CS230: Lecture 10 Class wrap-up

Kian Katanforoosh, Andrew Ng Menti code: 21 64 9

II. Menti prize winners III. Class project advice IV. What's next? V. Closing remarks

Today's outline

I. Case Study: Conversational Assistant

Example 1

Student: Hi! I want to enroll in CS106A for Winter 2019 to learn coding.

Chatbot: For sure, I just enrolled you!

Goal: Build a Chatbot to help students find and/or enroll in the right course.

Example 2

Student: Hi! What are the undergraduate-level History classes offered in Spring 2019?

Chatbot: Here's the list of History classes offered in Spring 2019:

. . . .

Utterance

User input.

Intent

Slot

so that the dialog system asks only for the details they don't have. For the intent enroll, the slots can be "code", "quarter", "year", "SUid" etc.

Our assumption

We work in an environment with limited intents and slots.

- Denotes the intention of the user. Here, possibilities are enroll(), inform() etc.
- Slots are used to gather multiple information from the user about their intent. Oftentimes, the user would provide some initial slots. Those should be saved

How to detect the intent?

1. Data? Input? Output?

(user utterance, intent)

 $y = enroll() \longrightarrow Call Axess$

x = Hi! What are the undergraduate-level History classes offered in Spring 2019?

 $y = inform() \longrightarrow Call Explorecourses$

The classes are: enroll() and inform().

$x = \langle p \rangle \langle p \rangle$ Hi! I want to enroll in CS106A for Winter 2019 to learn coding. $\langle p \rangle \langle p \rangle$

Train a sequence classifier

How to detect the slots?

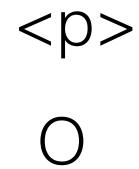
1. Data? Input? Output?

(user utterance, slot tags)

 $\vee =$

The classes are: day, departure, arrival, class, number of passengers.

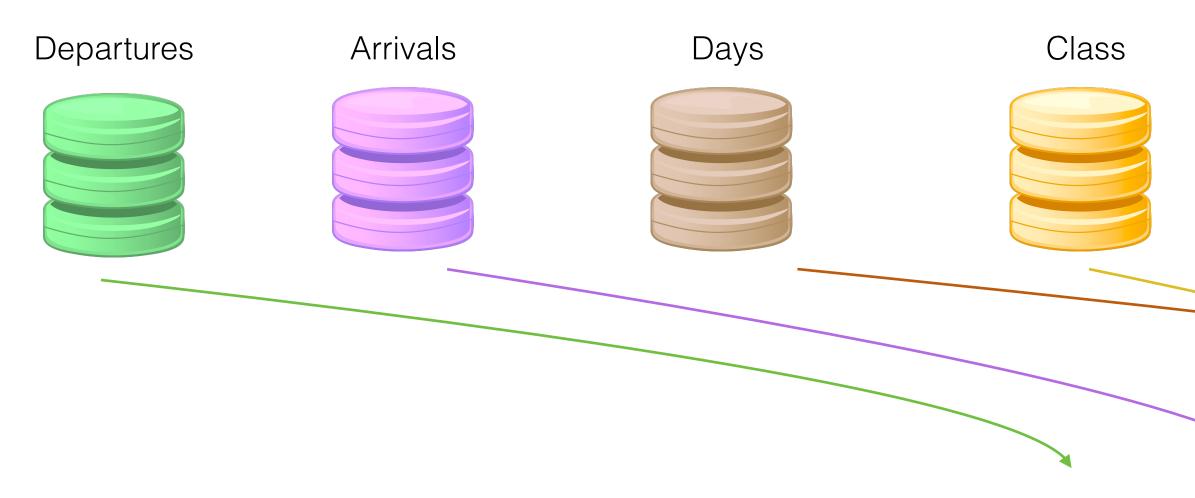
 $x = \langle p \rangle \langle p \rangle$ Hi! I want to enroll in CS106A for Winter 2019 to learn coding. $\langle p \rangle \langle p \rangle$ O O B-COD O B-QUA B-YEAR O O ()()()


V =

The classes are: code, quarter, year, SUid.

$x = \langle p \rangle \langle p \rangle$ show me the Tuesday 12/05 flights from Paris to Kuala Lumpur $\langle p \rangle \langle p \rangle$ O O B-DAY I-DAY O O B-DEP O B-ARR I-ARR

How to acquire this data?

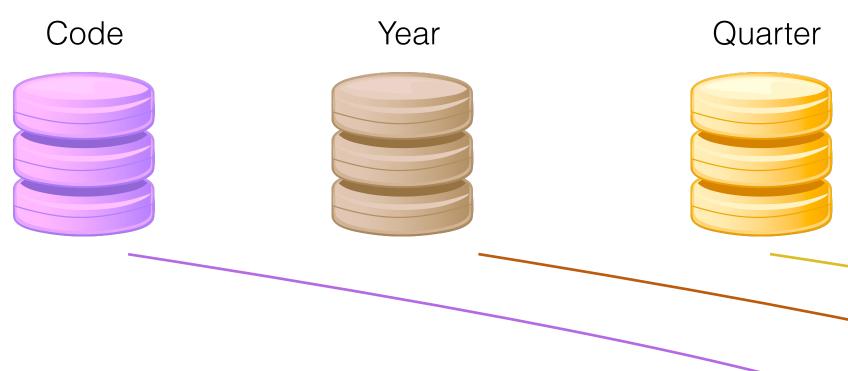


How to detect the slots?

2. Data generation?

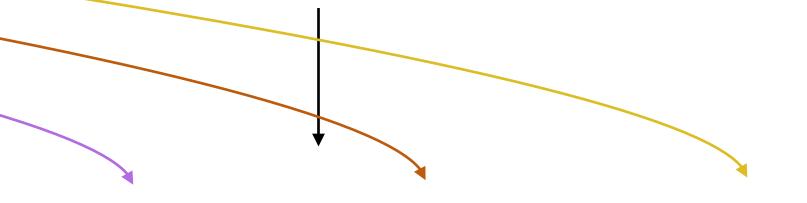
I would like to book a flight from DEP to ARR for in CLASS class for DAY.

[Bordes et al., Learning end-to-end goal-oriented dialog (2017)]


user utterances

How to detect the slots?

2. Data generation?


x = Hi! I want to enroll in **CODE** for **QUARTER YEAR**. y = OOO O O O O B-COD O B-QUA B-YEAR O

Label automatically when inserting

[Bordes et al., Learning end-to-end goal-oriented dialog (2017)]

user utterances

Train a seq2seq model

Example 1

Student: Hi! I want to enroll in CS106A for Winter 2019 to learn coding.

Chatbot: For sure, I just enrolled you!

Can't be understood without context.

Example 1 bis

Student: Hi! I want to enroll in CS106A to learn coding.

Chatbot: For which quarter would you like to enroll?

Student: Winter 2019!

Chatbot: For sure, I just enrolled you!

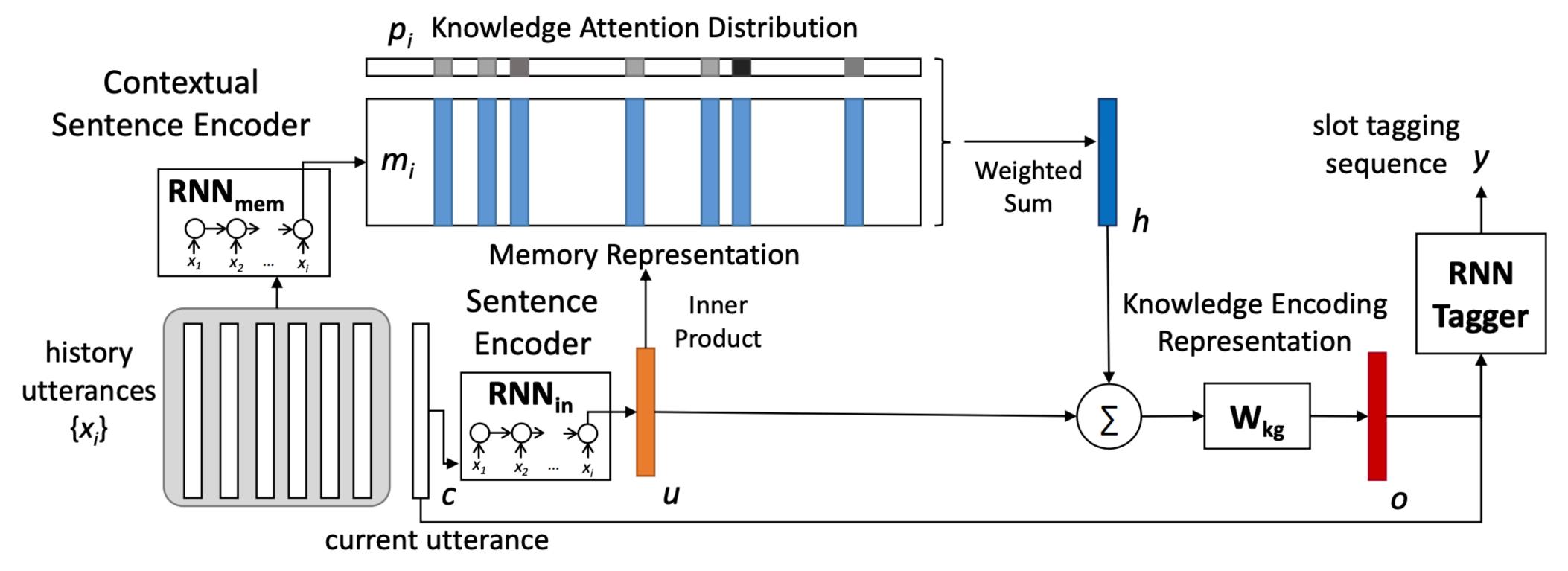


Figure 2: The illustration of the proposed end-to-end memory network model for multi-turn SLU.

[Chen et al., End-to-End Memory Networks with Knowledge Carryover for Multi-Turn Spoken Language Understanding (2016)]

Recap'

Example

Student: Hi! I want to enroll in a class.

Chatbot: Which class do you want to enroll in?

Student: CS230

Chatbot: For which quarter?

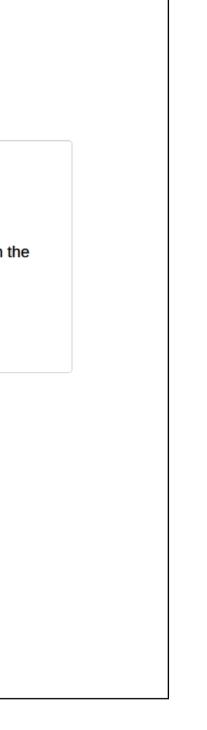
Intent = enroll(class=CS230, quarter=spring, year=2019) Student: Spring 2019!

Chatbot: You're enrolled in CS230 for *Winter 2019!*

Intent = enroll() Slots = quarter?year?class?

Intent = enroll(class=CS230) Slots = quarter?year?

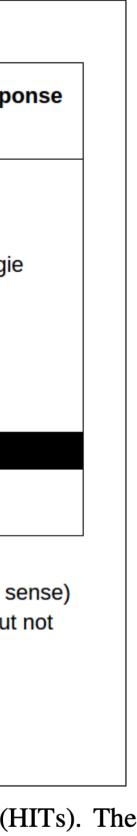
 $Api_call = enroll(class=CS230,$ quarter=win_2019, SUid = \dots)



How to evaluate performance?

You will be p	resented with a conversation between two speakers (speaker A and speaker B).
You will also	be presented with 4 potential responses from one of the speakers for this dialogue.
	o rate each response between 1 (inappropriate, does not make any sense) and 5 (highly appropriate and interesting) based on how the response is to continue the conversation (with 3 being neutral). A response is appropriate if it is interesting and makes sense give logue.
If two respor	nses are equally appropriate, you should give them the same score.
If you see a	response that is not in English, please give all "1" scores.
	Next →

Figure 4: Instructions screen for Amazon Mechanical Turk human intelligence tasks (HITs).


[Serban et al., A Deep Reinforcement Learning Chatbot (2017)]

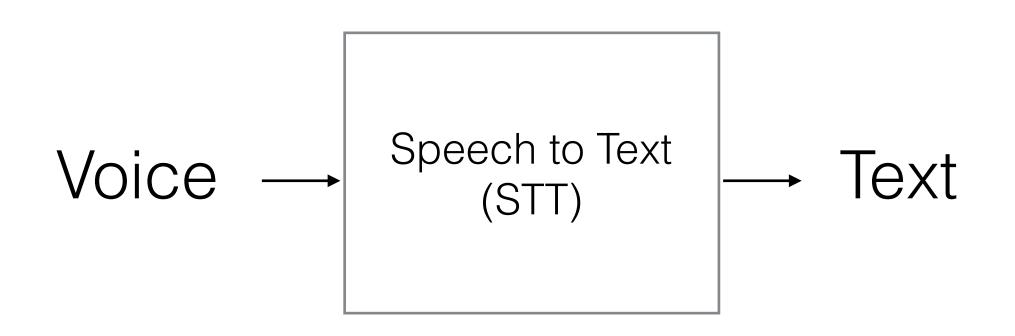
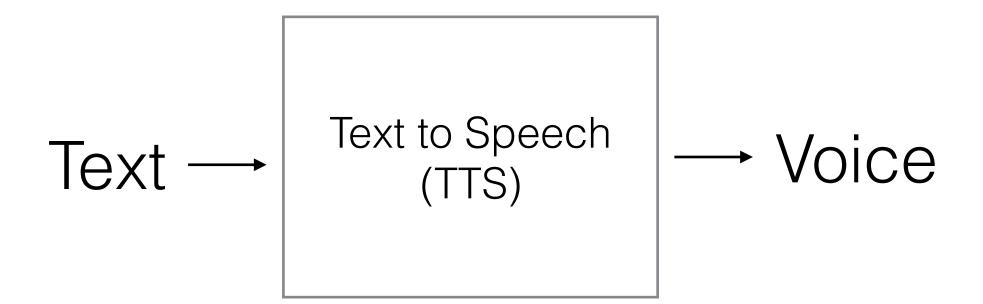

Conversation	Response 1	Response 2	Response 3	Respo 4
A: you need to work on your English B: Why do you say that about me? A: Well your English is very poor	But English is my native language.	What other reasons come to mind?	Here's a funny fact! Go. is the shortest complete sentence in the English language.	bye doggie
Score	4 •	3 •	3 •	2 •
structions:				
and 5 (highly app	propriate and inte	eresting). The so	n 1 (inappropriate, does not mal core 3 indicates neutral (accepta count the previous conversation	able, but
		Next	•	
		3/28		

Figure 5: Annotation screen for Amazon Mechanical Turk human intelligence tasks (HITs). The dialogue text is a fictitious example.



What if you want a vocal assistant?

[Amodei et al., Deep Speech 2: End-to-End Speech Recognition in English and Mandarin (2015)] [Shen et al., Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions (2018)] [van den Oord et al., WaveNet: a Generative Model for Raw Audio (2016)] Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

I. Case Study: Conversational Assistant II. Menti prize winners III. Class project advice IV. What's next? V. Closing remarks

Today's outline

Question: computation time

Text sequence tagging is the task to output a class (or "tag") for each word of an input text sequence. For instance, the input "I want to go to Burkina Faso" can result in the following prediction: "OOOOB-LOC I-LOC" where O indicates that the word is not a location, B-LOC (res. I-LOC) indicates that the word is the beginning (resp. inside) word of a location.

You are discussing three possible approaches with your teammates: Fully-Connected Neural Networks (FCNN), Recurrent Neural Networks (RNN) and 1-D Convolutional Neural Networks (CNN). Which of the following are true? (Check all that apply.)

a) At test time, CNN will probably be faster than the RNN because it can process the input sequence in parallel. b) If you are using GPUs, the CNN will probably be faster than the RNN because it is optimized for GPUs. c) If the window size of the CNN is small (let's say 3), the FCNN will perform better than the CNN on long sequences such as "<pad> <pad> I am not sure I am available this summer, but I hope I could go to Venezuela <pad> <pad>".

d) During training, CNN will probably be faster than the RNN because it can process the input sequence in parallel.

e) None of the above.

Question: end-to-end model

You want to count the number of fish in the aquarium based on images from a camera facing the aquarium. Assume there's nothing else than fishes and that we can neglect occlusion between fishes.

You are considering using one of the two following approaches:

- (A) Input an image (x) to a neural network and have it directly learn a mapping to make a prediction for the number of fishes in the aquarium.
- (B) A two-step approach, where you would first (i) detect the fishes in the image (if any), then (ii) sum the predicted bounding boxes to get the number of fishes in the aquarium. Between these two, Approach A seems more promising if you have a _____. (Fill-in the blank.)

a) Large training set. b) Multi-task learning problem. c) Large bias problem. d) Problem with a high Bayes error.

You collect a very large dataset and split it into a train and held-out test set. After training your deep learning model, you happily observe that it gets very high performance on both the train and test sets, and you are ready to deploy your model into the real world. Which, if any, of the following problems might still occur?

a) Because the model parameters are only local minima of the objective function, your model might not fit the training data well, which would result in poor performance on real world data.

b) High performance on the training set is indicative of overfitting, so your model might not generalize to real world data.

c) The distribution of real world data might be different from the distribution of data in your dataset, so your model might not perform well on it.

d) None of these problems will occur, because your model gets high performance on a held-out test dataset.

II. Menti prize winners III. Class project advice IV. What's next? V. Closing remarks

Today's outline

I. Case Study: Conversational Assistant

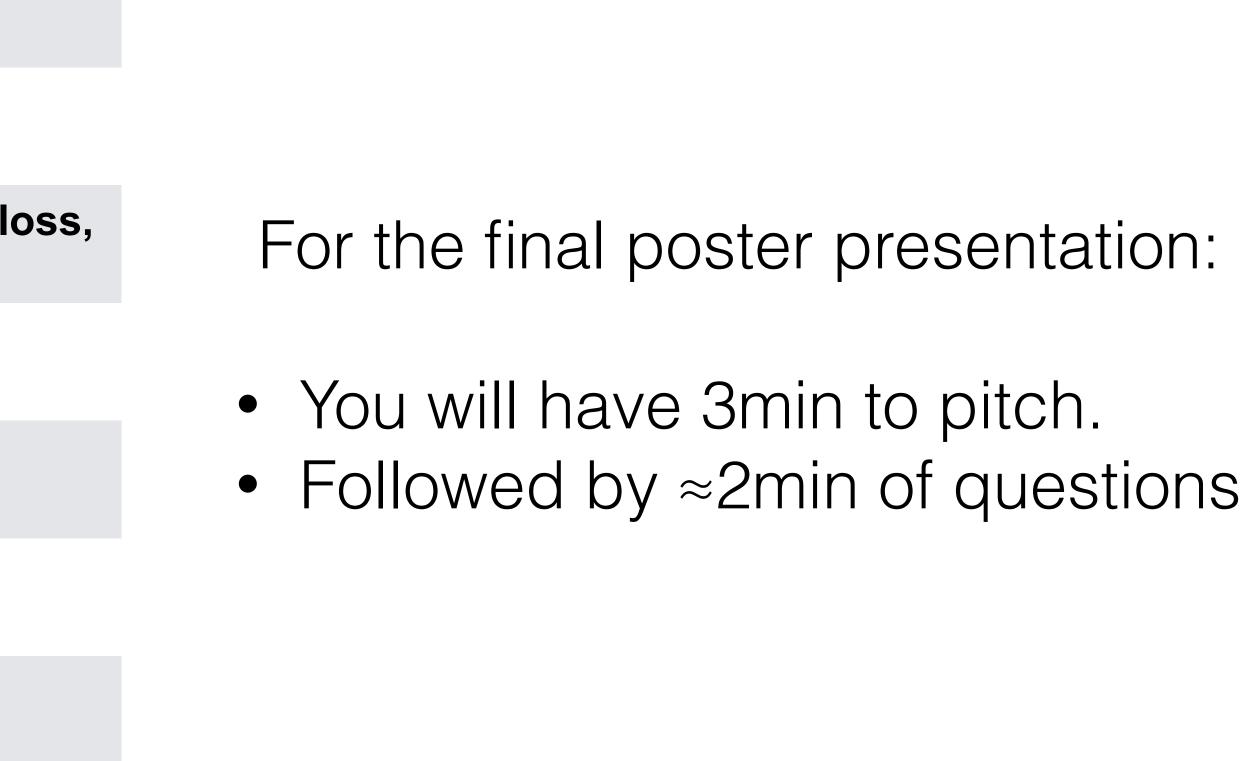
Problem description

Hyperparameters tuning & Architecture search

Paper writing

Explanations of choices and decisions (architecture, loss, metrics, data)

Data cleaning and preprocessing (if applicable)


How much code you wrote on your own

Insights and discussions (including next steps, and interpretation of results)

Results: Accuracy (or other metric) satisfaction

References

Penalty for more than 5 pages (except References/ contribution/theory-proofs)

II. Menti prize winners III. Class project advice IV. What's next? V. Closing remarks

Today's outline

I. Case Study: Conversational Assistant

Classes at Stanford

Natural Language Processing

- CS 124: From Languages to Information (LINGUIST 180, LINGUIST 280)
- **CS 224N:** Natural Language Processing with Deep Learning (LINGUIST 284)
- **CS 224U:** Natural Language Understanding (LINGUIST 188, LINGUIST 288)
- **CS 276:** Information Retrieval and Web Search (LINGUIST 286)

Computer Vision

- **CS 131:** Computer Vision: Foundations and Applications
- **CS 205L:** Continuous Mathematical Methods with an Emphasis on Machine Learning
- **CS 231N:** Convolutional Neural Networks for Visual Recognition
- **CS 348K:** Visual Computing Systems

Others:

- **CS 236:** Deep Generative Models
- **CS 228:** Probabilistic Graphical Models: Principles and Techniques
- CS 337: AI-Assisted Care (MED 277)
- **CS 229:** Machine Learning (STATS 229)
- **CS 229A:** Applied Machine Learning

CS 273B: Deep Learning in Genomics and Biomedicine (BIODS 237, BIOMEDIN 273B, GENE 236)

CS 234: Reinforcement Learning Al for Healthcare Bootcamp

I. Case Study: Conversational Assistant II. Menti prize winners III. Class project advice IV. What's next? V. Closing remarks

Today's outline

Finals week schedule

- TA Sections (Project advice): Friday 12/7
- Poster Session: Friday 12/14
- Final Project Report Due: Sunday 12/16, 11:59pm

