Stats 231 / CS229T Homework 3 Solutions
Question 1: Let k: $\mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a valid kernel function. Define

$$
\mathrm{k}_{\mathrm{norm}}(x, z):=\frac{\mathrm{k}(x, z)}{\sqrt{\mathrm{k}(x, x)} \sqrt{\mathrm{k}(z, z)}}
$$

Is $k_{\text {norm }}$ a valid kernel? Justify your answer.
Answer: Yes, it is. Let $\mathrm{k}(x, z)=\langle\phi(x), \phi(z)\rangle$ for some mapping $\phi: \mathcal{X} \rightarrow \mathcal{H}$, where \mathcal{H} is a Hilbert space. Then

$$
\mathrm{k}_{\text {norm }}(x, z)=\left\langle\phi(x) /\|\phi(x)\|_{2}, \phi(z) /\|\phi(z)\|_{2}\right\rangle
$$

so that it is still a valid inner product, where the feature mapping is now $x \mapsto \phi(x) /\|\phi(x)\|_{2}$ for $\|\phi(x)\|_{2}^{2}=\langle\phi(x), \phi(x)\rangle$.

Question 2: Consider the class of functions

$$
\mathcal{H}:=\left\{f: f(0)=0, f^{\prime} \in L^{2}([0,1])\right\},
$$

that is, functions $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=0$ that are almost everywhere differentiable, where $\int_{0}^{1}\left(f^{\prime}(t)\right)^{2} d t<\infty$. On this space of functions, we define the inner product by

$$
\langle f, g\rangle=\int_{0}^{1} f^{\prime}(t) g^{\prime}(t) d t
$$

Show that $\mathrm{k}(x, z)=\min \{x, z\}$ is the reproducing kernel for \mathcal{H}, so that it is (i) positive semidefinite and (ii) a valid kernel.

Answer: If we show that $\mathrm{k}(x, z)=\min \{x, z\}$ is indeed the reproducing kernel for \mathcal{H}, then that suffices to demonstrate that it is a positive definite function. We have for $g(z)=\mathrm{k}(x, z)$ that (almost everywhere) $g^{\prime}(z)=\mathbf{1}\{x \leq z\}$, so that

$$
\langle f, \mathrm{k}(z, \cdot)\rangle=\int_{0}^{1} f^{\prime}(t) \mathbf{1}\{t \leq z\} d t=\int_{0}^{z} f^{\prime}(t) d t=f(z)-f(0)=f(z)
$$

Thus k is evidently a reproducing kernel, so it must be a positive definite function.
(Another way to see that, we have $\min \{x, z\}=\mathrm{k}(x, z)=\int_{0}^{1} \mathbf{1}\{t \leq x\} \mathbf{1}\{t \leq z\} d t$, so that $\min \{x, z\}$ is evidently an inner product.)

Question 3: Consider the Sobolev space \mathcal{F}_{k}, which is defined as the set of functions that are $(k-1)$-times differentiable and have k th derivative almost everywhere on $[0,1]$, where the k th derivative is square-integrable. That is, we define

$$
\mathcal{F}_{k}:=\left\{f:[0,1] \mid f^{(k)} \in L^{2}([0,1])\right\}
$$

where $f^{(k)}$ denotes the k th derivative of f. We define the inner product on \mathcal{F}_{k} by

$$
\langle f, g\rangle=\sum_{i=0}^{k-1} f^{(i)}(0) g^{(i)}(0)+\int_{0}^{1} f^{(k)}(t) g^{(k)}(t) d t
$$

(a) Find the representer of evaluation for this Hilbert space, that is, find a function $r_{x}:[0,1] \rightarrow \mathbb{R}$ (defined for each $x \in[0,1]$) such that $r_{x} \in \mathcal{F}_{k}$ and

$$
\left\langle r_{x}, f\right\rangle=f(x)
$$

for all $x \in[0,1]$.
(b) What is the reproducing kernel $\mathrm{k}(x, z)$ associated with this space? (Recall that $\mathrm{k}(x, z)=\left\langle r_{x}, r_{z}\right\rangle$ for an RKHS.)
(c) Show that \mathcal{F}_{k} is a Hilbert space, meaning that $\|f\|^{2}=\langle f, f\rangle$ defines a norm and that \mathcal{F}_{k} is complete for the norm.

Answer:

(a) By Taylor's theorem, we have

$$
f(x)=f(0)+\sum_{i=1}^{k-1} f^{(i)}(0) \frac{x^{i}}{i!}+\frac{1}{(k-1)!} \int_{0}^{x} f^{(k)}(t)(x-t)^{k-1} d t .
$$

Define the function

$$
r_{x}(t)=\sum_{i=0}^{k-1} \frac{x^{i}}{i!} \frac{t^{i}}{i!}+\frac{(-1)^{k}}{(2 k-1)!} \max \{x-t, 0\}^{2 k-1}+\sum_{i=0}^{k-1}(-1)^{k+i+1} \frac{x^{2 k-1-i}}{(2 k-1-i)!} \frac{t^{i}}{i!} .
$$

Then

$$
r_{x}^{(i)}(0)=\frac{1}{i!} x^{i}+\frac{(-1)^{k+i}}{(2 k-i-1)!} \max \{x, 0\}^{2 k-1-i}+\frac{(-1)^{k+i+1}}{(2 k-1-i)!} x^{2 k-1-i}=x^{i}
$$

for $i<k$ and

$$
r_{x}^{(k)}(t)=\frac{1}{(k-1)!} \max \{x-t, 0\}^{k-1}
$$

Thus we have

$$
\begin{aligned}
\left\langle f, r_{x}\right\rangle & =f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}+\cdots+\frac{1}{(k-1)!} f^{(k-1)}(0) x^{k-1}+\frac{1}{(k-1)!} \int_{0}^{1} f^{(k)}(t)[x-t]_{+}^{k-1} d t \\
& =\sum_{i=0}^{k-1} \frac{f^{(i)}(0)}{i!} x^{i}+\frac{1}{(k-1)!} \int_{0}^{x} f^{(k)}(t)(x-t)^{k-1} d t \\
& =f(x)
\end{aligned}
$$

where the last equality is Taylor's theorem.
(b) For the reproducing kernel, note that

$$
\begin{aligned}
\mathrm{k}(x, z) & =\left\langle r_{x}, r_{z}\right\rangle \\
& =\sum_{i=0}^{k-1} \frac{x^{i}}{i!} \frac{z^{i}}{i!}+\frac{1}{(k-1)!(k-1)!} \int_{0}^{1}[x-t]_{+}^{k-1}[z-t]_{+}^{k-1} d t \\
& =\sum_{i=0}^{k-1} \frac{x^{i}}{i!} \frac{z^{i}}{i!}+\frac{1}{(k-1)!(k-1)!} \int_{0}^{\min \{x, z\}}(x-t)^{k-1}(z-t)^{k-1} d t .
\end{aligned}
$$

(c) To see that \mathcal{F}_{k} is a Hilbert space, we must show that $\|f\|_{\mathcal{H}}^{2}=\langle f, f\rangle$ is a norm and that \mathcal{F}_{k} is complete for $\|\cdot\|_{\mathcal{H}}$. Non-negativity of $\|\cdot\|_{\mathcal{H}}$ and the triangle inequality are trivial, as it is clear that $\langle\cdot, \cdot\rangle$ is an inner product. Now suppose that $\|f\|_{\mathcal{H}}=0$. Then $f^{(l)}(0)=0$ for all $l<k$, and $\int_{0}^{1} f^{(k)}(t)^{2} d t=0$, so that $f^{(k)}=0$ almost everywhere. Of course, this shows that $f^{(k-1)} \equiv 0$ by integration, and so on, so that $f \equiv 0$. To show completeness, let f_{n} be a Cauchy sequence in \mathcal{F}_{k}. Then since

$$
\left\|f_{n}-f_{m}\right\|_{\mathcal{H}}^{2}=\sum_{l=0}^{k-1}\left(f_{n}^{(l)}(0)-f_{m}^{(l)}(0)\right)^{2}+\int_{0}^{1}\left(f_{n}^{(k)}(t)-f_{m}^{(k)}(t)\right)^{2} d t,
$$

it is clear that $f_{n}^{(l)}(0)$ is a Cauchy sequence in \mathbb{R} and $f_{n}^{(k)}$ is a Cauchy sequence in $L^{2}([0,1])$. Completeness of \mathbb{R} and completeness of L^{2} then imply the existence of $\lim _{n} f_{n}^{(l)}(0)$ for $l<k$ and a $g \in L^{2}([0,1])$ such that $f_{n}^{(k)} \rightarrow g$ in L_{2}. Now define the functions $f^{(l)}$ by

$$
f^{(k)}(x)=g(x), \quad f^{(k-1)}(x)=\lim _{n} f_{n}^{(k-1)}(0)+\int_{0}^{x} g(t) d t, \quad \ldots, \quad f(x)=\lim _{n} f_{n}(0)+\int_{0}^{x} f^{(1)}(t) d t
$$

Since $f^{(k)} \in L^{2}([0,1])$, it is clear that each of the $f^{(l)}$ are absolutely continuous, and the derivative of $f^{(l)}$ is $f^{(l+1)}$. So f_{n} indeed has a limit f.

Question 4: The variation distance between probability distributions P and Q on a space \mathcal{X} is defined by $\|P-Q\|_{\mathrm{TV}}=\sup _{A \subset \mathcal{X}}|P(A)-Q(A)|$.
(a) Show that

$$
2\|P-Q\|_{\mathrm{TV}}=\sup _{f:\|f\|_{\infty} \leq 1}\left\{\mathbb{E}_{P}[f(X)]-\mathbb{E}_{Q}[f(X)]\right\}
$$

where the supremum is taken over all functions with $f(x) \in[-1,1]$, and the first expectation is taken with respect to P and the second with respect to Q. You may assume that P and Q have densities.

Answer: Using the assumption that we have a density and that $P(A)-Q(A)=1-P\left(A^{c}\right)-$ $\left(1-Q\left(A^{c}\right)\right)=Q\left(A^{c}\right)-P\left(A^{c}\right)$, we have

$$
\begin{aligned}
\|P-Q\|_{\mathrm{TV}} & =\sup _{A \subset \mathcal{X}}\{P(A)-Q(A)\}=\sup _{A} \int \mathbf{1}\{x \in A\}(p(x)-q(x)) d x \\
& =\int \mathbf{1}\{p(x) \geq q(x)\}(p(x)-q(x)) d x .
\end{aligned}
$$

Similarly, we have $\|P-Q\|_{\mathrm{TV}}=\sup _{A}\{Q(A)-P(A)\}$, and combining these yields

$$
2\|P-Q\|_{\mathrm{TV}}=\int(\mathbf{1}\{p(x) \geq q(x)\}-\mathbf{1}\{p(x) \leq q(x)\})(p(x)-q(x)) d x .
$$

But of course, $\sup _{a \in[-1,1]} a(p-q)=(p-q)(\mathbf{1}\{p \geq q\}-\mathbf{1}\{p \leq q\})$, which proves the result.
Question 5: In a number of experimental situations, it is valuable to determine if two distributions P and Q are the same or different. For example, P may be the distribution of widgets produced by one machine, Q the distributions of widgets by a second machine, and we wish to test if the two distributions are the same (to within allowable tolerances). Let \mathcal{H} be an RKHS of functions with domain \mathcal{X} and reproducing kernel k , and let P and Q be distributions on \mathcal{X}.
(a) Let $\|\cdot\|_{\mathcal{H}}$ denote the norm on the Hilbert space \mathcal{H}. Show that

$$
D_{\mathrm{k}}(P, Q)^{2}:=\sup _{f:\|f\|_{\mathcal{H}} \leq 1}\left\{\left|\mathbb{E}_{P}[f(X)]-\mathbb{E}_{Q}[f(Z)]\right|^{2}\right\}=\mathbb{E}\left[\mathrm{k}\left(X, X^{\prime}\right)\right]+\mathbb{E}\left[\mathrm{k}\left(Z, Z^{\prime}\right)\right]-2 \mathbb{E}[\mathrm{k}(X, Z)]
$$

where $X, X^{\prime} \stackrel{\text { iid }}{\sim} P$ and $Z, Z \stackrel{\text { iid }}{\sim} Q$.
(b) A kernel $\mathrm{k}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called universal if the induced RKHS \mathcal{H} of functions $f: \mathcal{X} \rightarrow \mathbb{R}$ can arbitrarily approximate continuous functions. That is, for any $\phi: \mathcal{X} \rightarrow \mathbb{R}$ continuous and $\epsilon>0$, there is some $f \in \mathcal{H}$ such that

$$
\sup _{x \in \mathcal{X}}|f(x)-\phi(x)| \leq \epsilon .
$$

Show that if k is universal, then

$$
D_{\mathrm{k}}(P, Q)=0 \text { if and only if } P=Q
$$

You may assume \mathcal{X} is a metric space and that $P=Q$ iff $P(A)=Q(A)$ for all compact $A \subset \mathcal{X}$.
(c) You wish to estimate $D_{\mathrm{k}}(P, Q)$ given samples from each of the distributions. Assume that $\mathrm{k}(x, z) \in[-B, B]$ for all $x, z \in \mathcal{X}$. Let $X_{i} \stackrel{\text { iid }}{\sim} P, i=1, \ldots, n_{1}$ and $Z_{i} \stackrel{\text { iid }}{\sim} Q, i=1, \ldots, n_{2}$. Define

$$
\widehat{K}\left(X_{1: n_{1}}\right):=\binom{n_{1}}{2}^{-1} \sum_{1 \leq i<j \leq n_{1}} \mathrm{k}\left(X_{i}, X_{j}\right), \widehat{K}\left(Z_{1: n_{2}}\right):=\binom{n_{2}}{2}^{-1} \sum_{1 \leq i<j \leq n_{2}} \mathrm{k}\left(Z_{i}, Z_{j}\right),
$$

and

$$
\widehat{K}\left(X_{1: n_{1}}, Z_{1: n_{2}}\right):=\frac{1}{n_{1} n_{2}} \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \mathrm{k}\left(X_{i}, Z_{j}\right) .
$$

Show that $\mathbb{E}\left[\widehat{K}\left(X_{1: n}\right)\right]=\mathbb{E}\left[\mathrm{k}\left(X, X^{\prime}\right)\right]$ and $\mathbb{E}\left[\widehat{K}\left(X_{1: n_{1}}, Z_{1: n_{2}}\right)\right]=\mathbb{E}[\mathrm{k}(X, Z)]$ for $X, X^{\prime} \stackrel{\text { iid }}{\sim} P$ and $Z, Z^{\prime} \stackrel{\text { iid }}{\sim} Q$. Show for some numerical constant $c>0$ that for all $t \geq 0$,

$$
\mathbb{P}\left(\left|\widehat{K}\left(X_{1: n}\right)-\mathbb{E}\left[\mathrm{k}\left(X, X^{\prime}\right)\right]\right| \geq t\right) \leq 2 \exp \left(-c \frac{n t^{2}}{B^{2}}\right)
$$

and

$$
\mathbb{P}\left(\left|\widehat{K}\left(X_{1: n_{1}}, Z_{1: n_{2}}\right)-\mathbb{E}[\mathrm{k}(X, Z)]\right| \geq t\right) \leq 2 \exp \left(-c \frac{n_{1} t^{2}}{B^{2}}\right)+2 \exp \left(-c \frac{n_{2} t^{2}}{B^{2}}\right)
$$

(d) Define the empirical Hilbert distances

$$
\widehat{D}_{\mathrm{k}}^{2}(P, Q):=\binom{n_{1}}{2}^{-1} \sum_{1 \leq i<j \leq n_{1}} \mathrm{k}\left(X_{i}, X_{j}\right)+\binom{n_{2}}{2}^{-1} \sum_{1 \leq i<j \leq n_{2}} \mathrm{k}\left(Z_{i}, Z_{j}\right)-\frac{2}{n_{1} n_{2}} \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \mathrm{k}\left(X_{i}, Z_{j}\right) .
$$

Show that for all $t \geq 0$,

$$
\mathbb{P}\left(\left|\widehat{D}_{\mathrm{k}}^{2}(P, Q)-D_{\mathrm{k}}^{2}(P, Q)\right| \geq t\right) \leq C \exp \left(-c \frac{\min \left\{n_{1}, n_{2}\right\} t^{2}}{B^{2}}\right)
$$

where $0<c, C<\infty$ are numerical constants.

Answer:

(a) As $\mathrm{k}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is the reproducing kernel for \mathcal{H}, we have for any $f \in \mathcal{H}$ such that $\|f\|_{\mathcal{H}} \leq 1$

$$
\begin{aligned}
\mathbb{E}[f(X)]-\mathbb{E}[f(Z)] & =\mathbb{E}[\langle f, \mathrm{k}(X, \cdot)\rangle]-\mathbb{E}[\langle f, \mathrm{k}(Z, \cdot)\rangle] \\
& \stackrel{(i)}{=}\langle f, \mathbb{E}[\mathrm{k}(X, \cdot)-\mathrm{k}(Z, \cdot)]\rangle \\
& \stackrel{(i i)}{\leq}\|f\|_{\mathcal{H}}\|\mathbb{E}[\mathrm{k}(X, \cdot)-\mathrm{k}(Z, \cdot)]\|_{\mathcal{H}} \leq\|\mathbb{E}[\mathrm{k}(X, \cdot)-\mathrm{k}(Z, \cdot)]\|_{\mathcal{H}}
\end{aligned}
$$

where we have used linearity in (i) and Cauchy-Schwarz in (ii), and that $\|f\|_{\mathcal{H}} \leq 1$ in the final line. Equality holds in step (ii) if

$$
f(\cdot)=\frac{\mathbb{E}[\mathrm{k}(X, \cdot)-\mathrm{k}(Z, \cdot)]}{\|\mathbb{E}[\mathrm{k}(X, \cdot)-\mathrm{k}(Z, \cdot)]\|_{\mathcal{H}}}
$$

and we have

$$
\begin{aligned}
\|\mathbb{E}[\mathrm{k}(X, \cdot)-\mathrm{k}(Z, \cdot)]\|_{\mathcal{H}}^{2} & =\left\langle\mathbb{E}[\mathrm{k}(X, \cdot)-\mathrm{k}(Z, \cdot)], \mathbb{E}\left[\mathrm{k}\left(X^{\prime}, \cdot\right)-\mathrm{k}\left(Z^{\prime}, \cdot\right)\right]\right\rangle \\
& =\left\langle\mathbb{E}[\mathrm{k}(X, \cdot)], \mathbb{E}\left[\mathrm{k}\left(X^{\prime}, \cdot\right)\right]\right\rangle+\left\langle\mathbb{E}[\mathrm{k}(Z, \cdot)], \mathbb{E}\left[\mathrm{k}\left(Z^{\prime}, \cdot\right)\right]\right\rangle-2\langle\mathbb{E}[\mathrm{k}(X, \cdot)], \mathbb{E}[\mathrm{k}(Z, \cdot)]\rangle \\
& =\mathbb{E}\left[\mathrm{k}\left(X, X^{\prime}\right)\right]+\mathbb{E}\left[\mathrm{k}\left(Z, Z^{\prime}\right)\right]-2 \mathbb{E}[\mathrm{k}(X, Z)],
\end{aligned}
$$

where the final equality uses the linearity of the inner product and independence of $X, X^{\prime}, Z, Z^{\prime}$.
(b) Suppose that $P=Q$. Then certainly $\mathbb{E}_{P}[f(X)]-\mathbb{E}_{Q}[f(Z)]=\mathbb{E}_{P}[f(X)]-\mathbb{E}_{P}[f(X)]=0$ for all $f \in \mathcal{H}$. Now suppose $P \neq Q$. Then there exists a compact set A such that $P(A) \neq Q(A)$. For $n \in \mathbb{N}$, define the function

$$
\phi_{n}(x)=\max \{1-n \cdot \operatorname{dist}(x, A), 0\}=[1-n \operatorname{dist}(x, A)]_{+},
$$

which satisfies $\phi_{n}(x)=1$ for $x \in A, \phi_{n}(x)=0$ for $x \operatorname{such}$ that $\operatorname{dist}(x, A) \geq 1 / n$, and is Lipschitz continuous. Moreover, we have $\phi_{n}(x) \downarrow \mathbf{1}\{x \in A\}$ for all $x \in A$ as $n \rightarrow \infty$. Thus the monotone convergence theorem gives that

$$
\lim _{n} \mathbb{E}_{P}\left[\phi_{n}(X)\right]=P(A) \text { and } \lim _{n} \mathbb{E}_{Q}\left[\phi_{n}(Z)\right]=Q(A)
$$

Let $\epsilon>0$ be such that $|P(A)-Q(A)| \geq 4 \epsilon$. Choose N such that $n \geq N$ implies $\mid \mathbb{E}_{P}\left[\phi_{n}\right]-$ $P(A) \mid<\epsilon$ and $\left|\mathbb{E}_{Q}\left[\phi_{n}\right]-Q(A)\right|<\epsilon$, and let $n \geq N$. Choose $f \in \mathcal{H}$ such that $\sup _{x} \mid f(x)-$ $\phi_{n}(x) \mid \leq \epsilon$. Then

$$
\left|\mathbb{E}_{P}[f(X)]-\mathbb{E}_{Q}[f(Z)]\right| \geq\left|\mathbb{E}_{P}\left[\phi_{n}(X)\right]-\mathbb{E}_{Q}\left[\phi_{n}(Z)\right]\right|-2 \epsilon>|P(A)-Q(A)|-4 \epsilon \geq 4 \epsilon-4 \epsilon=0
$$

Dividing by $\|f\|_{\mathcal{H}}$ we have

$$
D_{\mathrm{k}}(P, Q)=\sup _{g:\|g\|_{\mathcal{H}} \leq 1}\left|\mathbb{E}_{P}[g]-\mathbb{E}_{Q}[g]\right| \geq \frac{\left|\mathbb{E}_{P}[f(X)]-\mathbb{E}_{Q}[f(Z)]\right|}{\|f\|_{\mathcal{H}}}>0
$$

(c) The expectation equalities are immediate.

We apply bounded differences for the first statement. We first look at $f\left(x_{1: n}\right)=\widehat{K}\left(x_{1: n}\right)$. As the function is symmetric, we fix index $i=1$. Then for $x, x^{\prime} \in \mathcal{X}$, we have

$$
f\left(x, x_{2: n}\right)-f\left(x^{\prime}, x_{2: n}\right)=\binom{n}{2}^{-1} \sum_{j=2}^{n}\left(\mathrm{k}\left(x, X_{j}\right)-\mathrm{k}\left(x^{\prime}, X_{j}\right)\right)
$$

and using that $\mathrm{k}\left(x, x^{\prime}\right) \in[-B, B]$, the summands are each bounded by $2 B$ in magnitude. Thus

$$
\left|f\left(x, x_{2: n}\right)-f\left(x^{\prime}, x_{2: n}\right)\right| \leq \frac{2}{n(n-1)} \cdot 2 B(n-1)=\frac{4 B}{n}
$$

Bounded differences (McDiarmid's inequality) implies

$$
\mathbb{P}\left(\left|\widehat{K}\left(X_{1: n}\right)-\mathbb{E}\left[\widehat{K}\left(X_{1: n}\right)\right]\right| \geq t\right) \leq 2 \exp \left(-\frac{n t^{2}}{8 B^{2}}\right) .
$$

The argument about $\widehat{K}\left(X_{1: n_{1}}, Z_{1: n_{2}}\right)$ is a bit more complex. Define

$$
\widehat{K}\left(X_{1: n_{1}}, Q\right)=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \mathbb{E}_{Q}\left[\mathrm{k}\left(X_{i}, Z\right) \mid X_{i}\right] .
$$

Then we have

$$
\mathbb{E}\left[\widehat{K}\left(X_{1: n_{1}}, Z_{1: n_{2}}\right) \mid X_{1: n_{1}}\right]=\widehat{K}\left(X_{1: n_{1}}, Q\right)
$$

by the independence of Z_{i}, X_{j}. Fixing $X_{1: n_{1}}$, define the function $g\left(z_{1: n_{2}} \mid X_{1: n_{1}}\right)$ by

$$
g\left(z_{1: n_{2}} \mid X_{1: n_{1}}\right)=\widehat{K}\left(X_{1: n_{1}}, z_{1: n_{2}}\right) .
$$

Then g satisfies bounded differences with parameter $4 B / n_{2}$, as above, and so conditional on $X_{1: n_{1}}$, we have

$$
\begin{equation*}
\mathbb{P}\left(\left|g\left(Z_{1: n_{2}} \mid X_{1: n_{1}}\right)-\widehat{K}\left(X_{1: n_{1}}, Q\right)\right| \geq t \mid X_{1: n_{1}}\right) \leq 2 \exp \left(-\frac{n_{2} t^{2}}{8 B^{2}}\right) . \tag{1}
\end{equation*}
$$

Now we argue that

$$
x_{1: n_{1}} \mapsto \widehat{K}\left(x_{1: n_{1}}, Q\right)
$$

satisfies bounded differences as well. Note that $\mathbb{E}\left[\widehat{K}\left(X_{1: n_{1}}, Q\right)\right]=\mathbb{E}[\mathrm{k}(X, Z)]$ by construction. Without loss of generality let us fix $x_{2: n_{1}}$ and modify $x_{1} \in\left\{x, x^{\prime}\right\}$. Then

$$
\widehat{K}\left(x, x_{2: n_{1}}, Q\right)-\widehat{K}\left(x^{\prime}, x_{2: n_{1}}, Q\right)=\frac{1}{n_{1}} \mathbb{E}_{Q}\left[\mathrm{k}(x, Z)-\mathrm{k}\left(x^{\prime}, Z\right)\right] \in\left[-\frac{2 B}{n_{1}}, \frac{2 B}{n_{1}}\right],
$$

satisfying bounded differences with parameter $2 B / n_{1}$. Thus we have

$$
\begin{equation*}
\mathbb{P}\left(\left|\widehat{K}\left(X_{1: n_{1}}, Q\right)-\mathbb{E}[\mathrm{k}(X, Z)]\right| \geq t\right) \leq 2 \exp \left(-\frac{n_{1} t^{2}}{2 B^{2}}\right) \tag{2}
\end{equation*}
$$

Combining the bounds (1) and (2) and applying the tower property of expectation and the triangle inequality, we have
$\mathbb{P}\left(\left|\widehat{K}\left(X_{1: n_{1}}, Z_{1: n_{2}}\right)-\mathbb{E}[\mathrm{k}(X, Z)]\right| \geq t\right)$
$\leq \mathbb{E}\left[\mathbb{P}\left(\left|g\left(Z_{1: n_{2}} \mid X_{1: n_{1}}\right)-\widehat{K}\left(X_{1: n_{1}}, Q\right)\right| \geq t / 2 \mid X_{1: n_{1}}\right)\right]+\mathbb{P}\left(\left|\widehat{K}\left(X_{1: n_{1}}, Q\right)-\mathbb{E}[\mathrm{k}(X, Z)]\right| \geq t / 2\right)$
$\leq 2 \exp \left(-\frac{n_{2} t^{2}}{32 B^{2}}\right)+2 \exp \left(-\frac{n_{1} t^{2}}{8 B^{2}}\right)$.

