CS230: Lecture 3
Various Deep Learning Topics
Kian Katanforoosh, Andrew Ng
Today’s outline

We will learn how to:
- Analyse a problem from a deep learning approach
- Choose an architecture
- Choose a loss and a training strategy

I. Day’n’Night classification
II. Face Recognition
III. Art generation
IV. Object detection
V. Image Segmentation
Day’n’Night classification (warm-up)

Goal: Given an image, classify as taken “during the day” (0) or “during the night” (1)

1. **Data?** 10,000 images
2. **Input?** Resolution? (64, 64, 3)
3. **Output?** y = 0 or y = 1
4. **Architecture?** Shallow network should do the job pretty well
5. **Loss?** \[L = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}) \]
Server-based or on-device?

Server-based
- App is light-weight

On-device
- Faster predictions

Andrew Ng, Kian Katanforoosh
Face Recognition

Goal: A school wants to use Face Verification for validating student IDs in facilities (dinning hall, gym, pool …)

1. **Data?**
 - Picture of every student labelled with their name
 - Bertrand

2. **Input?**
 - Resolution?
 - (412, 412, 3)

3. **Output?**
 - $y = 1$ (it’s you)
 - or
 - $y = 0$ (it’s not you)
Goal: A school wants to use Face Verification for validating student IDs in facilities (dinning hall, gym, pool …)

4. **What architecture?**

Simple solution:

- **compute distance**
 - pixel per pixel
- if less than threshold then $y=1$

Issues:

- Background lighting differences
- A person can wear make-up, grow a beard…
- ID photo can be outdated
Face Recognition

Goal: A school wants to use Face Verification for validating student IDs in facilities (dinning hall, gym, pool ...)

4. **What architecture?**

Our solution: encode information about a picture in a vector

![Diagram](image)

We gather all student faces encoding in a database. Given a new picture, we compute its distance with the encoding of card holder.
Face Recognition

Goal: A school wants to use Face Verification for validating student IDs in facilities (dinning hall, gym, pool ...)

4. Loss? Training?

We need more data so that our model understands how to encode:

Use public face datasets

What we really want:

- Similar encoding
- Different encoding

So let's generate triplets:

\[
L = \|\text{Enc}(A) - \text{Enc}(P)\|_2^2 - \|\text{Enc}(A) - \text{Enc}(N)\|_2^2 + \alpha
\]
Face Recognition

Goal: A school wants to use Face Identification for recognize students in facilities (dinning hall, gym, pool ...)

K-Nearest Neighbors

Goal: You want to use Face Clustering to group pictures of the same people on your smartphone

K-Means Algorithm

Maybe we need to detect the faces first?
Goal: Given a picture, make it look beautiful

1. **Data?**

 Let’s say we have any data

2. **Input?**

 content image

3. **Output?**

 style image

 generated image

Leon A. Gatys, Alexander S. Ecker, Matthias Bethge: A Neural Algorithm of Artistic Style, 2015
Art generation (Neural Style Transfer)

4. Architecture?
We want a model that **understands images** very well
We load an **existing model trained on ImageNet** for example

![Deep Network](image)

When this image forward propagates, we can get information about its content & its style by inspecting the layers.

5. Loss?

\[
L = \|\text{Content}_C - \text{Content}_G\|_2^2 + \|\text{Style}_S - \text{Style}_G\|_2^2
\]

We are not learning parameters by minimizing L. We are learning an image!
Art generation (Neural Style Transfer)

Correct Approach

\[L = \|\text{Content}_C - \text{Content}_G\|^2 + \|\text{Style}_S - \text{Style}_G\|^2 \]

After 2000 iterations

Deep Network (pretrained)

compute loss

update pixels
Image Segmentation

Goal: Separate the foreground from the background on a picture

1. **Data?**
 - Image

2. **Input?**
 - Labels

3. **Output?**
 - Image labels

4. Architecture?

(600, 400, 3)

Convolutions
(reduces volume height and width)

Information Encoded

Encoding

De-convolutions
(increases volume height and width)

Per-Pixel Classification
(600, 400, 1)
4. Loss?

pixel-wise cross-entropy

\[L = \sum_{\text{pixels}} \sum_{\text{classes}} y \log(\hat{y}) \]
Object Detection

Goal: Find objects in images

1. **Data?**

 Very large set of labelled images

2. **Input?**

 ![Input Image]

3. **Output?**

 \[y_1 = (b_x, b_y, b_h, b_w, p_c, c) \]

 \[y_2 = (b_x, b_y, b_h, b_w, p_c, c) \]

 \[y_k = (b_x, b_y, b_h, b_w, p_c, c) \]

 Problem: size of output varies
 1. Use a mask?
 2. Change the output of the model

 \[y = (b_x, b_y, b_h, b_w, p_c, c) \]
4. Architecture?

We have a lot of boxes
We select the most likely ones using thresholding and other methods
5. Loss?

\[\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \]

\[+ \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij} \left[(\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2 \right] \]

\[+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij} (C_i - \hat{C}_i)^2 \]

\[+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij} \left(C_i - \hat{C}_i \right)^2 \]

\[+ \sum_{i=0}^{S^2} \mathbb{1}_{ij} \sum_{\text{classes} \in \{c\}} (p_i(c) - \hat{p}_i(c))^2 \]
Goal: Find objects in images

1. **Data?**
 Very large set of labelled images

2. **Input?**
 ![Image with bounding boxes]

3. **Output?**

 \[y_1 = (b_x, b_y, b_h, b_w, p_c, c) \]

 \[y_2 = (b_x, b_y, b_h, b_w, p_c, c) \]

 \[y_k = (b_x, b_y, b_h, b_w, p_c, c) \]

Problem: size of output varies
1. Use a mask?
2. Change the output of the model

\[y = (b_x, b_y, b_h, b_w, p_c, c) \]

Andrew Ng, Kian Katanforoosh