Stats 231 / CS229T Homework 3 Solutions

Question 1: Let k: X x X — R be a valid kernel function. Define
k(z, 2)
Vk(z,2)\/k(z,2)

knorm(x7 Z) =

Is knorm @ valid kernel? Justify your answer.

Answer: Yes, it is. Let k(z, z) = (¢(x), ¢(z)) for some mapping ¢ : X — H, where H is a Hilbert
space. Then

knorm (7, 2) = (@(2)/ [|[6(x)[l5, (2)/ |¢(2)]l5)

so that it is still a valid inner product, where the feature mapping is now z — ¢(z)/ [|¢(z)||, for

l¢(2)5 = (B(x), ¢(x)). O
Question 2: Consider the class of functions

Hi={f:f(0)=0,f € L*([0,1])},

that is, functions f : [0,1] — R with f(0) = 0 that are almost everywhere differentiable, where
fol( f'(t))?dt < oo. On this space of functions, we define the inner product by

1
(f.g) = /0 F()d ()it

Show that k(z, z) = min{z, z} is the reproducing kernel for H, so that it is (i) positive semidefinite
and (ii) a valid kernel.

Answer: If we show that k(x, z) = min{x, z} is indeed the reproducing kernel for #, then that
suffices to demonstrate that it is a positive definite function. We have for ¢g(z) = k(z, z) that
(almost everywhere) ¢'(z) = 1{z < z}, so that

1 z
U*@J)Z%;f®1#§zhﬁ=A.Nﬂﬁszw—ﬂmzf@)

Thus k is evidently a reproducing kernel, so it must be a positive definite function.
(Another way to see that, we have min{x,z} = k(z,2) = fol 1{t <z}1{t <z}dt, so that
min{z, z} is evidently an inner product.) O

Question 3: Consider the Sobolev space Fi, which is defined as the set of functions that are
(k — 1)-times differentiable and have kth derivative almost everywhere on [0,1], where the kth
derivative is square-integrable. That is, we define

Fei={f: 00111 % e 22(0.1))

where () denotes the kth derivative of f. We define the inner product on F, by

()= 3 190570 + [ 1O ).
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(a) Find the representer of evaluation for this Hilbert space, that is, find a function 75 : [0,1] — R
(defined for each x € [0, 1]) such that r, € Fj and

(re, f) = f(x)
for all z € [0, 1].

(b) What is the reproducing kernel k(z, z) associated with this space? (Recall that k(z,z) = (ry, )
for an RKHS.)

(¢) Show that Fj is a Hilbert space, meaning that || f||* = (f, f) defines a norm and that Fj is
complete for the norm.

Answer:

(a) By Taylor’s theorem, we have

k—1 i
) 1 1 xr
— (0 @ B (t)(x — t)k~Lat.
)= 50+ SO0 + ey [ 79060
Define the function
k—1 k—1
A (—1)% 2%—1 i a0
L) =) —— t, 1
ra(t) Zz: il (28 —1)! max{ 0} + i:O( ) (2k —1—14)!4!
Then ( )k-i—‘ ( )k+‘+1
, 1 . —1)kti . —1)k+i . .
(4) — b 2k—1—1 2k—1—i _ i
re () = 57"+ gy =y e 0 a1 y” v
for i < k and )
T‘,(Ek)(t) = W maX{fE — t, O}k_l.
Thus we have
(ira) = 50) + PO+ 577000 -+ gm0ty L [ o0 - a
e 2 (k—1)! (k=1 /), +
k—1 ;
F90) 1 /x (k) k1
= ! t —1 dt
> gy ) 10060
= f(z)
where the last equality is Taylor’s theorem.
(b) For the reproducing kernel, note that
k(z,2) = (ry,ry)
k—1 1
z* 2 1 k-1 k-1
=y = —t — ]k ta
ot (k—l)!(k—l)!/o o=ty 2=t
k—1 -
' 2 1 min{z,2} k—1 k—1
= TR — )" ) dt
221l T 1)!(k—1)!/0 (x=0)" (-1



(c) To see that F is a Hilbert space, we must show that Hf||3_[ = (f, f) is a norm and that Fy, is
complete for ||-[|,,. Non-negativity of ||-||,, and the triangle inequality are trivial, as it is clear
that (-, -) is an inner product. Now suppose that || f|,;, = 0. Then f®(0) =0 for all I < k, and
fol f®)(t)2dt = 0, so that f*) = 0 almost everywhere. Of course, this shows that f*~1) =0
by integration, and so on, so that f = 0. To show completeness, let f, be a Cauchy sequence
in Fi. Then since

k-1 1
1 = Fnll =Y (£7(0) = £5)(0))? +/0 (f () = £ (1))2dt,
1=0
it is clear that f,gl)(O) is a Cauchy sequence in R and fék) is a Cauchy sequence in L?([0, 1]).
Completeness of R and completeness of L? then imply the existence of lim,, fT(Ll)(O) forl < k
and a g € L?([0,1]) such that fék) — ¢ in Lo. Now define the functions f*) by

F® @) = g(e),  F5D (@) = lim £ (0) + / g)dt, ..., flz)=1lim fu(0)+ / SO ()t
n 0 n 0
Since f®) € L2([0,1]), it is clear that each of the f() are absolutely continuous, and the
derivative of f® is fU+1) So £, indeed has a limit f.
L]

Question 4: The variation distance between probability distributions P and ) on a space X is
defined by [P~ Qllpy = supac [P(A) — Q(A).
(a) Show that

2[|P = Qllpy = f:”?”mﬂ{Ep[f(X)] — Eq[f (X))}

where the supremum is taken over all functions with f(x) € [—1,1], and the first expectation
is taken with respect to P and the second with respect to ). You may assume that P and @
have densities.

Answer: Using the assumption that we have a density and that P(A) — Q(A) = 1 — P(A°) —
(1 - Q(A%)) = Q(A%) — P(A°), we have

1P = Qllpy = ggg({P<A) - Q(A)} = Sg‘pfl {z € A} (p(z) — q(x))dz

— / 1{p(z) > ¢()} (0(z) — g(x))da.

Similarly, we have ||P — Q| v = sup,{Q(A) — P(A)}, and combining these yields

2[|P = Qllpy = / (1{p(x) = q(2)} — 1{p(x) < q(2)}) (p(z) — q(x))dz.

But of course, sup,e(_11ja(p —q) = (p — q)(1 {p > q} —1{p < q}), which proves the result. O

Question 5: In a number of experimental situations, it is valuable to determine if two distributions
P and @ are the same or different. For example, P may be the distribution of widgets produced
by one machine, @) the distributions of widgets by a second machine, and we wish to test if the two
distributions are the same (to within allowable tolerances). Let H be an RKHS of functions with
domain X and reproducing kernel k, and let P and () be distributions on X.



(a)

Let ||-||;, denote the norm on the Hilbert space H. Show that

D(P.Q)* = s {IEP[f(X)] - IEQ[f(Z)]Iz} = Ek(X, X)] + E[k(Z, Z')] - 2E[k(X, Z)]

where X, X’ 1 P and zZ,.7 id Q.

A kernel k : X x X — R is called universal if the induced RKHS H of functions f : X — R
can arbitrarily approximate continuous functions. That is, for any ¢ : X — R continuous and
€ > 0, there is some f € H such that

sup | f(z) — ¢(z)] <e

reX

Show that if k is universal, then
Dy(P,Q) =0 if and only if P = Q.
You may assume X is a metric space and that P = @ iff P(A) = Q(A) for all compact A C X.

You wish to estimate Dy (P, Q) given samples from each of the distributions. Assume that
k(z,z) € [-B,B] for all z,z € X. Let X; 11m(ziP, i=1,...,n1 and Z; IfI\C}Q, i=1,...,n9. Define

-1 -1

~ nq = n9

K(Xl;nn:—(?) Y k(X X)), K(Zm):—<2> > k(Zi,Zy),
1<i<j<ng

1<i<j<ng

and
ny ne

~ 1
K(Xlzn1; Zl:nz) = ning Z Z k(X’M Z])
i=1 j—1

Show that E[K (X1.)] = Ek(X, X')] and E[K (X1, Zim,)] = E[k(X, Z)] for X, X’ %5 P and
[K(X1:)] = E[k(X, 1> Z1ing

Z, 7' i . Show for some numerical constant ¢ > 0 that for all £ > 0,

P (| R (X1) ~ BIK(X, X')]| 2 1) < 2exp <‘ng>

and
~ n1t2 n2t2
P (‘K(Xl;nl, Zimy) — E[k(X, Z)]’ > t) < 2exp g + 2exp ¢ |-
Define the empirical Hilbert distances
. ny —1 no —1 92 ny n2
D}(P,Q) := <2> Z k(Xi, X;) + <2> Z k(Zi, Z;) — o ZZk(Xi,Zj).
1<i<j<ng 1<i<j<na i=1 j=1

Show that for all ¢ > 0,

min{nl, n2}t2 >

P (|B2PQ) - DEPQ) 21) < Comp (e

where 0 < ¢, C' < oo are numerical constants.



Answer:

(a) Ask: & x X — R is the reproducing kernel for H, we have for any f € H such that || f],, < 1
Bf(X)] — ELf(2)] = EI(f, k(X )] ~ BI(f,k(Z, )
9L EKX, )~ K(Z,)
g NEKCX, ) = K(Z, )l < NEKCY, ) = K(Z, e

where we have used linearity in (i) and Cauchy-Schwarz in (i), and that || f|,; < 1 in the final
line. Equality holds in step (i) if

IO = B, ) Wzl

and we have

IEK(X, ) = k(Z, I3, = (EK(X, ) = k(Z, )L EK(X', ) = k(Z',)])

< [ ( )] [ (X/ )]> <E[k<Z7 ')]vE[k(Zla')D _2<E[k(X?'>]7E[k(Z7'

— EIK(X, X')] + EK(Z, Z')] - 2EK(X, Z)],
where the final equality uses the linearity of the inner product and independence of X, X', Z, 7Z’.

(b) Suppose that P = @. Then certainly Ep[f(X)] —Eq[f(Z)] = Ep[f(X)] —Ep[f(X)] = 0 for all
f € H. Now suppose P # (). Then there exists a compact set A such that P(A) # Q(A). For
n € N, define the function

¢n(z) = max{1l —n - dist(z, 4),0} = [1 — ndist(z, A)]

which satisfies ¢, (x) = 1 for z € A, ¢, () = 0 for x such that dist(x, A) > 1/n, and is Lipschitz
continuous. Moreover, we have ¢, (x) | 1 {x € A} for all z € A as n — oco. Thus the monotone
convergence theorem gives that

lim Ep[6n(X)] = P(A) and limEq[4,(2)] = Q(A).

Let € > 0 be such that |P(A) — Q(A)| > 4e. Choose N such that n > N implies [Ep[¢p,] —
P(A)| < € and |[Eg[¢n] — Q(A)| < €, and let n > N. Choose f € H such that sup, |f(z) —
¢n(x)| < e. Then

[Ep[f(X)] = EQlf (2] = [Ep[dn(X)] — EQldn(2)]] — 2¢ > [P(A) — Q(A)[ — 4e = 4e — 4e = 0.

Dividing by || f||;, we have

DU(P.Q) = s [Eplg) - Folg)l = P01~ Eal/(2)]

> 0.
g:llgll <1 £l

(c) The expectation equalities are immediate.

We apply bounded differences for the first statement. We first look at f(z1.,) = K (x1.n). As
the function is symmetric, we fix index ¢ = 1. Then for z,2’ € X, we have

n\ ! —
Favoan) = e on) = () Y (o X)) k(o' X,)

Jj=2



and using that k(z, z’) € [-B, B], the summands are each bounded by 2B in magnitude. Thus

2 4B
2B(n—1) = —

’f(xal?:n) - f(x,axln)’ < m = o

Bounded differences (McDiarmid’s inequality) implies
~ ~ nt?
P(|R(X1n) ~EIR (X10)]| 2 1) <2030 (—275 )
The argument about K (X1:nys Z1:m,) 18 a bit more complex. Define
K(Xlan ZEQ XMZ)|X]

Then we have N N
E[K(X1:n17 Zl:ng) | Xl:nl] = K(X1:n17 Q)

by the independence of Z;, X;. Fixing Xi.y,, define the function g(21:n, | Xi1:n,) by
92ty | Xtim) = K X1y, 21mg).

Then g satisfies bounded differences with parameter 4B/ng, as above, and so conditional on
Xi.n,, we have

~ n t2
P ([0(Z10n | Xim) = R, Q)] 2 ] X1,) < 2000 (25 ). (1)

Now we argue that
Tl > K(xlznl , Q)

satisfies bounded differences as well. Note that E[K(X1.,, Q)] = E[k(X, Z)] by construction.
Without loss of generality let us fix xo.,, and modify x1 € {z,2'}. Then

~ ~ 1 2B 2B
K(I’, x?:nlaQ) - K(J}/? x2:n1;Q) = 7EQ[k(-’B7 Z) - k(xlv Z)] € |:_7 :| )
ni ny
satisfying bounded differences with parameter 2B /n;. Thus we have
= n1t2

Combining the bounds and and applying the tower property of expectation and the
triangle inequality, we have

P (’R’ (Xiinys Zimy) — E[K(X, Z)]) > t)

SE[ (‘9 Zina | Xuim) = <X1va))2t/2\X1:n1)]+P(\I?(X1:n1,62)—E[k(X,Z)]\zt/z)

K
2 2
225 nlt
= 2o (_3232> < 832) '




