x∈X

xTAyT +
1√
T
.

Show that this gives von-Neumann’s result (3). (It turns out that by moving to subsequences
if necessary, this argument also shows that xT → x? and yT → y? as T →∞.)

Answer:

(a) For any fixed x and y, it is clear that

xTAy ≤ sup
y′∈Y

xTAy′.

Taking the infimum in x over both sides gives

inf
x∈X

xTAy ≤ inf
x∈X

sup
y′∈Y

xTAy′.

But then taking an infimum over y on the left gives the result.

(b) We have that gt := Ayt = ∇ft(xt), so that letting x? ∈ argminx∈X
∑T

t=1 ft(x) (which exists
because ft are convex and X is compact), we have

T∑
t=1

[ft(xt)− ft(x?)] ≤
T∑
t=1

〈gt, xt − x?〉 .

But this is the exact upper bound that we have seen in class, so using the lecture notes, we
find that the projected gradient update yields

T∑
t=1

〈gt, xt − x?〉 ≤
‖x1 − x?‖22

2α
+
α

2

T∑
t=1

‖gt‖22 .

Using that ‖gt‖2 = ‖Ayt‖2 ≤ |||A|||op ‖yt‖2 ≤ |||A|||op ≤ 1, we have

RegT ≤
1

2α
+
α

2
T.

Choose α = 1/
√
T .

(c) Letting xT = 1
T

∑T
t=1 xt and yT = 1

T

∑T
t=1 yt, we have

1

T

T∑
t=1

ft(xt) =
1

T

T∑
t=1

xTt Ayt
(i)

≤ inf
x∈X

{
1

T

T∑
t=1

xTAyt

}
+

1√
T

= inf
x∈X

xTAyT +
1√
T
≤ sup

y∈Y
inf
x∈X

xTAy +
1√
T
,
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where inequality (i) is part (b). But then ft(xt) = supy∈Y x
T
t Ay by the choice of yt, so

1

T

T∑
t=1

sup
y∈Y
{xtAy} ≤ inf

x∈X
xTAyT +

1√
T
.

Noting that the average of suprema is larger than the supremum of the average (concavity),
we have

inf
x∈X

sup
y∈X

xTAy ≤ sup
y∈Y

xTTAy ≤
1

T

T∑
t=1

sup
y∈Y

xTt Ay ≤ inf
x∈X

xTAyT +
1√
T
≤ sup

y∈Y
inf
x∈X

xTAy +
1√
T
.

As T is arbitrary, we have the result we desire.
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