
-Problem Formulation

- Least Squares Methods
- RANSAC
- Hough Transforms
- Multi-model fitting
- Fitting helps matching


## Reading:

[HZ] Chapter 4 "Estimation - 2D projective transformation"
[HZ] Chapter 11 "Computation of the fundamental matrix F" [FP] Chapter 10 "Grouping and Model Fitting"

## Fitting

Goals:

- Choose a parametric model to fit a certain quantity from data
- Estimate model parameters
- Lines
- Curves
- Homographic transformations
- Fundamental matrices
- Shape models


## Example: fitting lines

(for computing vanishing points)


## Example: Estimating an homographic transformation



## Example: Estimating F



## Example: fitting a 2D shape template



## Example: fitting a 3D object model



Fitting, matching and recognition are interconnected problems

## Fitting

Critical issues:

- noisy data
- outliers
- missing data
- Intra-class variation


## Critical issues: noisy data



## Critical issues: outliers



What's H?

## Critical issues: outliers



## Critical issues: missing data (occlusions)



## Critical issues: noisy data (intra-class variability)



## Fitting

Goal: Choose a parametric model to
fit a certain quantity from data
Techniques:
-Least square methods

- RANSAC
- Hough transform
- EM (Expectation Maximization) [not covered]


## Least squares methods <br> - fitting a line -

- Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Model of the line:

$$
y_{i}-m x_{i}-b=0
$$

- Parameters: m, b
- Find $(m, b)$ to minimize fitting error (residual):


$$
\begin{equation*}
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2} \tag{Eq.2}
\end{equation*}
$$

## Least squares methods <br> - fitting a line -

$$
\begin{equation*}
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2} \tag{Eq.2}
\end{equation*}
$$

$$
\begin{aligned}
E & =\sum_{i=1}^{n}\left(y_{i}-\left[\begin{array}{ll}
x_{i} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]\right)^{2}=\left\|\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]-\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]\right\|^{2} \begin{array}{c}
\|Y-X h\|^{2} \\
\text { [Eq. 3] }
\end{array} \\
& =(Y-X h)^{T}(Y-X h)=Y^{T} Y-2(X h)^{T} Y+(X h)^{T}(X h) \quad \text { [Eq. 4] }
\end{aligned}
$$

Find $h=[m, b]^{\top}$ that minimizes E $\quad \frac{d E}{d h}=-2 X^{T} Y+2 X^{T} X h=0 \quad$ [Eq. 5]

$$
X^{T} X h=X^{T} Y \quad \text { [Eq. 7] }
$$

Normal equation

$$
h=\left(X^{T} X\right)^{-1} X^{T} Y
$$

## Least squares methods <br> - fitting a line -

$$
\begin{aligned}
& \mathrm{E}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{mx}_{\mathrm{i}}-\mathrm{b}\right)^{2} \\
& \frac{h=\left(X^{T} X\right)^{-1} X^{T} Y}{[\text { Eq. 6] }} \quad h=\left[\begin{array}{c}
m \\
b
\end{array}\right]
\end{aligned}
$$

Issues?


- Fails completely for vertical lines


## Least squares methods <br> - fitting a line -

- Distance between point $\left(x_{i}, y_{i}, 1\right)$ and line $(\mathrm{a}, \mathrm{b}, \mathrm{d})$ $a x+b y=d$
- Find $(a, b, d)$ to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}+d\right)^{2}
$$

$$
A h=0 \quad \text { Eq. } 9]
$$


data model parameters

## Least squares methods <br> - fitting a line -

$\mathrm{Ah}=0 \quad \mathrm{~A}$ is rank deficient

Minimize $\|\mathrm{A} \mathrm{h}\| \quad$ subject to $\quad\|\mathrm{h}\|=1$
$A=U D V^{T}$
$\mathrm{h}=$ last column of V
See [HZ], sec. A5.3 - page 593

## Least squares methods <br> - fitting an homography -



$$
A h=0 \quad[\mathrm{Eq} .10]
$$

data model parameters

See HZ

- Sec 4.1 for details (DLT algorithm) - Sec 4.1.2 (or APPENDIX)


## Least squares: Robustness to noise



## Least squares: Robustness to noise



## Critical issues: outliers



CONCLUSION: Least square is not robust w.r.t. outliers

## Fitting

Goal: Choose a parametric model to
fit a certain quantity from data
Techniques:
-Least square methods
-RANSAC

- Hough transform


## Basic philosophy (voting scheme)

- Data elements are used to vote for one (or multiple) models
- Robust to outliers and missing data
- Assumption 1: Noisy data points will not vote consistently for any single model ("few" outliers)
- Assumption 2: There are enough data points to agree on a good model ("few" missing data)


## Example: Line fitting



- Enough "good" data points supporting the line model in presence of noise
- "Few" outliers compared to the "good" data points - these few outliers won't "consistently" vote for a line model


## RANSAC

(RANdom SAmple Consensus) :
Fischler \& Bolles in '81.

$\pi: \mathbf{P} \rightarrow\{\mathbf{I}, \mathbf{O}\} \quad \min _{\pi}|\boldsymbol{O}|$ such that:

Model parameters $a, b, d$

$$
r(I, h)<\delta, \quad \forall I \in \mathbf{I} \quad r(I, h)=\text { residual } \mid=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}+d\right)^{2}
$$

[Eq. 12]

## RANSAC


$\mathbf{P}=$ Sample set $=$ set of points in $2 D$

## Algorithm:

1. Select random sample of minimum required size to fit model
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set Repeat 1-3 until model with the most inliers over all samples is found

## RANSAC


$\mathbf{P}=$ Sample set $=$ set of points in 2 D

## Algorithm:

1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set Repeat 1-3 until model with the most inliers over all samples is found

RANSAC

$\mathbf{P}=$ Sample set $=$ set of points in $2 D$

## Algorithm:

1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set ot inliers to this model from whole data set Repeat 1-3 until model with the most inliers over all samples is found

RANSAC

$\mathbf{P}=$ Sample set $=$ set of points in 2D

## Algorithm:

$$
|\mathbf{O}|=?=14
$$

$$
|\mathbf{I}|=?=6
$$

1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set

Repeat l-3 until model with the most inliers over all samples is tound


## Algorithm:

1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set Repeat 1-3 until model with the most inliers over all samples is found

## How many samples?

- Computationally unnecessary (and infeasible) to explore the entire sample space
- $\mathbf{N}$ samples are sufficient
- $N=$ number of samples required to ensure, with a probability $p$, that at least one random sample produces an inlier set that is free from "real" outliers
- Function of $s$ and $e$ :
- e = outlier ratio
- $s=$ minimum number of data points needed to fit the model
- Usually, p=0.99


## Example



- Here a random sample is given by two green points
- The estimated inlier set is given by the green+blue points
- How many "real" outliers we have here? 2


## Example



- Random sample is given by two green points
- The estimated inlier set is given by the green+blue points
- How many "real" outliers we have here?


## Example


$N$ is the number of times we need to sample my data (and thus repeat the steps $1-3$ in the previous slides) before I find the configuration above with probability $p$. Again this is function of $e$ and $s$ as well.

## How many samples?

- Number $N$ of samples required to ensure, with a probability p, that at least one random sample produces an inlier set that is free from "real" outliers for a given s and e.
- E.g., p=0.99

$$
\begin{equation*}
\mathrm{N}=\log (1-\mathrm{p}) / \log \left(1-(1-\mathrm{e})^{\mathrm{s}}\right) \tag{Eq.13}
\end{equation*}
$$

| proportion of outliers $e$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s | $5 \%$ | $10 \%$ | $20 \%$ | $25 \%$ | $(30 \%$ | $40 \%$ | $50 \%$ |
| 2 | 2 | 3 | 5 | 6 | 7 | 11 | 17 |
| 3 | 3 | 4 | 7 | 9 | 11 | 19 | 35 |
| 4 | 3 | 5 | 9 | 13 | 17 | 34 | 72 |
| 5 | 4 | 6 | 12 | 17 | 26 | 57 | 146 |
| 6 | 4 | 7 | 16 | 24 | 37 | 97 | 293 |
| 7 | 4 | 8 | 20 | 33 | 54 | 163 | 588 |
| 8 | 5 | 9 | 26 | 44 | 78 | 272 | 1177 |

e = outlier ratio
$s=$ minimum number needed to fit the model

## Estimating H by RANSAC

- $\mathrm{H} \rightarrow 8$ DOF
- Need 4 correspondences

$\mathrm{P}=$ Sample set $=$ set of matches between 2 images
Algorithm:

1. Select a random sample of minimum required size [?]
2. Compute a putative model from these
3. Compute the set of inliers to this model from whole sample space
Reneat l-3 until model with the most inliers aver all samples is found

## Estimating F by RANSAC

- $\mathrm{F} \rightarrow 7 \mathrm{DOF}$
- Need 8 correspondences

$\mathrm{P}=$ Sample set $=$ set of matches between 2 images


## Algorithm:

1. Select a random sample of minimum required size [?]
2. Compute a putative model from these
3. Compute the set of inliers to this model from whole sample space
Reneat 1-3 until model with the most inliers aver all samples is found

## RANSAC - conclusions

## Good:

- Simple and easily implementable
- Successful in different contexts


## Bad:

- Many parameters to tune
- Trade-off accuracy-vs-time
- Cannot be used if ratio inliers/outliers is too small


## Fitting

Goal: Choose a parametric model to
fit a certain quantity from data
Techniques:

- Least square methods
- RANSAC
- Hough transform


## Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

## Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.

High Energy Accelerators and Instrumentation, 1959
Given a set of points, find the line parameterized by $m, n$ that explains the data points best: that is, $m=m^{\prime}$ and $n=n$ '


## Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.

High Energy Accelerators and Instrumentation, 1959
Given a set of points, find the line parameterized by $m, n$ that explains the data points best: that is, $m=m$ ' and $n$ $=n^{\prime}$


Original space where the data points are


Hough space defined by the parameters of the model we want to fit (i.e.,

## Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Any Issue? The parameter space $[\mathrm{m}, \mathrm{n}]$ is unbounded...

## Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.

High Energy Accelerators and Instrumentation, 1959
Any Issue? The parameter space [ $\mathrm{m}, \mathrm{n}$ ] is unbounded...

## Use a polar representation for the parameter

 space

Original space


$$
\begin{equation*}
\mathrm{x} \cos \boldsymbol{\theta}+\mathrm{y} \sin \boldsymbol{\theta}=\boldsymbol{\rho} \tag{Eq.13}
\end{equation*}
$$

## Hough transform - experiments



## Hough transform - experiments

Noisy data


Original space
How to compute the intersection point? In presence of noise! IDEA: introduce a grid a count intersection points in each cell Issue: Grid size needs to be adjusted...

## Hough transform - conclusions

## Good:

- All points are processed independently, so can cope with occlusion/outliers
- Some robustness to noise: noise points unlikely to contribute consistently to any single cell


## Bad:

- Spurious peaks due to uniform noise
- Trade-off noise-grid size (hard to find sweet point)
- Doesn't handle well high dimensional models


## Applications - lane detection



Courtesy of Minchae Lee

Applications - computing vanishing points


## Generalized Hough transform

[more on forthcoming lectures]
D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognition 13(2), 1981

- Parameterize a shape by measuring the location of its parts and shape centroid
- Given a set of measurements, cast a vote in the Hough (parameter) space
- Used in object recognition! (the implicit shape model)
B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004


## Lecture 9 Fitting and Matching



- Problem formulation
- Least square methods
- RANSAC
- Hough transforms
- Multi-model fitting
- Fitting helps matching!


## Fitting multiple models



- Incremental fitting
- E.M. (probabilistic fitting)
- Hough transform


## Incremental line fitting

Scan data point sequentially (using locality constraints)

Perform following loop:

1. Select $N$ point and fit line to $N$ points
2. Compute residual $R_{N}$
3. Add a new point, re-fit line and re-compute $R_{N+1}$
4. Continue while line fitting residual is small enough,
> When residual exceeds a threshold, start fitting new model (line)

## Hough transform




Same cons and pros as before...

## Lecture 9 Fitting and Matching



- Problem formulation
- Least square methods
- RANSAC
- Hough transforms
- Multi-model fitting
- Fitting helps matching!


## Fitting helps matching!



Features are matched (for instance, based on correlation)

## Fitting helps matching!



Matches based on appearance only
Green: good matches
Red: bad matches

## Idea:

- Fitting an homography H (by RANSAC) mapping features from images 1 to 2
- Bad matches will be labeled as outliers (hence rejected)!


## Fitting helps matching!



## Recognising Panoramas

M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th International Conference on Computer Vision -- ICCV2003


## Next lecture:

## Low Level Representations

## Least squares methods <br> - fitting a line -

$$
A x=b
$$

- More equations than unknowns
- Look for solution which minimizes $\|$ Ax-b\| $=(\mathrm{Ax}-\mathrm{b})^{\mathrm{T}}(\mathrm{Ax}-\mathrm{b})$
- Solve $\frac{\partial(A x-b)^{T}(A x-b)}{\partial x_{i}}=0$
- LS solution

$$
x=\left(A^{T} A\right)^{-1} A^{T} b
$$

## Least squares methods - fitting a line -

## Solving $\quad x=\left(A^{t} A\right)^{-1} A^{t} b$

$A^{+}=\left(A^{t} A\right)^{-1} A^{t} \quad=$ pseudo-inverse of $A$
$\mathrm{A}=\mathrm{U} \sum \mathrm{V}^{\mathrm{t}} \quad=$ SVD decomposition of A
$A^{-1}=V \sum^{-1} U^{T}$
$A^{+}=V \sum^{+} U^{T}$
with $\sum^{+}$equal to $\sum^{-1}$ for all nonzero singular values and zero otherwise

## Least squares methods <br> - fitting an homography -

$$
\begin{aligned}
& h_{11} x+h_{12} y+h_{13}-h_{31} x x^{\prime}-h_{32} y x^{\prime}-x^{\prime}=0 \\
& h_{21} x+h_{22} y+h_{23}-h_{31} x y^{\prime}-h_{32} y y^{\prime}-y^{\prime}=0
\end{aligned}
$$

From $n>=4$ corresponding points: $\quad \mathrm{Ah}=0$
$\left(\begin{array}{ccccccccc}x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1} x_{1}^{\prime} & -y_{1} x_{1}^{\prime} & -x_{1}^{\prime} \\ 0 & 0 & 0 & x_{1} & y_{1} & 1 & -x_{1} y_{1}^{\prime} & -y_{1} y_{1}^{\prime} & -y_{1}^{\prime} \\ x_{2} & y_{2} & 1 & 0 & 0 & 0 & -x_{2} x_{2}^{\prime} & -y_{2} x_{2}^{\prime} & -x_{2}^{\prime} \\ 0 & 0 & 0 & x_{2} & y_{2} & 1 & -x_{2} y_{2}^{\prime} & -y_{2} y_{2}^{\prime} & -y_{2}^{\prime} \\ \vdots & \vdots \\ x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n} x_{n}^{\prime} & -y_{n} x_{n}^{\prime} & -x_{n}^{\prime} \\ 0 & 0 & 0 & x_{n} & y_{n} & 1 & -x_{n} y_{n}^{\prime} & -y_{n} y_{n}^{\prime} & -y_{n}^{\prime}\end{array}\right)\left[\begin{array}{c}\mathrm{h}_{1,1} \\ \mathrm{~h}_{1,2} \\ \vdots \\ \mathrm{~h}_{3,3}\end{array}\right]=0$

## Hough transform - experiments




Issue: spurious peaks due to uniform noise

