Lecture 7
Multi-view geometry

• The SFM problem
• Affine SFM
• Perspective SFM
• Self-calibration
• Applications

Reading:
[HZ] Chapter 10 “3D reconstruction of cameras and structure”
Chapter 18 “N-view computational methods”
Chapter 19 “Auto-calibration”

[FP] Chapter 13 “projective structure from motion”
[Szelisky] Chapter 7 “Structure from motion”
Structure from motion problem

Given m images of n fixed 3D points

\[x_{ij} = M_i X_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n \]
From the $m \times n$ observations x_{ij}, estimate:

- m projection matrices M_i
- n 3D points X_j
Affine structure from motion
(simpler problem)

From the $m \times n$ observations x_{ij}, estimate:

- m projection matrices M_i (affine cameras)
- n 3D points X_j
Perspective
\[\mathbf{x} = M \mathbf{X} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} m_1X \\ m_2X \\ m_3X \end{bmatrix} \]

\[\mathbf{x}^E = \left(\frac{m_1X}{m_3X}, \frac{m_2X}{m_3X} \right)^T \]

Affine
\[\mathbf{x} = M \mathbf{X} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} m_1X \\ m_2X \\ 1 \end{bmatrix} \]

\[\mathbf{M} = \begin{bmatrix} \mathbb{A} & \mathbb{b} \\ \mathbb{v} & 1 \end{bmatrix} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} \]

\[\mathbf{x}^E = (\mathbf{m}_1 \mathbf{X}, \mathbf{m}_2 \mathbf{X})^T = \begin{bmatrix} \mathbb{A}_{2x3} & \mathbb{b}_{2x1} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbb{A} & \mathbb{b} \\ \mathbb{v} & 1 \end{bmatrix} = \mathbb{A} \mathbf{x}^E + \mathbb{b} \]

\[\mathbf{X}^E = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]

\text{magnification}
Affine cameras

For the affine case (in Euclidean space)

\[x_{ij} = A_i X_j + b_i \]

[Eq. 4]
The Affine Structure-from-Motion Problem

Given m images of n fixed points X_i we can write

$$x_{ij} = A_i X_j + b_i$$

for $i = 1, \ldots, m$ and $j = 1, \ldots, n$

N. of cameras N. of points

Problem: estimate m matrices A_i, m matrices b_i
and the n positions X_i from the $m \times n$ observations x_{ij}.

How many equations and how many unknown?

$2m \times n$ equations in $8m + 3n - 8$ unknowns
The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)

- Factorization method
The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)

- Factorization method
A factorization method – Tomasi & Kanade algorithm

- Data centering
- Factorization
A factorization method - Centering the data

Centering: subtract the centroid of the image points

[Eq. 6] \[\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} \]

[Eq. 5] \[\bar{x}_i = \frac{1}{n} \sum_{k=1}^{n} x_{ik} \]
A factorization method - Centering the data

Centering: subtract the centroid of the image points

\[\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} = A_i X_j + b_i - \frac{1}{n} \sum_{k=1}^{n} A_i X_k - \frac{1}{n} \sum_{k=1}^{n} b_i \]

\[x_{ik} = A_i X_k + b_i \]

\[\overline{x}_i = \frac{1}{n} \sum_{k=1}^{n} x_{ik} \]
A factorization method - Centering the data

Centering: subtract the centroid of the image points

[Eq. 6] \[\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} = A_i X_j + b_i - \frac{1}{n} \sum_{k=1}^{n} A_i X_k - \frac{1}{n} \sum_{k=1}^{n} b_i \]

[Eq. 4] \[x_{ik} = A_i X_k + b_i \]

[Eq. 7] \[\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \]

Centroid of 3D points
A factorization method - Centering the data

Thus, after centering, each normalized observed point is related to the 3D point by

$$\hat{X}_{ij} = A_i \hat{X}_j$$ \[Eq. 8\]

$$\bar{X}_i = \frac{1}{n} \sum_{k=1}^{n} x_{ik}$$ \[Eq. 7\]

Centroid of 3D points
A factorization method - Centering the data

If the centroid of points in 3D = center of the world reference system

\[\hat{X}_{ij} = A_i \hat{X}_j = A_i X_j \] \hspace{1cm} \text{[Eq. 9]}

\[\bar{X}_i = \frac{1}{n} \sum_{k=1}^{n} x_{ik} \]

Centroid of 3D points

\[\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \] \hspace{1cm} \text{[Eq. 7]}
A factorization method - factorization

Let’s create a $2m \times n$ data (measurement) matrix:

$$
D = \begin{bmatrix}
\hat{X}_{11} & \hat{X}_{12} & \cdots & \hat{X}_{1n} \\
\hat{X}_{21} & \hat{X}_{22} & \cdots & \hat{X}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{X}_{m1} & \hat{X}_{m2} & \cdots & \hat{X}_{mn}
\end{bmatrix}
$$

Each \hat{X}_{ij} entry is a 2×1 vector!

cameras

(2m)

points (n)
A factorization method - factorization

Let’s create a $2m \times n$ data (measurement) matrix:

$$D = \begin{bmatrix}
\hat{x}_{11} & \hat{x}_{12} & \cdots & \hat{x}_{1n} \\
\hat{x}_{21} & \hat{x}_{22} & \cdots & \hat{x}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{x}_{m1} & \hat{x}_{m2} & \cdots & \hat{x}_{mn}
\end{bmatrix} = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_m
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}$$

[Eq. 10]

(2m x n)

(points (3 x n))

Each \hat{x}_{ij} entry is a 2x1 vector!

A_i is 2x3 and X_i is 3x1

The measurement matrix $D = M S$ has rank 3

(it’s a product of a 2mx3 matrix and 3xn matrix)
Factorizing the Measurement Matrix

How to factorize D?

$D = MS$
Factorizing the Measurement Matrix

- By computing the Singular value decomposition of D

\[
D = U \times W \times V^T
\]

Dimension labels:
- D: $2m \times n$
- U: $n \times n$
- W: $n \times n$
- V^T: $n \times 2m$
Since rank (D) = 3, there are only 3 non-zero singular values \(\sigma_1, \sigma_2, \sigma_3 \).

Factorizing the Measurement Matrix

\[
W_3 = \begin{bmatrix}
\sigma_1 & 0 & 0 \\
0 & \sigma_2 & 0 \\
0 & 0 & \sigma_3 \\
\end{bmatrix}
\]
[Eq. 11]
Factorizing the Measurement Matrix

\[
\begin{align*}
D &= U_3 \times W_3 \times V_3^T
\end{align*}
\]
Factorizing the Measurement Matrix

\[D = U_3 \, W_3 \, V_3^T = U_3 \, (W_3 \, V_3^T) = M \, S \quad [\text{Eq. 12}] \]
Factorizing the Measurement Matrix

\[\mathbf{D} = \mathbf{U}_3 \mathbf{W}_3 \mathbf{V}_3^T = \mathbf{U}_3 \left(\mathbf{W}_3 \mathbf{V}_3^T \right) = \mathbf{M} \mathbf{S} \quad \text{[Eq. 12]} \]

What is the issue here? \(\mathbf{D} \) has rank > 3 because of:

- measurement noise
- affine approximation

Theorem: When \(\mathbf{D} \) has a rank greater than 3, \(\mathbf{U}_3 \mathbf{W}_3 \mathbf{V}_3^T \) is the best possible rank-3 approximation of \(\mathbf{D} \) in the sense of the Frobenius norm.

\[\mathbf{D} = \mathbf{U}_3 \mathbf{W}_3 \mathbf{V}_3^T \]

\[\mathbf{M} \approx \mathbf{U}_3 \]

\[\mathbf{S} \approx \mathbf{W}_3 \mathbf{V}_3^T \]

\[\| A \|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} = \sqrt{\sum_{i=1}^{\min\{m, n\}} \sigma_i^2} \]
Reconstruction results

Affine Ambiguity

\[D = M \times S \]
Affine Ambiguity

• The decomposition is not unique. We get the same D by applying the transformations:

$$M^* = M H$$
$$S^* = H^{-1}S$$

where H is an arbitrary 3x3 matrix describing an affine transformation

• Additional constraints must be enforced to resolve this ambiguity
Affine Ambiguity

\[S^* = H^{-1}S \]

\[A^* = AH \]

\[A'^* = A'H \]
The Affine Structure-from-Motion Problem

Given m images of n fixed points X_i we can write

$$x_{ij} = A_i X_j + b_i$$

for $i = 1, \ldots, m$ and $j = 1, \ldots, n$

N. of cameras N. of points

Problem: estimate m matrices A_i, m matrices b_i
and the n positions X_i from the $m \times n$ observations x_{ij}.

How many equations and how many unknown?

$2m \times n$ equations in $8m + 3n - 8$ unknowns
Similarity Ambiguity

• The scene is determined by the images only up a similarity transformation (rotation, translation and scaling)

• This is called **metric reconstruction**

• The ambiguity exists even for (intrinsically) calibrated cameras

• For calibrated cameras, the similarity ambiguity is the **only** ambiguity

[Longuet-Higgins ’81]
Similarity Ambiguity

- It is impossible, based on the images alone, to estimate the absolute scale of the scene.
Lecture 7
Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications
Structure from motion problem

From the \(m \times n \) observations \(x_{ij} \), estimate:

- \(m \) projection matrices \(M_i = \text{motion} \)
- \(n \) 3D points \(X_j = \text{structure} \)
Structure from motion problem

m cameras $M_1 \ldots M_m$

$$M_i = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & 1 \end{bmatrix}$$
In the general case (nothing is known) the ambiguity is expressed by an arbitrary 4X4 projective transformation.

$$x_j = M_i X_j = \left(M_i H^{-1} \right) \left(H X_j \right)$$
The Structure-from-Motion Problem

Given \(m \) images of \(n \) fixed points \(X_j \) we can write

\[
\mathbf{x}_{ij} = \mathbf{M}_i \mathbf{X}_j \quad \text{for } i = 1, \ldots, m \text{ and } j = 1, \ldots, n
\]

\[\text{N. of cameras} \quad \text{N. of points}\]

Problem: estimate \(m \) 3\(\times \)4 matrices \(\mathbf{M}_i \) and \(n \) positions \(\mathbf{X}_j \) from \(m \times n \) observations \(\mathbf{x}_{ij} \).

- If the cameras are not calibrated, cameras and points can only be recovered up to a 4\(\times \)4 projective (where the 4\(\times \)4 projective is defined up to scale)
- How many equations and how many unknowns?

\[
2m \times n \text{ equations in } 11m + 3n - 15 \text{ unknowns}
\]
Projective Ambiguity

\[S = \]

The problem of recovering the metric reconstruction from the perspective one is called **self-calibration**.
Structure-from-Motion methods

1. Recovering structure and motion up to perspective ambiguity
 - Algebraic approach (by fundamental matrix)
 - Factorization method (by SVD)
 - Bundle adjustment

2. Resolving the perspective ambiguity
Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D
Algebraic approach (2-view case)

From at least 8 point correspondences, compute F associated to camera 1 and 2.

\[x_{1j} = M_1 X_j \]
\[x_{2j} = M_2 X_j \]

For $j = 1, \ldots, n$

N. of points
Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views (eg. 8 point algorithm)
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D
Algebraic approach (2-view case)

Because of the projective ambiguity, we can always apply a projective transformation H such that:

$$M_1 H^{-1} = \begin{bmatrix} I & 0 \end{bmatrix}$$ \hspace{1cm} [Eq. 3] \hspace{1cm} \text{Canonical perspective camera}

$$M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix}$$ \hspace{1cm} [Eq. 4]

$$x_{1j} = M_1 X_j$$

$$x_{2j} = M_2 X_j$$

For $j = 1, \ldots, n$

N. of points
Algebraic approach (2-view case)

- Call \(X \) a generic 3D point \(x_{ij} \)
- Call \(x \) and \(x' \) the corresponding observations to camera 1 and respectively

\[
\begin{align*}
\tilde{M}_1 &= M_1 H^{-1} = \begin{bmatrix} I & 0 \end{bmatrix} \\
\tilde{M}_2 &= M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix} \\
\tilde{X} &= H X
\end{align*}
\]

\[
x' = [A|b] \tilde{X} = [A|b] \begin{bmatrix} \tilde{X}_1 \\ \tilde{X}_2 \\ \tilde{X}_3 \\ 1 \end{bmatrix} = A[I|0] \begin{bmatrix} \tilde{X}_1 \\ \tilde{X}_2 \\ \tilde{X}_3 \\ 1 \end{bmatrix} + b = A[I|0] \tilde{X} + b = Ax + b
\]

\[
x' \times b = (Ax + b) \times b = Ax \times b
\]

\[
x'^T \cdot (x' \times b) = x'^T \cdot (Ax \times b) = 0
\]

\[
x'^T (b \times Ax) = 0
\]
Cross product as matrix multiplication

\[\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a} \times] \mathbf{b} \]
Algebraic approach (2-view case)

\[
\begin{align*}
\tilde{M}_1 &= M_1 H^{-1} = \begin{bmatrix} I & 0 \end{bmatrix} \quad x = M_1 H^{-1} H X = [I | 0] \tilde{X} \\
\tilde{M}_2 &= M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix} \quad x' = M_2 H^{-1} H X = [A | b] \tilde{X} \\
\tilde{X} &= H X
\end{align*}
\]

\[\text{[Eqs. 5]}\]

\[\text{[Eq. 6]}\]

\[
\begin{align*}
x'^T (b \times A x) &= 0 \quad \text{[Eq. 10]} \\
x'^T [b_\times] A x &= 0 \quad \text{is this familiar?} \\
F &= [b_\times] A \\
X'^T F X &= 0
\end{align*}
\]

fundamental matrix!
Compute cameras

\[x'^\top F x = 0 \quad F = [b_x]A = b \times A \quad \text{[Eq. 11]} \]

Compute \(b \):

- Let’s consider the product \(F b \)

\[F \cdot b = [b_x]A \cdot b = b \times A \cdot b = 0 \quad \text{[Eq. 12]} \]

- Since \(F \) is singular, we can compute \(b \) as least sq. solution of \(F b = 0 \), with \(|b| = 1 \) using SVD

- Using a similar derivation, we have that \(b^\top F = 0 \) \[\text{[Eq. 12-bis]}\]
Compute cameras

\[x'^T F x = 0 \quad \text{F} = [b \times] A \]

[Eq. 11]

\[\begin{align*}
F b &= 0 \quad \text{[Eq. 12]}

b^T F &= 0 \quad \text{[Eq. 12-bis]}
\end{align*} \]

Compute \(A \):

- Define: \(A' = -[b \times] F \)

- Let’s verify that \([b \times] A'\) is equal to \(F\):

Indeed: \([b \times] A' = -[b \times][b \times] F = -(b b^T - |b|^2 I) F = -b b^T F + |b|^2 F = 0 + 1 \cdot F = F \)

[Eq. 13]

- Thus, \(A = A' = -[b \times] F \)

[Eq. 14]

\[
\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \quad \tilde{M}_2 = \begin{bmatrix} -[b \times] F & b \end{bmatrix}
\]
Interpretation of b

\[x'^T F x = 0 \quad F = [b \times] A \]

[Eq. 11]

\[\begin{align*}
F b &= 0 & \text{[Eq. 12]} \\
b^T F &= 0 & \text{[Eq. 12-bis]}
\end{align*} \]

What’s b??
Epipolar Constraint [lecture 5]

$F x_2$ is the epipolar line associated with x_2 ($l_1 = F x_2$)

$F^T x_1$ is the epipolar line associated with x_1 ($l_2 = F^T x_1$)

F is singular (rank two)

$F e_2 = 0$ and $F^T e_1 = 0$

F is 3x3 matrix; 7 DOF
Interpretation of b

\[x'^T F x = 0 \quad F = [b_x] A \]

\[
\begin{align*}
Fb &= 0 \\
b^T F &= 0
\end{align*}
\]

[Eq. 11]

\[b \text{ is an epipole!} \]

\[
\begin{align*}
\tilde{M}_1 &= \begin{bmatrix} I & 0 \end{bmatrix} \quad &\tilde{M}_2 &= \begin{bmatrix} - [b_x] F & b \end{bmatrix} \\
\downarrow & & \downarrow \\
\tilde{M}_1 &= \begin{bmatrix} I & 0 \end{bmatrix} \quad &\tilde{M}_2 &= \begin{bmatrix} - [e_x] F & e \end{bmatrix}
\end{align*}
\]

[Eq. 15] [Eq. 16]
Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views (eg. 8 point algorithm)
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D
Triangulation

For $j = 1, \ldots, n$

$x_{1j} = \tilde{M}_2 \tilde{X}_j$

$x_{2j} = \tilde{M}_1 \tilde{X}_j$

$\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix}$

$\tilde{M}_2 = \begin{bmatrix} -[e_x] F & e \end{bmatrix}$

$\Rightarrow \tilde{X}_j$ For $j = 1, \ldots, n$

3D points can be computed from camera matrices via SVD (see page 312 of HZ for details)
Algebraic approach: the N-views case

- From I_k and I_h \(\Rightarrow \tilde{M}_k, \tilde{M}_h, \tilde{X}_{[k,h]} \)

- Pairwise solutions may be combined together using bundle adjustment

3D points associated to point correspondences available between I_k and I_h
Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment
Limitations of the approaches so far

• **Factorization methods** assume all points are visible. This not true if:
 • occlusions occur
 • failure in establishing correspondences

• **Algebraic methods** work with 2 views

The bundle adjustment approach addresses some of these limitations
Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizes re-projection error

\[E(M, X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, M_i X_j)^2 \]
General Calibration Problem

\[E(M, X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, M_i X_j)^2 \]

- **Newton Method**
- **Levenberg-Marquardt Algorithm**
 - Iterative, starts from initial solution
 - May be slow if initial solution far from real solution
 - Estimated solution may be function of the initial solution
 - Newton requires the computation of J, H
 - Levenberg-Marquardt doesn’t require the computation of H

\(D \) is the nonlinear mapping
Bundle adjustment

• **Advantages**
 • Handle large number of views
 • Handle missing data

• **Limitations**
 • Large minimization problem (parameters grow with number of views)
 • Requires good initial condition

• Used as the final step of SFM (i.e., after the factorization or algebraic approach)
• Factorization or algebraic approaches provide a initial solution for optimization problem
Lecture 7
Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications
Self-calibration

- **Self-calibration** is the problem of recovering the metric reconstruction from the perspective (or affine) reconstruction.
- We can self-calibrate the camera by making some assumptions about the cameras.
Self-calibration

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach
Inject information about the camera during the bundle adjustment optimization

For calibrated cameras, the similarity ambiguity is the only ambiguity [Longuet-Higgins ’81]
Lecture 7
Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications
Structure from motion problem

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96
Fitzgibbon & Zisserman, 98
Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99
Levoy et al., 00
Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér, 04
Brown & Lowe, 04
Schindler et al., 04
Lourakis & Argyros, 04
Colombo et al. 05
Golparvar-Fard, et al. JAEI 10
Pandey et al. IFAC, 2010
Pandey et al. ICRA 2011
Microsoft’s PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09
Frahm et al., 10
Reconstruction and texture mapping

M. Pollefeys et al 98—
Incremental reconstruction of construction sites

Initial pair – 2168 & Complete Set 62,323 points, 160 images

Golparvar-Fard. Pena-Mora, Savarese 2008
The registration of images (08.27.08) within the reconstructed scene + Site photos of the Student Dining and Residence Hall project in Champaign, IL. Images courtesy of Turner Construction.
Reconstructed scene + Site photos
Results and applications

Next lecture

• Active Stereo & Volumetric Stereo
Direct approach

We use the following results:

1. A relationship that maps conics across views
2. Concept of absolute conic and its relationship to K
3. The Kruppa equations
Projections of conics across views

$$X^T C_w X = 0 \quad \text{[Eq. 1]}$$

$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ 1 \end{bmatrix}$$

$$\left[e' \right]_x C'^{-1} \left[e' \right]_x = F \left(C^{-1} F^T \right) \quad \text{[Eq. 2]}$$
Projection of absolute conics across views

From lecture 4, [HZ] page 210, sec. 8.5.1

\[[e']_x \omega^{-1} [e']_x = F \omega^{-1} F^T \]

[Eq. 3]

\[\omega = (K K^T)^{-1} \]

[Eq. 4]

\[\omega' = (K' K'^T)^{-1} \]

[Eq. 5]
Kruppa equations

\[\begin{pmatrix} u_2^T K' K'^T u_2 \\ -u_1^T K' K'^T u_2 \\ u_1^T K' K'^T u_1 \end{pmatrix} \times \begin{pmatrix} \sigma_1^2 v_1^T K K^T v_1 \\ \sigma_1 \sigma_2 v_1^T K K^T v_2 \\ \sigma_2^2 v_2^T K K^T v_2 \end{pmatrix} = 0 \]

[Eq. 6]

where \(u_i \), \(v_i \) and \(\sigma_i \) are the columns and singular values of SVD of \(F \)

These give us two independent constraints in the elements of \(K \) and \(K' \)
Kruppa equations

\[\begin{pmatrix} u_2^T K' K'^T u_2 \\ -u_1^T K' K'^T u_2 \\ u_1^T K' K'^T u_1 \end{pmatrix} \times \begin{pmatrix} \sigma_1^2 v_1^T K K^T v_1 \\ \sigma_1 \sigma_2 v_1^T K K^T v_2 \\ \sigma_2^2 v_2^T K K^T v_2 \end{pmatrix} = 0 \]

\[\frac{u_2^T K K^T u_2}{\sigma_1^2 v_1^T K K^T v_1} = \frac{-u_1^T K K^T u_2}{\sigma_1 \sigma_2 v_1^T K K^T v_2} = \frac{u_1^T K K^T u_1}{\sigma_2^2 v_2^T K K^T v_2} \] \[\text{[Eq. 7]}\]

- Let’s make the following assumption: \(K' = K = \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \) \[\text{[Eq. 8]}\]

\[\alpha f^2 + \beta f + \gamma = 0 \quad \rightarrow \quad f \] \[\text{[Eq. 9]}\]
Kruppa equations

[Faugeras et al. 92]

• Powerful if we want to self-calibrate 2 cameras with unknown focal length

• Limitations:
 • Work on a camera pair
 • Don’t work if R=0

\[
\begin{array}{c}
\text{[Eq. 10]} \quad [e']_\times \omega^{-1} [e']_\times = F \omega^{-1} F^T \quad \text{becomes trivial}
\end{array}
\]

Since: \(F = [e']_\times \)
Self-calibration

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach
Algebraic approach Multi-view approach

Suppose we have a projective reconstruction \(\{ \tilde{M}_i, \tilde{X}_j \} \)

Let \(H \) be a homography such that:

\[
\begin{align*}
\text{First perspective camera is canonical: } & \quad \tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \quad [\text{Eq. 11}] \\
\text{i}^{th} \text{ perspective reconstruction of the camera (known): } & \quad \tilde{M}_i = \begin{bmatrix} A_i & b_i \end{bmatrix} \quad [\text{Eq. 12}]
\end{align*}
\]

\[
\begin{align*}
\text{Eq. 13} & \quad \left(A_i - b_i p^T \right) K_1 K_1^T \left(A_i - b_i p^T \right)^T = K_i K_i^T \quad i=2\ldots m \\
\text{Eq. 14} & \quad H = \begin{bmatrix} K_1 & 0 \\ -p^T K_1 & 1 \end{bmatrix} \\
& \quad p \text{ is an unknown 3x1 vector} \\
& \quad K_1\ldots K_m \text{ are unknown}
\end{align*}
\]
Algebraic approach

Multi-view approach

Suppose we have a projective reconstruction

Let H be a homography such that:

\[
\begin{align*}
\tilde{M}_1 &= [I \quad 0] \quad \text{[Eq. 11]} \\
\tilde{M}_i &= [A_i \quad b_i] \\
\end{align*}
\]

\[
\text{[Eq. 12]} \quad \left(A_i - b_i p^T \right) K_1 K_1^T \left(A_i - b_i p^T \right)^T = K_i K_i^T \quad i=2\ldots m
\]

How many unknowns?

- 3 from p
- 5 m from $K_1\ldots K_m$

How many equations?

5 independent equations [per view]
Algebraic approach

Suppose we have a projective reconstruction

Let H be a homography such that:

$$\begin{cases}
\text{First perspective camera is canonical: } \tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \quad [\text{Eq. 11}] \\
\text{i}^{th} \text{ perspective reconstruction of the camera (known): } \tilde{M}_i = \begin{bmatrix} A_i & b_i \end{bmatrix} \\
\end{cases}$$

Assume all camera matrices are identical: $K_1 = K_2 \ldots = K_m$

$$[\text{Eq. 15}] \quad \left(A_i - b_i p^T \right) K \ K^T \left(A_i - b_i p^T \right)^T = K \ K^T \quad i=2\ldots m$$

How many unknowns? \quad • 3 from p \quad • 5 from K

How many equations? \quad 5 independent equations \text{ [per view]}

We need at least 3 views to solve the self-calibration problem
Algebraic approach

Art of self-calibration:
Use assumptions on Ks to generate enough equations on the unknowns

<table>
<thead>
<tr>
<th>Condition</th>
<th>N. Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Constant internal parameters</td>
<td>3</td>
</tr>
<tr>
<td>• Aspect ratio and skew known</td>
<td>4</td>
</tr>
<tr>
<td>• Focal length and offset vary</td>
<td></td>
</tr>
<tr>
<td>• Skew =0, all other parameters vary</td>
<td>8</td>
</tr>
</tbody>
</table>

Issue: the larger is the number of view, the harder is the correspondence problem

Bundle adjustment helps!
SFM problem - summary

1. Estimate structure and motion up perspective transformation
 1. Algebraic
 2. factorization method
 3. bundle adjustment

2. Convert from perspective to metric (self-calibration)

3. Bundle adjustment

** or **

1. Bundle adjustment with self-calibration constraints