
Stats 231 / CS229T Homework 3 Solutions

Question 1: Let k : X × X → R be a valid kernel function. Define

knorm(x, z) :=
k(x, z)√

k(x, x)
√
k(z, z)

.

Is knorm a valid kernel? Justify your answer.

Answer: Yes, it is. Let k(x, z) = 〈φ(x), φ(z)〉 for some mapping φ : X → H, where H is a Hilbert
space. Then

knorm(x, z) = 〈φ(x)/ ‖φ(x)‖2 , φ(z)/ ‖φ(z)‖2〉

so that it is still a valid inner product, where the feature mapping is now x 7→ φ(x)/ ‖φ(x)‖2 for
‖φ(x)‖22 = 〈φ(x), φ(x)〉.

Question 2: Consider the class of functions

H :=
{
f : f(0) = 0, f ′ ∈ L2([0, 1])

}
,

that is, functions f : [0, 1] → R with f(0) = 0 that are almost everywhere differentiable, where∫ 1
0 (f ′(t))2dt <∞. On this space of functions, we define the inner product by

〈f, g〉 =

∫ 1

0
f ′(t)g′(t)dt.

Show that k(x, z) = min{x, z} is the reproducing kernel for H, so that it is (i) positive semidefinite
and (ii) a valid kernel.

Answer: If we show that k(x, z) = min{x, z} is indeed the reproducing kernel for H, then that
suffices to demonstrate that it is a positive definite function. We have for g(z) = k(x, z) that
(almost everywhere) g′(z) = 1 {x ≤ z}, so that

〈f, k(z, ·)〉 =

∫ 1

0
f ′(t)1 {t ≤ z} dt =

∫ z

0
f ′(t)dt = f(z)− f(0) = f(z).

Thus k is evidently a reproducing kernel, so it must be a positive definite function.
(Another way to see that, we have min{x, z} = k(x, z) =

∫ 1
0 1 {t ≤ x}1 {t ≤ z} dt, so that

min{x, z} is evidently an inner product.)

Question 3: Consider the Sobolev space Fk, which is defined as the set of functions that are
(k − 1)-times differentiable and have kth derivative almost everywhere on [0, 1], where the kth
derivative is square-integrable. That is, we define

Fk :=
{
f : [0, 1] | f (k) ∈ L2([0, 1])

}
,

where f (k) denotes the kth derivative of f . We define the inner product on Fk by

〈f, g〉 =
k−1∑
i=0

f (i)(0)g(i)(0) +

∫ 1

0
f (k)(t)g(k)(t)dt.
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(a) Find the representer of evaluation for this Hilbert space, that is, find a function rx : [0, 1]→ R
(defined for each x ∈ [0, 1]) such that rx ∈ Fk and

〈rx, f〉 = f(x)

for all x ∈ [0, 1].

(b) What is the reproducing kernel k(x, z) associated with this space? (Recall that k(x, z) = 〈rx, rz〉
for an RKHS.)

(c) Show that Fk is a Hilbert space, meaning that ‖f‖2 = 〈f, f〉 defines a norm and that Fk is
complete for the norm.

Answer:

(a) By Taylor’s theorem, we have

f(x) = f(0) +
k−1∑
i=1

f (i)(0)
xi

i!
+

1

(k − 1)!

∫ x

0
f (k)(t)(x− t)k−1dt.

Define the function

rx(t) =

k−1∑
i=0

xi

i!

ti

i!
+

(−1)k

(2k − 1)!
max{x− t, 0}2k−1 +

k−1∑
i=0

(−1)k+i+1 x2k−1−i

(2k − 1− i)!
ti

i!
.

Then

r(i)x (0) =
1

i!
xi +

(−1)k+i

(2k − i− 1)!
max{x, 0}2k−1−i +

(−1)k+i+1

(2k − 1− i)!
x2k−1−i = xi

for i < k and

r(k)x (t) =
1

(k − 1)!
max{x− t, 0}k−1.

Thus we have

〈f, rx〉 = f(0) + f ′(0)x+
1

2
f ′′(0)x2 + · · ·+ 1

(k − 1)!
f (k−1)(0)xk−1 +

1

(k − 1)!

∫ 1

0
f (k)(t) [x− t]k−1+ dt

=
k−1∑
i=0

f (i)(0)

i!
xi +

1

(k − 1)!

∫ x

0
f (k)(t)(x− t)k−1dt

= f(x)

where the last equality is Taylor’s theorem.

(b) For the reproducing kernel, note that

k(x, z) = 〈rx, rz〉

=
k−1∑
i=0

xi

i!

zi

i!
+

1

(k − 1)!(k − 1)!

∫ 1

0
[x− t]k−1+ [z − t]k−1+ dt

=

k−1∑
i=0

xi

i!

zi

i!
+

1

(k − 1)!(k − 1)!

∫ min{x,z}

0
(x− t)k−1(z − t)k−1dt.
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(c) To see that Fk is a Hilbert space, we must show that ‖f‖2H = 〈f, f〉 is a norm and that Fk is
complete for ‖·‖H. Non-negativity of ‖·‖H and the triangle inequality are trivial, as it is clear
that 〈·, ·〉 is an inner product. Now suppose that ‖f‖H = 0. Then f (l)(0) = 0 for all l < k, and∫ 1
0 f

(k)(t)2dt = 0, so that f (k) = 0 almost everywhere. Of course, this shows that f (k−1) ≡ 0
by integration, and so on, so that f ≡ 0. To show completeness, let fn be a Cauchy sequence
in Fk. Then since

‖fn − fm‖2H =
k−1∑
l=0

(f (l)n (0)− f (l)m (0))2 +

∫ 1

0
(f (k)n (t)− f (k)m (t))2dt,

it is clear that f
(l)
n (0) is a Cauchy sequence in R and f

(k)
n is a Cauchy sequence in L2([0, 1]).

Completeness of R and completeness of L2 then imply the existence of limn f
(l)
n (0) for l < k

and a g ∈ L2([0, 1]) such that f
(k)
n → g in L2. Now define the functions f (l) by

f (k)(x) = g(x), f (k−1)(x) = lim
n
f (k−1)n (0) +

∫ x

0
g(t)dt, . . . , f(x) = lim

n
fn(0) +

∫ x

0
f (1)(t)dt.

Since f (k) ∈ L2([0, 1]), it is clear that each of the f (l) are absolutely continuous, and the
derivative of f (l) is f (l+1). So fn indeed has a limit f .

Question 4: The variation distance between probability distributions P and Q on a space X is
defined by ‖P −Q‖TV = supA⊂X |P (A)−Q(A)|.

(a) Show that
2 ‖P −Q‖TV = sup

f :‖f‖∞≤1
{EP [f(X)]− EQ[f(X)]}

where the supremum is taken over all functions with f(x) ∈ [−1, 1], and the first expectation
is taken with respect to P and the second with respect to Q. You may assume that P and Q
have densities.

Answer: Using the assumption that we have a density and that P (A) − Q(A) = 1 − P (Ac) −
(1−Q(Ac)) = Q(Ac)− P (Ac), we have

‖P −Q‖TV = sup
A⊂X
{P (A)−Q(A)} = sup

A

∫
1 {x ∈ A} (p(x)− q(x))dx

=

∫
1 {p(x) ≥ q(x)} (p(x)− q(x))dx.

Similarly, we have ‖P −Q‖TV = supA{Q(A)− P (A)}, and combining these yields

2 ‖P −Q‖TV =

∫
(1 {p(x) ≥ q(x)} − 1 {p(x) ≤ q(x)}) (p(x)− q(x))dx.

But of course, supa∈[−1,1] a(p− q) = (p− q)(1 {p ≥ q} − 1 {p ≤ q}), which proves the result.

Question 5: In a number of experimental situations, it is valuable to determine if two distributions
P and Q are the same or different. For example, P may be the distribution of widgets produced
by one machine, Q the distributions of widgets by a second machine, and we wish to test if the two
distributions are the same (to within allowable tolerances). Let H be an RKHS of functions with
domain X and reproducing kernel k, and let P and Q be distributions on X .
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(a) Let ‖·‖H denote the norm on the Hilbert space H. Show that

Dk(P,Q)2 := sup
f :‖f‖H≤1

{
|EP [f(X)]− EQ[f(Z)]|2

}
= E[k(X,X ′)] + E[k(Z,Z ′)]− 2E[k(X,Z)]

where X,X ′
iid∼ P and Z,Z ′

iid∼ Q.

(b) A kernel k : X × X → R is called universal if the induced RKHS H of functions f : X → R
can arbitrarily approximate continuous functions. That is, for any φ : X → R continuous and
ε > 0, there is some f ∈ H such that

sup
x∈X
|f(x)− φ(x)| ≤ ε.

Show that if k is universal, then

Dk(P,Q) = 0 if and only if P = Q.

You may assume X is a metric space and that P = Q iff P (A) = Q(A) for all compact A ⊂ X .

(c) You wish to estimate Dk(P,Q) given samples from each of the distributions. Assume that

k(x, z) ∈ [−B,B] for all x, z ∈ X . Let Xi
iid∼ P , i = 1, . . . , n1 and Zi

iid∼ Q, i = 1, . . . , n2. Define

K̂(X1:n1) :=

(
n1
2

)−1 ∑
1≤i<j≤n1

k(Xi, Xj), K̂(Z1:n2) :=

(
n2
2

)−1 ∑
1≤i<j≤n2

k(Zi, Zj),

and

K̂(X1:n1 , Z1:n2) :=
1

n1n2

n1∑
i=1

n2∑
j=1

k(Xi, Zj).

Show that E[K̂(X1:n)] = E[k(X,X ′)] and E[K̂(X1:n1 , Z1:n2)] = E[k(X,Z)] for X,X ′
iid∼ P and

Z,Z ′
iid∼ Q. Show for some numerical constant c > 0 that for all t ≥ 0,

P
(∣∣∣K̂(X1:n)− E[k(X,X ′)]

∣∣∣ ≥ t) ≤ 2 exp

(
−cnt

2

B2

)
and

P
(∣∣∣K̂(X1:n1 , Z1:n2)− E[k(X,Z)]

∣∣∣ ≥ t) ≤ 2 exp

(
−cn1t

2

B2

)
+ 2 exp

(
−cn2t

2

B2

)
.

(d) Define the empirical Hilbert distances

D̂2
k(P,Q) :=

(
n1
2

)−1 ∑
1≤i<j≤n1

k(Xi, Xj) +

(
n2
2

)−1 ∑
1≤i<j≤n2

k(Zi, Zj)−
2

n1n2

n1∑
i=1

n2∑
j=1

k(Xi, Zj).

Show that for all t ≥ 0,

P
(∣∣∣D̂2

k(P,Q)−D2
k(P,Q)

∣∣∣ ≥ t) ≤ C exp

(
−cmin{n1, n2}t2

B2

)
where 0 < c, C <∞ are numerical constants.
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Answer:

(a) As k : X ×X → R is the reproducing kernel for H, we have for any f ∈ H such that ‖f‖H ≤ 1

E[f(X)]− E[f(Z)] = E[〈f, k(X, ·)〉]− E[〈f, k(Z, ·)〉]
(i)
= 〈f,E[k(X, ·)− k(Z, ·)]〉
(ii)

≤ ‖f‖H ‖E[k(X, ·)− k(Z, ·)]‖H ≤ ‖E[k(X, ·)− k(Z, ·)]‖H ,

where we have used linearity in (i) and Cauchy-Schwarz in (ii), and that ‖f‖H ≤ 1 in the final
line. Equality holds in step (ii) if

f(·) =
E[k(X, ·)− k(Z, ·)]
‖E[k(X, ·)− k(Z, ·)]‖H

,

and we have

‖E[k(X, ·)− k(Z, ·)]‖2H =
〈
E[k(X, ·)− k(Z, ·)],E[k(X ′, ·)− k(Z ′, ·)]

〉
=
〈
E[k(X, ·)],E[k(X ′, ·)]

〉
+
〈
E[k(Z, ·)],E[k(Z ′, ·)]

〉
− 2 〈E[k(X, ·)],E[k(Z, ·)]〉

= E[k(X,X ′)] + E[k(Z,Z ′)]− 2E[k(X,Z)],

where the final equality uses the linearity of the inner product and independence of X,X ′, Z, Z ′.

(b) Suppose that P = Q. Then certainly EP [f(X)]−EQ[f(Z)] = EP [f(X)]−EP [f(X)] = 0 for all
f ∈ H. Now suppose P 6= Q. Then there exists a compact set A such that P (A) 6= Q(A). For
n ∈ N, define the function

φn(x) = max{1− n · dist(x,A), 0} = [1− n dist(x,A)]+ ,

which satisfies φn(x) = 1 for x ∈ A, φn(x) = 0 for x such that dist(x,A) ≥ 1/n, and is Lipschitz
continuous. Moreover, we have φn(x) ↓ 1 {x ∈ A} for all x ∈ A as n→∞. Thus the monotone
convergence theorem gives that

lim
n

EP [φn(X)] = P (A) and lim
n

EQ[φn(Z)] = Q(A).

Let ε > 0 be such that |P (A) − Q(A)| ≥ 4ε. Choose N such that n ≥ N implies |EP [φn] −
P (A)| < ε and |EQ[φn] − Q(A)| < ε, and let n ≥ N . Choose f ∈ H such that supx |f(x) −
φn(x)| ≤ ε. Then

|EP [f(X)]− EQ[f(Z)]| ≥ |EP [φn(X)]− EQ[φn(Z)]| − 2ε > |P (A)−Q(A)| − 4ε ≥ 4ε− 4ε = 0.

Dividing by ‖f‖H we have

Dk(P,Q) = sup
g:‖g‖H≤1

|EP [g]− EQ[g]| ≥
|EP [f(X)]− EQ[f(Z)]|

‖f‖H
> 0.

(c) The expectation equalities are immediate.

We apply bounded differences for the first statement. We first look at f(x1:n) = K̂(x1:n). As
the function is symmetric, we fix index i = 1. Then for x, x′ ∈ X , we have

f(x, x2:n)− f(x′, x2:n) =

(
n

2

)−1 n∑
j=2

(k(x,Xj)− k(x′, Xj))
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and using that k(x, x′) ∈ [−B,B], the summands are each bounded by 2B in magnitude. Thus

|f(x, x2:n)− f(x′, x2:n)| ≤ 2

n(n− 1)
· 2B(n− 1) =

4B

n
.

Bounded differences (McDiarmid’s inequality) implies

P
(∣∣∣K̂(X1:n)− E[K̂(X1:n)]

∣∣∣ ≥ t) ≤ 2 exp

(
− nt

2

8B2

)
.

The argument about K̂(X1:n1 , Z1:n2) is a bit more complex. Define

K̂(X1:n1 , Q) =
1

n1

n1∑
i=1

EQ[k(Xi, Z) | Xi].

Then we have
E[K̂(X1:n1 , Z1:n2) | X1:n1 ] = K̂(X1:n1 , Q)

by the independence of Zi, Xj . Fixing X1:n1 , define the function g(z1:n2 | X1:n1) by

g(z1:n2 | X1:n1) = K̂(X1:n1 , z1:n2).

Then g satisfies bounded differences with parameter 4B/n2, as above, and so conditional on
X1:n1 , we have

P
(∣∣∣g(Z1:n2 | X1:n1)− K̂(X1:n1 , Q)

∣∣∣ ≥ t | X1:n1

)
≤ 2 exp

(
−n2t

2

8B2

)
. (1)

Now we argue that
x1:n1 7→ K̂(x1:n1 , Q)

satisfies bounded differences as well. Note that E[K̂(X1:n1 , Q)] = E[k(X,Z)] by construction.
Without loss of generality let us fix x2:n1 and modify x1 ∈ {x, x′}. Then

K̂(x, x2:n1 , Q)− K̂(x′, x2:n1 , Q) =
1

n1
EQ[k(x, Z)− k(x′, Z)] ∈

[
−2B

n1
,
2B

n1

]
,

satisfying bounded differences with parameter 2B/n1. Thus we have

P
(∣∣∣K̂(X1:n1 , Q)− E[k(X,Z)]

∣∣∣ ≥ t) ≤ 2 exp

(
−n1t

2

2B2

)
. (2)

Combining the bounds (1) and (2) and applying the tower property of expectation and the
triangle inequality, we have

P
(∣∣∣K̂(X1:n1 , Z1:n2)− E[k(X,Z)]

∣∣∣ ≥ t)
≤ E

[
P
(∣∣∣g(Z1:n2 | X1:n1)− K̂(X1:n1 , Q)

∣∣∣ ≥ t/2 | X1:n1

)]
+ P

(∣∣∣K̂(X1:n1 , Q)− E[k(X,Z)]
∣∣∣ ≥ t/2)

≤ 2 exp

(
− n2t

2

32B2

)
+ 2 exp

(
−n1t

2

8B2

)
.
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