Subgradient Methods

John Duchi
Outline

I Subgradient method
 1.1 Motivation via gradient method
 2.2 Descent(ish) properties
 3.3 Convergence proof
 4.4 Projected subgradient method

II Stochastic subgradient method
 1.1 Motivation
 2.2 Examples
 3.3 Basic convergence proof
 4.4 High-probability guarantees (concentration)
The problem

Problem for now:

\[\min_{x} f(x) \]

where \(f \) convex, not necessarily differentiable
Consider

$$\text{minimize } f(x)$$

where \(f \) convex and continuously differentiable

Gradient method: For some stepsize sequence \(\alpha_k \), iterate

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

$$= \text{argmin}_x \left\{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \| x - x_k \|_2^2 \right\}$$
Subgradient method

Iterate

Choose \textit{any} $g_k \in \partial f(x_k)$

Update $x_{k+1} = x_k - \alpha_k g_k$

- Not a descent method
- $\alpha_k > 0$ is kth step size
Convergence proof start

A few assumptions to make our lives easier:

- **Optimal point:** \(f^* = \inf_x f(x) > -\infty \) and there is \(x^* \in \mathbb{R}^n \) with \(f(x^*) = f^* \)

- **Lipschitz condition:** \(\|g\|_2 \leq M \) for all \(g \in \partial f(x) \) and all \(x \)

- **\(\|x_1 - x^*\|_2 \leq R \)**

(Stronger than needed but whatever)
Convergence proof

Key quantity: distance to optimal point x^*
Convergence proof II

Key step: recursion
Convergence guarantee

Have guarantees

\[
\sum_{k=1}^{K} \alpha_k [f(x_k) - f(x^*)] \leq \frac{1}{2} \|x_1 - x^*\|_2^2 + \sum_{k=1}^{K} \frac{\alpha_k^2}{2} \|g_k\|_2^2
\]

or, if \(\bar{x}_K = \sum_{k=1}^{K} \alpha_k x_k / \sum_{k=1}^{K} \alpha_k \),

\[
f(\bar{x}_K) - f(x^*) \leq \frac{R^2 + \frac{1}{2} \sum_{k=1}^{K} \alpha_k^2 M^2}{\sum_{k=1}^{K} \alpha_k}
\]
Convergence guarantee

For fixed stepsize α and $\bar{x}_K = \frac{1}{K} \sum_{k=1}^{K} x_k$, have

$$f(\bar{x}_K) - f(x^*) \leq \frac{R^2}{\alpha K} + \frac{\alpha}{2} M^2.$$
Example: robust regression

\[
\text{minimize } f(x) = \frac{1}{m} \|Ax - b\|_1 = \frac{1}{m} \sum_{i=1}^{m} |a_i^T x - b_i|.
\]

(Recall: \(\partial \|x\|_1 = \text{sign}(x) \), so \(\partial f(x) = A^T \text{sign}(Ax - b) \))

- Perform subgradient descent with fixed stepsize \(\alpha \in \{10^{-2}, 10^{-1}, 1, 10\} \).
- Plot \(f(x_k) - f^* \)
- Use \(f_{k}^{\text{best}} = \min_{i \leq k} f(x_i) \) and plot \(f_{k}^{\text{best}} - f^* \)
Robust regression example

Fixed stepsizes, showing \(f(x_k) - f(x^*) \) for \(f(x) = \|Ax - b\|_1 \).

Here \(A \in \mathbb{R}^{100 \times 50} \).
Robust regression example

Fixed stepsizes, showing $f_{k}^{\text{best}} - f(x^*)$ for $f(x) = \|Ax - b\|_1$. Here $A \in \mathbb{R}^{100 \times 50}$
Projected subgradient method

Solve problem

\[
\min_x f(x) \quad \text{subject to } x \in C
\]

where \(C \) is a closed convex set

Projected gradient method Iterate:

- Pick \(g_k \in \partial f(x_k) \)
- Update

\[
x_{k+1} = \pi_C(x_k - \alpha_k g_k)
\]

\[
= \arg\min_{x \in C} \left\{ \langle g_k, x \rangle + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}
\]

where

\[
\pi_C(x) := \arg\min_{y \in C} \|x - y\|_2^2.
\]

Prof. John Duchi
Projected subgradient method

- Pick \(g_k \in \partial f(x_k) \)
- Update

\[x_{k+1} = \pi_C(x_k - \alpha_k g_k) \]

where

\[\pi_C(x) := \arg\min_{y \in C} \|x - y\|_2^2. \]
Projected subgradient method: Convergence

Assume: \[\|x - x^*\|_2^2 \leq R^2 \] for all \(x \in C \)

One inequality to rule them all

\[\|\pi_C(x) - y\|_2^2 \leq \|x - y\|_2^2 \]

for \(y \in C \)
Projected subgradient method: Convergence II

Variant on recursion:

\[f(x_k) - f(x^*) \leq \frac{1}{2\alpha_k} \left[\left\| x_k - x^* \right\|_2^2 - \left\| x_{k+1} - x^* \right\|_2^2 \right] + \frac{\alpha_k}{2} \left\| g_k \right\|_2^2. \]
Projected subgradient method: Convergence III

Variant on recursion:

$$\sum_{k=1}^{K} [f(x_k) - f(x^*)] \leq \frac{1}{2\alpha_K} R^2 + \sum_{k=1}^{K} \frac{\alpha_k}{2} \|g_k\|_2^2.$$
Example

\[\ell_2\text{-constraint:} \]
Let \(C = \{ x \in \mathbb{R}^n : \| x \|_2 \leq R \} \). Then \(\| x - x^* \|_2 \leq 2R \) for all \(x, x^* \) and

\[
\pi_C(x) = \begin{cases}
 x & \text{if } \| x \|_2 \leq R \\
 \frac{x}{R \| x \|_2} & \text{otherwise.}
\end{cases}
\]
Stochastic subgradient methods

Stochastic subgradient: Given function f, a *stochastic* subgradient for a point x is a random vector with

$$\mathbb{E}[g \mid x] \in \partial f(x).$$

Standard example: Expectations. Let S be random variable,

$$f(x) = \mathbb{E}[F(x; S)] = \int F(x; s) dP(s)$$

where $F(\cdot; s)$ is convex. Given x, draw $S \sim P$ and set

$$g = g(x; S) \in \partial F(x; S).$$
(Projected) stochastic subgradient method

Problem:

\[
\text{minimize } f(x) \quad \text{subject to } x \in C
\]

given access to \textit{stochastic gradients} of \(f \)

Method: Iterate with stepsizes \(\alpha_k > 0 \)

- Get stochastic gradient \(g_k \) for \(f \) at \(x_k \), i.e. \(\mathbb{E}[g_k \mid x_k] \in \partial f(x_k) \)
- Update

\[
x_{k+1} = \pi_C(x_k - \alpha_k g_k)
\]
Motivation and example

\[f(x) = \frac{1}{N} \sum_{i=1}^{N} F(x; S_i) \]

for very large sample \(\{S_1, \ldots, S_N\} \).

- True subgradient: take \(g_i \in \partial F(x; S_i) \) and

 \[g = \frac{1}{N} \sum_{i=1}^{N} g_i \]

- Stochastic subgradient: choose \(i \in \{1, \ldots, N\} \) uniformly at random, take \(g \in \partial F(x; S_i) \).
Motivation and example

\[f(x) = \frac{1}{N} \sum_{i=1}^{N} F(x; S_i) \]

for very large sample \(\{S_1, \ldots, S_N\} \).

- **True subgradient**: take \(g_i \in \partial F(x; S_i) \) and

\[g = \frac{1}{N} \sum_{i=1}^{N} g_i \]

- **Stochastic subgradient**: choose \(i \in \{1, \ldots, N\} \) uniformly at random, take \(g \in \partial F(x; S_i) \).
Example: robust regression

\[f(x) = \frac{1}{m} \|Ax - b\|_1 = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle - b_i|. \]
Convergence proof

- Compact set C, so $\|x - y\|_2 \leq R$ for all $x, y \in C$
- $\mathbb{E}[\|g\|^2_2] \leq M^2$ for stochastic subgradients
- Define error $\xi_k = g_k - f'(x_k)$, where $\mathbb{E}[g_k \mid x_k] = f'(x_k) \in \partial f(x_k)$

Starting point:

$$\|x_{k+1} - x^*\|^2_2 = \|\pi_C(x_k - \alpha_k g_k) - x^*\|^2_2 \leq \|x_k - \alpha_k g_k - x^*\|^2_2$$
Convergence proof II

\[\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - 2\alpha_k \langle f'(x_k), x_k - x^* \rangle + \alpha_k^2 \|g_k\|_2 \\
- 2\alpha_k \langle \xi_k, x_k - x^* \rangle \]
Convergence of Stochastic Gradient Descent

Final convergence guarantee if C compact and $\|x - y\|_2 \leq R$ for $x, y \in C$:

$$\sum_{k=1}^{K} [f(x_k) - f(x^*)] \leq \frac{1}{2\alpha_K} R^2 + \frac{1}{2} \sum_{k=1}^{K} \alpha_k \|g_k\|_2^2$$

$$- \sum_{k=1}^{K} \langle \xi_k, x_k - x^* \rangle .$$

Take Expectations:
Expected convergence guarantee: If $\alpha_k = R/M\sqrt{k}$ and

$$
\bar{x}_K = \frac{1}{K} \sum_{k=1}^{K} x_k,
$$

$$
\mathbb{E}[f(\bar{x}_K) - f(x^*)] \leq \frac{3}{2} \frac{RM}{\sqrt{K}}.
$$
High Probability Convergence

Question: Can we get convergence with high probability?

Theorem: (Azuma-Hoeffding inequality). Let Z_1, Z_2, \ldots, Z_K be a sequence of conditionally mean-zero random variables with $|Z_k| \leq B$ for all k, i.e.

$$\mathbb{E}[Z_k \mid Z_1, \ldots, Z_{k-1}] = 0 \quad \text{and} \quad \max_k |Z_k| \leq B < \infty.$$

Then

$$\mathbb{P}\left(\frac{1}{K} \sum_{k=1}^{K} Z_k \geq t\right) \leq \exp\left(-\frac{Kt^2}{2B^2}\right)$$

for all $t \geq 0$.

Prof. John Duchi
High Probability Convergence

Assume that $\|g\|_2 \leq M$ for any stochastic subgradient g. Have guarantee (always)

$$f(\overline{x}_K) - f(x^*) \leq \frac{1}{2K\alpha_K} R^2 + \frac{1}{K} \sum_{k=1}^{K} \frac{\alpha_k}{2} M^2 - \frac{1}{K} \sum_{k=1}^{K} \langle \xi_k, x_k - x^* \rangle .$$
High Probability Convergence

Theorem: If $\alpha_k > 0$ is non-increasing, $\|x - y\|_2 \leq R$ for all $x, y \in C$, and $\|g\|_2 \leq M$ for all stochastic gradients, then

$$f(\bar{x}_K) - f(x^*) \leq \frac{1}{2K\alpha_K} R^2 + \frac{1}{K} \sum_{k=1}^K \frac{\alpha_k}{2} M^2 + \frac{2MR}{\sqrt{K}} \epsilon$$

with probability at least $1 - \exp(-\epsilon^2)$.