Question 1: Let \(k : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \) be a valid kernel function. Define
\[
\kappa_{\text{norm}}(x, z) := \frac{k(x, z)}{\sqrt{k(x, x)k(z, z)}}.
\]
Is \(\kappa_{\text{norm}} \) a valid kernel? Justify your answer.

Answer: Yes, it is. Let \(k(x, z) = \langle \phi(x), \phi(z) \rangle \) for some mapping \(\phi : \mathcal{X} \to \mathcal{H} \), where \(\mathcal{H} \) is a Hilbert space. Then
\[
\kappa_{\text{norm}}(x, z) = \langle \phi(x)/\|\phi(x)\|_2, \phi(z)/\|\phi(z)\|_2 \rangle
\]
so that it is still a valid inner product, where the feature mapping is now \(x \mapsto \phi(x)/\|\phi(x)\|_2 \) for \(\|\phi(x)\|_2^2 = \langle \phi(x), \phi(x) \rangle \).

Question 2: Consider the class of functions
\[
\mathcal{H} := \{ f : f(0) = 0, f' \in L^2([0, 1]) \},
\]
that is, functions \(f : [0, 1] \to \mathbb{R} \) with \(f(0) = 0 \) that are almost everywhere differentiable, where \(\int_0^1 (f'(t))^2 dt < \infty \). On this space of functions, we define the inner product by
\[
(f, g) = \int_0^1 f'(t)g'(t)dt.
\]
Show that \(k(x, z) = \min\{x, z\} \) is the reproducing kernel for \(\mathcal{H} \), so that it is (i) positive semidefinite and (ii) a valid kernel.

Answer: If we show that \(k(x, z) = \min\{x, z\} \) is indeed the reproducing kernel for \(\mathcal{H} \), then that suffices to demonstrate that it is a positive definite function. We have for \(g(z) = k(x, z) \) that (almost everywhere) \(g'(z) = 1 \{x \leq z\} \), so that
\[
(f, k(z, \cdot)) = \int_0^1 f'(t) \mathbf{1}\{t \leq z\} dt = \int_0^z f'(t)dt = f(z) - f(0) = f(z).
\]
Thus \(k \) is evidently a reproducing kernel, so it must be a positive definite function.

(Another way to see that, we have \(\min\{x, z\} = k(x, z) = \int_0^1 \mathbf{1}\{t \leq x\} \mathbf{1}\{t \leq z\} dt \), so that \(\min\{x, z\} \) is evidently an inner product.)

Question 3: Consider the Sobolev space \(\mathcal{F}_k \), which is defined as the set of functions that are \((k - 1) \)-times differentiable and have \(k \)th derivative almost everywhere on \([0, 1] \), where the \(k \)th derivative is square-integrable. That is, we define
\[
\mathcal{F}_k := \left\{ f : [0, 1] \mid f^{(k)} \in L^2([0, 1]) \right\},
\]
where \(f^{(k)} \) denotes the \(k \)th derivative of \(f \). We define the inner product on \(\mathcal{F}_k \) by
\[
(f, g) = \sum_{i=0}^{k-1} f^{(i)}(0)g^{(i)}(0) + \int_0^1 f^{(k)}(t)g^{(k)}(t)dt.
\]
(a) Find the representer of evaluation for this Hilbert space, that is, find a function \(r_x : [0, 1] \to \mathbb{R} \) (defined for each \(x \in [0, 1] \)) such that \(r_x \in F_k \) and
\[
\langle r_x, f \rangle = f(x)
\]
for all \(x \in [0, 1] \).

(b) What is the reproducing kernel \(k(x, z) \) associated with this space? (Recall that \(k(x, z) = \langle r_x, r_z \rangle \) for an RKHS.)

(c) Show that \(F_k \) is a Hilbert space, meaning that \(\| f \|^2 = \langle f, f \rangle \) defines a norm and that \(F_k \) is complete for the norm.

Answer:

(a) By Taylor’s theorem, we have
\[
f(x) = f(0) + \sum_{i=1}^{k-1} f^{(i)}(0) \frac{x^i}{i!} + \frac{1}{(k-1)!} \int_0^x f^{(k)}(t)(x-t)^{k-1} dt.
\]
Define the function
\[
r_x(t) = \sum_{i=0}^{k-1} \frac{x^i}{i!} \frac{t^i}{i!} + \frac{(-1)^k}{(2k-1)!} \max\{x-t, 0\}^{2k-1} + \sum_{i=0}^{k-1} \frac{(-1)^{k+i+1} x^{2k-1-i}}{(2k-1-i)!} \frac{t^i}{i!}.
\]
Then
\[
r_x^{(i)}(0) = \frac{1}{i!} x^i + \frac{(-1)^{k+i}}{(2k-i-1)!} \max\{x, 0\}^{2k-1-i} + \frac{(-1)^{k+i+1}}{(2k-1-i)!} x^{2k-1-i} = x^i
\]
for \(i < k \) and
\[
r_x^{(k)}(t) = \frac{1}{(k-1)!} \max\{x-t, 0\}^{k-1}.
\]
Thus we have
\[
\langle f, r_x \rangle = f(0) + f'(0)x + \frac{1}{2} f''(0)x^2 + \cdots + \frac{1}{(k-1)!} f^{(k-1)}(0)x^{k-1} + \frac{1}{(k-1)!} \int_0^1 f^{(k)}(t)(x-t)^{k-1} dt
\]
\[
= \sum_{i=0}^{k-1} \frac{f^{(i)}(0)}{i!} x^i + \frac{1}{(k-1)!} \int_0^x f^{(k)}(t)(x-t)^{k-1} dt
\]
\[
= f(x)
\]
where the last equality is Taylor’s theorem.

(b) For the reproducing kernel, note that
\[
k(x, z) = \langle r_x, r_z \rangle
\]
\[
= \sum_{i=0}^{k-1} \frac{x^i z^i}{i! i!} + \frac{1}{(k-1)!(k-1)!} \int_0^1 (x-t)^{k-1}(z-t)^{k-1} dt
\]
\[
= \sum_{i=0}^{k-1} \frac{x^i z^i}{i! i!} + \frac{1}{(k-1)!(k-1)!} \int_0^{\min\{x,z\}} (x-t)^{k-1}(z-t)^{k-1} dt.
\]
(c) To see that \mathcal{F}_k is a Hilbert space, we must show that $\|f\|^2_H = \langle f, f \rangle$ is a norm and that \mathcal{F}_k is complete for $\|\cdot\|_H$. Non-negativity of $\|\cdot\|_H$ and the triangle inequality are trivial, as it is clear that $\langle \cdot, \cdot \rangle$ is an inner product. Now suppose that $\|f\|_H = 0$. Then $f^{(l)}(0) = 0$ for all $l < k$, and $\int_0^1 f^{(k)}(t)^2 dt = 0$, so that $f^{(k)} = 0$ almost everywhere. Of course, this shows that $f^{(k-1)} \equiv 0$ by integration, and so on, so that $f \equiv 0$. To show completeness, let f_n be a Cauchy sequence in \mathcal{F}_k. Then since

$$\|f_n - f_m\|_H^2 = \sum_{l=0}^{k-1} (f_n^{(l)}(0) - f_m^{(l)}(0))^2 + \int_0^1 (f_n^{(k)}(t) - f_m^{(k)}(t))^2 dt,$$

it is clear that $f_n^{(l)}(0)$ is a Cauchy sequence in \mathbb{R} and $f_n^{(k)}$ is a Cauchy sequence in $L^2([0, 1])$. Completeness of \mathbb{R} and completeness of L^2 then imply the existence of $\lim_n f_n^{(l)}(0)$ for $l < k$ and a $g \in L^2([0, 1])$ such that $f_n^{(k)} \to g$ in L_2. Now define the functions $f^{(l)}$ by

$$f^{(k)}(x) = g(x), \quad f^{(k-1)}(x) = \lim_n f_n^{(k-1)}(0) + \int_0^x g(t)dt, \quad \ldots, \quad f(x) = \lim_n f_n(0) + \int_0^x f^{(1)}(t)dt.$$

Since $f^{(k)} \in L^2([0, 1])$, it is clear that each of the $f^{(l)}$ are absolutely continuous, and the derivative of $f^{(l)}$ is $f^{(l+1)}$. So f_n indeed has a limit f.

\[\square \]

Question 4: The variation distance between probability distributions P and Q on a space \mathcal{X} is defined as $\|P - Q\|_{TV} = \sup_{A \subseteq \mathcal{X}} |P(A) - Q(A)|$.

(a) Show that

$$2\|P - Q\|_{TV} = \sup_{f: \|f\|_\infty \leq 1} \{ \mathbb{E}_P[f(X)] - \mathbb{E}_Q[f(X)] \}$$

where the supremum is taken over all functions with $f(x) \in [-1, 1]$, and the first expectation is taken with respect to P and the second with respect to Q. You may assume that P and Q have densities.

Answer: Using the assumption that we have a density and that $P(A) - Q(A) = 1 - P(A^c) - (1 - Q(A^c)) = Q(A^c) - P(A^c)$, we have

$$\|P - Q\|_{TV} = \sup_{A \subseteq \mathcal{X}} \{P(A) - Q(A)\} = \sup_A \int 1 \{x \in A\} (p(x) - q(x)) dx$$

$$= \int 1 \{p(x) \geq q(x)\} (p(x) - q(x)) dx.$$

Similarly, we have $\|P - Q\|_{TV} = \sup_A \{Q(A) - P(A)\}$, and combining these yields

$$2\|P - Q\|_{TV} = \int (1 \{p(x) \geq q(x)\} - 1 \{p(x) \leq q(x)\}) (p(x) - q(x)) dx.$$

But of course, $\sup_{a \in [-1, 1]} a(p - q) = (p - q)(1 \{p \geq q\} - 1 \{p \leq q\})$, which proves the result.

\[\square \]

Question 5: In a number of experimental situations, it is valuable to determine if two distributions P and Q are the same or different. For example, P may be the distribution of widgets produced by one machine, Q the distributions of widgets by a second machine, and we wish to test if the two distributions are the same (to within allowable tolerances). Let \mathcal{H} be an RKHS of functions with domain \mathcal{X} and reproducing kernel k, and let P and Q be distributions on \mathcal{X}.
(a) Let $\|\cdot\|_H$ denote the norm on the Hilbert space H. Show that

$$D_k(P, Q)^2 := \sup_{f : \|f\|_H \leq 1} \left\{ \|E_P[f(X)] - E_Q[f(Z)]\|^2 \right\} = E[k(X, X')] + E[k(Z, Z')] - 2E[k(X, Z)]$$

where $X, X' \overset{\text{iid}}{\sim} P$ and $Z, Z' \overset{\text{iid}}{\sim} Q$.

(b) A kernel $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called universal if the induced RKHS H of functions $f : \mathcal{X} \rightarrow \mathbb{R}$ can arbitrarily approximate continuous functions. That is, for any $\phi : \mathcal{X} \rightarrow \mathbb{R}$ continuous and $\epsilon > 0$, there is some $f \in H$ such that

$$\sup_{x \in \mathcal{X}} |f(x) - \phi(x)| \leq \epsilon.$$

Show that if k is universal, then

$$D_k(P, Q) = 0 \quad \text{if and only if} \quad P = Q.$$

You may assume \mathcal{X} is a metric space and that $P = Q$ iff $P(A) = Q(A)$ for all compact $A \subset \mathcal{X}$.

(c) You wish to estimate $D_k(P, Q)$ given samples from each of the distributions. Assume that $k(x, z) \in [-B, B]$ for all $x, z \in \mathcal{X}$. Let $X_i \overset{\text{iid}}{\sim} P$, $i = 1, \ldots, n_1$ and $Z_i \overset{\text{iid}}{\sim} Q$, $i = 1, \ldots, n_2$. Define

$$\hat{K}(X_1:n_1) := \left(\frac{n_1}{2} \right)^{-1} \sum_{1 \leq i < j \leq n_1} k(X_i, X_j), \quad \hat{K}(Z_1:n_2) := \left(\frac{n_2}{2} \right)^{-1} \sum_{1 \leq i < j \leq n_2} k(Z_i, Z_j),$$

and

$$\hat{K}(X_{1:n_1}, Z_{1:n_2}) := \frac{1}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} k(X_i, Z_j).$$

Show that $E[\hat{K}(X_{1:n})] = E[k(X, X')]$ and $E[\hat{K}(X_{1:n_1}, Z_{1:n_2})] = E[k(X, Z)]$ for $X, X' \overset{\text{iid}}{\sim} P$ and $Z, Z' \overset{\text{iid}}{\sim} Q$. Show for some numerical constant $c > 0$ that for all $t \geq 0$,

$$P \left(\left| \hat{K}(X_{1:n}) - E[k(X, X')] \right| \geq t \right) \leq 2 \exp \left(-c n t^2 \right)$$

and

$$P \left(\left| \hat{K}(X_{1:n_1}, Z_{1:n_2}) - E[k(X, Z)] \right| \geq t \right) \leq 2 \exp \left(-c n_1 t^2 \right) + 2 \exp \left(-c n_2 t^2 \right).$$

(d) Define the empirical Hilbert distances

$$\hat{D}_k^2(P, Q) := \left(\frac{n_1}{2} \right)^{-1} \sum_{1 \leq i < j \leq n_1} k(X_i, X_j) + \left(\frac{n_2}{2} \right)^{-1} \sum_{1 \leq i < j \leq n_2} k(Z_i, Z_j) - \frac{2}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} k(X_i, Z_j).$$

Show that for all $t \geq 0$,

$$P \left(\left| \hat{D}_k^2(P, Q) - D_k^2(P, Q) \right| \geq t \right) \leq C \exp \left(-c \frac{\min\{n_1, n_2\} t^2}{B^2} \right)$$

where $0 < c, C < \infty$ are numerical constants.
(a) As $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is the reproducing kernel for \mathcal{H}, we have for any $f \in \mathcal{H}$ such that $\|f\|_{\mathcal{H}} \leq 1$

$$\mathbb{E}[f(X)] - \mathbb{E}[f(Z)] = \mathbb{E}[(f, k(X, \cdot))] - \mathbb{E}[(f, k(Z, \cdot))]$$

$$\overset{(i)}{=} \langle f, \mathbb{E}[k(X, \cdot) - k(Z, \cdot)] \rangle$$

$$\overset{(ii)}{\leq} \|f\|_{\mathcal{H}} \|\mathbb{E}[k(X, \cdot) - k(Z, \cdot)]\|_{\mathcal{H}} \leq \|\mathbb{E}[k(X, \cdot) - k(Z, \cdot)]\|_{\mathcal{H}},$$

where we have used linearity in (i) and Cauchy-Schwarz in (ii), and that $\|f\|_{\mathcal{H}} \leq 1$ in the final line. Equality holds in step (ii) if

$$f(\cdot) = \frac{\mathbb{E}[k(X, \cdot) - k(Z, \cdot)]}{\|\mathbb{E}[k(X, \cdot) - k(Z, \cdot)]\|_{\mathcal{H}}}$$

and we have

$$\|\mathbb{E}[k(X, \cdot) - k(Z, \cdot)]\|_{\mathcal{H}}^2 = \langle \mathbb{E}[k(X, \cdot) - k(Z, \cdot)], \mathbb{E}[k(X', \cdot) - k(Z', \cdot)] \rangle$$

$$= \langle \mathbb{E}[k(X, \cdot)], \mathbb{E}[k(X', \cdot)] \rangle + \langle \mathbb{E}[k(Z, \cdot)], \mathbb{E}[k(Z', \cdot)] \rangle - 2 \langle \mathbb{E}[k(X, \cdot)], \mathbb{E}[k(Z, \cdot)] \rangle$$

$$= \mathbb{E}[k(X, X')] + \mathbb{E}[k(Z, Z')] - 2 \mathbb{E}[k(X, Z)],$$

where the final equality uses the linearity of the inner product and independence of X, X', Z, Z'.

(b) Suppose that $P = Q$. Then certainly $\mathbb{E}_P[f(X)] - \mathbb{E}_Q[f(Z)] = \mathbb{E}_P[f(X)] - \mathbb{E}_P[f(X)] = 0$ for all $f \in \mathcal{H}$. Now suppose $P \neq Q$. Then there exists a compact set A such that $P(A) \neq Q(A)$. For $n \in \mathbb{N}$, define the function

$$\phi_n(x) = \max\{1 - n \cdot \text{dist}(x, A), 0\} = [1 - n \text{dist}(x, A)]_+,$$

which satisfies $\phi_n(x) = 1$ for $x \in A$, $\phi_n(x) = 0$ for x such that $\text{dist}(x, A) \geq 1/n$, and is Lipschitz continuous. Moreover, we have $\phi_n(x) \downarrow 1 \{x \in A\}$ for all $x \in A$ as $n \to \infty$. Thus the monotone convergence theorem gives that

$$\lim_n \mathbb{E}_P[\phi_n(X)] = P(A) \quad \text{and} \quad \lim_n \mathbb{E}_Q[\phi_n(Z)] = Q(A).$$

Let $\epsilon > 0$ be such that $|P(A) - Q(A)| \geq 4\epsilon$. Choose N such that $n \geq N$ implies $|\mathbb{E}_P[\phi_n] - P(A)| < \epsilon$ and $|\mathbb{E}_Q[\phi_n] - Q(A)| < \epsilon$, and let $n \geq N$. Choose $f \in \mathcal{H}$ such that $\sup_x |f(x) - \phi_n(x)| \leq \epsilon$. Then

$$|\mathbb{E}_P[f(X)] - \mathbb{E}_Q[f(Z)]| \geq |\mathbb{E}_P[\phi_n(X)] - \mathbb{E}_Q[\phi_n(Z)]| - 2\epsilon > |P(A) - Q(A)| - 4\epsilon \geq 4\epsilon - 4\epsilon = 0.$$

Dividing by $\|f\|_{\mathcal{H}}$ we have

$$D_k(P, Q) = \sup_{g: \|g\|_{\mathcal{H}} \leq 1} |\mathbb{E}_P[g] - \mathbb{E}_Q[g]| \geq \frac{|\mathbb{E}_P[f(X)] - \mathbb{E}_Q[f(Z)]|}{\|f\|_{\mathcal{H}}} > 0.$$

(c) The expectation equalities are immediate.

We apply bounded differences for the first statement. We first look at $f(x_{1:n}) = \hat{K}(x_{1:n})$. As the function is symmetric, we fix index $i = 1$. Then for $x, x' \in \mathcal{X}$, we have

$$f(x, x_{2:n}) - f(x', x_{2:n}) = \binom{n}{2}^{-1} \sum_{j=2}^n (k(x, X_j) - k(x', X_j))$$
and using that \(k(x, x') \in [-B, B]\), the summands are each bounded by \(2B\) in magnitude. Thus

\[
|f(x, x_{2:n}) - f(x', x_{2:n})| \leq \frac{2}{n(n-1)} \cdot 2B(n-1) = \frac{4B}{n}.
\]

Bounded differences (McDiarmid’s inequality) implies

\[
\mathbb{P} \left(\left| \hat{K}(X_{1:n}) - \mathbb{E}[\hat{K}(X_{1:n})] \right| \geq t \right) \leq 2 \exp \left(-\frac{n t^2}{8B^2} \right).
\]

The argument about \(\hat{K}(X_{1:n_1}, Z_{1:n_2})\) is a bit more complex. Define

\[
\hat{K}(X_{1:n_1}, Q) = \frac{1}{n_1} \sum_{i=1}^{n_1} \mathbb{E}_Q[k(X_i, Z) \mid X_i].
\]

Then we have

\[
\mathbb{E}[\hat{K}(X_{1:n_1}, Z_{1:n_2}) \mid X_{1:n_1}] = \hat{K}(X_{1:n_1}, Q)
\]

by the independence of \(Z_i, X_j\). Fixing \(X_{1:n_1}\), define the function \(g(z_{1:n_2} \mid X_{1:n_1})\) by

\[
g(z_{1:n_2} \mid X_{1:n_1}) = \hat{K}(X_{1:n_1}, z_{1:n_2}).
\]

Then \(g\) satisfies bounded differences with parameter \(4B/n_2\), as above, and so conditional on \(X_{1:n_1}\), we have

\[
\mathbb{P} \left(\left| g(Z_{1:n_2} \mid X_{1:n_1}) - \hat{K}(X_{1:n_1}, Q) \right| \geq t \mid X_{1:n_1} \right) \leq 2 \exp \left(-\frac{n_2 t^2}{8B^2} \right). \tag{1}
\]

Now we argue that

\[
x_{1:n_1} \mapsto \hat{K}(x_{1:n_1}, Q)
\]

satisfies bounded differences as well. Note that \(\mathbb{E}[\hat{K}(X_{1:n_1}, Q)] = \mathbb{E}[k(X, Z)]\) by construction. Without loss of generality let us fix \(x_{2:n_1}\) and modify \(x_1 \in \{x, x'\}\). Then

\[
\hat{K}(x_{2:n_1}, Q) - \hat{K}(x'_{2:n_1}, Q) = \frac{1}{n_1} \mathbb{E}_Q[k(x, Z) - k(x', Z)] \in \left[-\frac{2B}{n_1}, \frac{2B}{n_1} \right],
\]

satisfying bounded differences with parameter \(2B/n_1\). Thus we have

\[
\mathbb{P} \left(\left| \hat{K}(X_{1:n_1}, Q) - \mathbb{E}[k(X, Z)] \right| \geq t \right) \leq 2 \exp \left(-\frac{n_1 t^2}{2B^2} \right). \tag{2}
\]

Combining the bounds (1) and (2) and applying the tower property of expectation and the triangle inequality, we have

\[
\mathbb{P} \left(\left| \hat{K}(X_{1:n_1}, Z_{1:n_2}) - \mathbb{E}[k(X, Z)] \right| \geq t \right)
\]

\[
\leq \mathbb{E} \left[\mathbb{P} \left(\left| g(Z_{1:n_2} \mid X_{1:n_1}) - \hat{K}(X_{1:n_1}, Q) \right| \geq t/2 \mid X_{1:n_1} \right) \right] + \mathbb{P} \left(\left| \hat{K}(X_{1:n_1}, Q) - \mathbb{E}[k(X, Z)] \right| \geq t/2 \right)
\]

\[
\leq 2 \exp \left(-\frac{n_2 t^2}{32B^2} \right) + 2 \exp \left(-\frac{n_1 t^2}{8B^2} \right).
\]

\(\square\)