Object Detection for Autonomous Vehicles

Gene Lewis
Stanford University
Stanford, CA

glewisl7@cs.stanford.edu

Abstract

In this work, we have examine an approach to deep ob-
Jject detection that makes bounding box predictions for an
image without the need for expensive preprocessing or ex-
pensive deep evaluations; the resulting DIY network, Sim-
pleNet, gives reasonable prediction accuracy and runs in
near-real-time. SimpleNet is capable of making predic-
tions at a rate of approximately 11 frames per second, and
achieves a mAP accuracy of around 12.83% on our valida-
tion set.

1. Introduction

In recent years, there has been a significant increase
in research interest supporting the development of the au-
tonomous vehicle, which is an automobile platform capable
of sensing and reacting to it’s immediate environment in an
attempt to navigate roadways without human intervention.
The task of environment sensing is known as perception,
and often consists of a number of subtasks such as object
classification, detection, 3D position estimation, and simul-
taneous localization and mapping (SLAM)[6].

In many autonomous driving systems, the object detec-
tion subtask is itself one of the most important prerequisites
to autonomous navigation, as this task is what allows the car
controller to account for obstacles when considering possi-
ble future trajectories; it therefore follows that we desire
object detection algorithms that are as accurate as possible.
Many high-quality object detectors have seen astounding
improvements in recent years [5]; however, the object de-
tection problem ported to the autonomous driving setting
presents unique challenges not addressed by many leading
techniques. These challenges include:

e Car controllers often must solve optimization prob-
lems at least once a second to achieve feasible control;
this means that the car controller must receive detec-
tion results in a similar timeframe.

e The requirement that the entire detection pipeline be

fast generally precludes the use of image preprocess-
ing that often boosts detection performance, such as
extracting SIFT descriptors, region proposals, or slid-
ing windows. Thus, a detector for an autonomous car
must remain reasonably accurate while operating on
strictly the input image.

e Car computing systems are often heavily memory con-
strained, and so it is often infeasible to store and run
detectors with large amounts of parameters, especially
with large input image volumes. In particular, this con-
strains the depth of neural network approaches.

2. Related Work
2.1. OverFeat

OverFeat [10]] is a Convolutional Neural Network model
released in 2013 that jointly performs object recognition,
detection, and localization. OverFeat is one of the most
successful detection models to date, winning the localiza-
tion task in the ImageNet Large Scale Visual Recognition
Challenge 2013. OverFeat is eight layers deep, and depends
heavily on an overlapping scheme that produces detection
boxes at multiple scales and iteratively aggregates them to-
gether into high-confidence predictions.

2.2. VGG16

VGG16 [11]] was an attempt to usurp OverFeat’s dom-
inance in object classification and detection by exploring
the effects of extreme layer depth. A 16-layer and 19-layer
model was produced, setting new benchmarks on localiza-
tion and classification in the ImageNet ILSVRC 2014 Chal-
lenge.

2.3. Fast R-CNN

Fast R-CNN [3] is a model that attempts to capture the
accuracy of deeper models while improving their speed.
Fast R-CNN predicts on region proposals, and utilizes
shared computation per region proposal and truncated SVD
factorizations to speed up the training and prediction time
of the model.

24.YOLO

YOLO [9] is a recent model that operates directly on im-
ages while treating object detection as regression instead of
classification. YOLO has the poorest performance out of all
the above models, but more than makes up for it in speed;
YOLO is able to predict at an astounding 45 frames per sec-
ond. YOLO is, however, quite large at 12 layers.

2.5. SimpleNet

In this work, we investigate the possibility of using sim-
ple techniques to construct an object detector that excels in
the metrics provided by our autonomous driving environ-
ment; that is, we endeavor to train a detector that is capable
of fitting in restricted memory, predicts in real-time, and
has acceptable accuracy for use in an autonomous driving
platform. We name our resulting detector SimpleNet; our
approach and experiments are detailed below.

3. Approach
3.1. Architecture

We utilize Convolutional Neural Networks (CNN) as our
basic structure for SimpleNet, as CNNs have recently been
shown to achieve very significant results in computer vision
tasks [S]. A CNN model can be thought of as a recursive
composition of models, where the input at the lowest level
is some input image and the output is a matrix of bounding
box predictions.

The choice of functions to recursively compose varies
widely, but often involves a convolutional operation fol-
lowed by a non-linear activation followed by a maximum
pooling operation; we refer to the composition of these
three functions together as a “layer”.

In our SimpleNet architecture, we choose to have n
layers, followed by a final convolution/non-linearity and a
dense fully-connected layer that outputs a prediction ma-
trix. We trained a 3-layer and 5-layer model to examine the
effects of network depth on predictions; more details are
given in the Experiments section.

3.2. Hidden Units

For each Convolution Layer, we utilized a filter size of
3z3 in order to train each neuron to respond to a more lo-
cal area and get the maximum number of activations. Each
Convolution Layer also had 3 neurons; this choice was
made to keep the volume size similar to the input volume,
and keep the number of parameters fairly low.

3.3. Non-linear Activation Function

For our non-linear activation we used Rectified Linear
Unit (ReLU) [[7] activations, which take the form:

ReLU(x) = max{0,z}

Detection Prediction Matrix

A

Fully Connected Layer
A

ReLU Non-linearity
I\

Convolution
Layer

!
Max F;ooling

ReLU Non-linearity
*

Convolution
Layer
A

Input Image

Figure 1: SimpleNet Architecture. Dark bracket indicates
portion with repeated layers

ReLU’s are standard activations used in the computer vision
literature that allow for large gradients while suppressing
negative activations.

3.4. Detection Prediction

We represent a bounding box as a vector b € R*, where
the first two elements encode the x and y coordinates of the
top-left corner of the bounding box detection and the last
two elements encode the x and y coordinates of the bottom-
right corner of the bounding box detection. Our detection
matrix has a fixed number of rows, and so can predict a
fixed number of bounding boxes; in our implementation, we
cap our number of predictions at 21, corresponding to the
maximum number of detections in the training and testing
sets.

3.5. Horizon Suppression

After predicting bounding boxes, we utilize a heuristic
to help suppress false positives which we call horizon sup-
pression. Because the cameras on the autonomous car are
fixed, most road surfaces appear at the same angle and so
have the same horizon line. As a heuristic, we suppress any
detection box whose bottom-right corner appears above the
estimated horizon line y = 200pz; the intuition behind this
procedure is that if the detected object is above the horizon
line, either it lies very far ahead in the distance or lies in the
sky. If it lies in the sky, then the detected object cannot be

a car or pedestrian and so is a false positive; otherwise, we
will have a high chance of detecting the object again as we
approach closer and the predicted bounding box falls below
the horizon line.

This procedure significantly improves false positives, as
many insignificant predictions are made above the horizon
line as an artifact of the training procedure.

3.6. Loss Function

In this work we experimented with two different loss
functions on the element-wise difference between the pre-
dicted detection matrix and ground truth matrix: vector L1
loss and vector L2 loss. Let vec(X) denote the operation
reshaping the matrix X € R"*"™ into a vector x € R"™,
let A be our prediction matrix, and let B be our ground truth
detection matrix; our two losses are then:

L1(A-B) = Z |vec(A — B);|

L2(A-B) =) wvec(A— B);

Note that the L2 loss penalizes large differences between
the predicted and ground truth matrices more harshly than
the L1 loss; this turns out to be a very desirable property
that leads to much better training in experimentation.

In our loss, we also incorporated L2 regularization on
our weight matrices in order to combat overfitting; over 10
trial runs, we found that a regularization value of le — 5
works best.

3.7. Training Algorithm

For our optimization procedure, we utilized Adaptive
momentum (Adam) [4], which updates each parameter of
the network with a separate momentum parameter that
serves as a kind of average of previous gradient updates and
helps accelerate training and convergence.

For our learning rate, we used le — 3. We neglected
to use learning rate annealing, as we couldn’t find a set of
decay rate and decay steps over 10 trials that resulted in
better performance than no decay at all.

For our batch size, we chose to train on one image at a
time in order to maximize the utility of each training exam-
ple. We trained for a total of 30 epochs.

4. Experiments
4.1. Dataset

The dataset we utilize is the KITTI Object Detection
Benchmark 2012 [2]]. This dataset consists of 7481 train-
ing images and 7518 testing images; these images are large
and high-resolution, and so in the interests of space and time
we only train and test on a subset of this consisting of 1000
training images and 100 testing images.

Each image is accompanied by a list of detections, where
each detection gives the classification of the detection, the
image bounding box coordinates, the width, length, and
height of the detection in meters, and the 3D position and
orientation of the detection in world coordinates. In this
work, we only leverage the bounding box ground truth pre-
dictions, but believe that our approach should be easily ex-
tensible to predicting the other real-valued ground truths by
simply extending the number of columns in the detection
prediction matrix.

For data normalization and preprocessing, we omit var-
ious preprocessing techniques such as lighting normaliza-
tion, orientation adjustment, and random cropping; many of
these techniques are infeasible to perform in real-time on
an autonomous system, and don’t necessarily reflect real-
world detection scenarios. As the Convolutional Network
can only ingest a fixed size image, we pad each image that
is less than a threshold height and width with rows of ze-
ros along the bottom border and columns of zeros along the
right-most border. The thresholds for padding that we used
were 376px for the height and 1242px for the width; the
total number of images padded was 14.

4.2. Computing Environment

For our software framework, we leveraged the recently-
released open-source machine-learning package Tensor-
flow [1]] as it is fast (the computation graph is written and
calculated in C++), easy to use (it has a python interface and
easy install instructions for Ubuntu), is able to take advan-
tage of GPU acceleration (a computational choice shown
to dramatically speed up network training [8]]), and circum-
vents some of the issues found in other graph computation
frameworks (such as long compile times for especially deep
networks).

For our computing environment, we utilized an Ama-
zon AWS g2.2xlarge machine running Ubuntu 14.04; this
environment was practical since it is cheap, customizable,
and provides access to GPU hardware with pre-configured
NVIDIA drivers. The specs of the machine include an
NVIDIA Grid K520 GPU, 60GB of hard disk space, 15GB
of RAM, and a 8 core CPU.

4.3. Training

In our training, we ran ten trials apiece of four experi-
ments: two different architectures (3-layer and 5-layer) with
two different losses (L1 and L2); the plots of training and
validation losses for each experiment can be seen in Figures
2 & 3. For both losses, the 5-layer model severely over-
fits the data, with validation loss being significantly higher
than training loss. With L1 loss, we note that both models
overfit the data; we reason that this is because the L1 loss is
not a severe enough penalty to encourage weights to update
rapidly enough for bounding box predictions to align with

3.0 1630 L1 Loss vs. Epochs
—— Training Loss - 5 layers
—— Training Loss - 3 layers
25 — Validation Loss - 5 layers [
Validation Loss - 3 layers
2.0 H
w
§ L5+
10+
05f TN —— —
0.0
0 10 20 30 40 50

Epochs

Figure 2: Training and Validation values with L1 loss func-
tion

25 1ed9 L2 Loss vs. Epochs

Training Loss - 5 layers

Training Loss - 3 layers
20k — Validation Loss - 5 layers | |
Validation Loss - 3 layers

15

Loss

1.0F

05 F

0.0 \\
0

10 20 30 40 50
Epochs

Figure 3: Training and Validation values with L2 loss func-
tion

their ground truths.

We then tried the L2 loss; we see that the overfit gap is
significantly smaller than in the L1 case. The 5-layer model
still overfits by a small amount, but the validation loss is
lower than the training loss for the 3-layer model, indicating
a good fit. We therefore used the 3-layer model trained with
L2 loss as our testing model. For all curves shown, we fit
the best of ten trials to allow for variation from randomized
parameter initialization.

5. Results
5.1. Quantitative Results

For our quantitative results, we examined the mean Av-
erage Precision score, which is defined as the area under
the Precision-Recall curve. We determine the true positive
and false positive rate of our prediction via the Intersection
over Union (IoU) metric, which takes the area of overlap be-
tween our predicted box and the ground truth box divided by
the total area covered by our predicted box and the ground
truth box; if this overlap is is greater than some threshold,
then we mark our detection as a true positive. Here, we used
a threshold of 0.5. On our validation set, our 3-layer L2-loss
model achieves a mAP value of around 12.83%. Though the
related work mentioned in this paper hasn’t been evaluated
on the KITTI Object Detection Benchmark, it’s clear that
there is significant work to be done in improving the accu-
racy of this approach.

We also compare our model with recent work in the liter-
ature in terms of prediction speed. To be considered “real-
time”, a detection algorithm needs to predict at a rate of
at least 30 frames per second, or 0.033 seconds per image
[9]]. In 10 trials, our model predicts at a rate of, on average,
0.092 seconds per image, 3x slower than the minimum rate
considered for real-time. Comparison with other methods
can be found in Figure 4. We see that, though SimpleNet
achieves respectable prediction time, it is still significantly
outpaced by the YOLO architecture. Note that, in the below
table, region proposal time can take up to 2s [3].

Model Time to Predict
Single Image
VGG16 47s + region proposal
time
Fast R-CNN .3s + region proposal
time
SimpleNet .09s
YOLO .0222s

Figure 4: Prediction Speeds for Deep Object Detectors

¢ : ; ; =
0 400 600 1200

Figure 6: Positive prediction results on a validation image

0

Figure 7: Negative prediction results on a validation image

5.2. Qualitative Results

For qualitative results, we examine successful and un-
successful examples of detections to better understand our
model’s performance.

In Figure 5, we have an example of a detection where
most of the area subsumes the ground truth predictions;
though there are multiple ground truth predictions and our
detector only emits one, we still consider this a success
since the box is localized relatively correctly and the infor-
mation passed to a car controller would be enough for the
car to take a decisive action at the next timestep.

In Figure 6, we have a situation where there are two
ground truth predictions and our detector has output two
detections; in this scenario, the detector boxes aren’t well-
aligned with the ground truths. Though this situation could
be improved (and indeed, counts as two false positives ac-
cording to our mAP threshold), this isn’t exceedingly poor
behavior given that the closer of the two objects is detected
relatively well; hopefully, detection at the next timestep
would offer a refined estimation of the bounding box lo-
cation.

In Figure 7, we have an example of multiple severe mis-
classifications, and have also turned off horizon suppres-
sion. We can see that there is a cluster of small misclassifi-
cations in the top-left corner of the image; we hypothesize

that these misclassifications are an artifact of our training
scheme, where rows that often see no detections are biased
towards zero (and thus appear in the top-left corner). This
also helps explain why detection is so poor when there are
multiple detections spread out throughout the image: the
prediction scheme seems to learn likely locations of bound-
ing boxes along with image patterns that prompt a detec-
tion, leading to a dependence of bounding box distribution
in the training data. We hypothesize that this can be reme-
died by using a different loss function, such as one that di-
rectly takes horizon suppression and the Intersection over
Union metric into account. We leave such pursuits to fur-
ther work.

6. Conclusions

In this work, we have examined an approach to deep ob-
ject detection that makes bounding box predictions for an
image without the need for expensive preprocessing or ex-
pensive deep evaluations; the resulting DIY network, Sim-
pleNet, gives reasonable prediction accuracy and runs in
near-real-time. Though by no means state-of-the-art, Sim-
pleNet is an interesting look into the power of loss func-
tions; while most networks derive power from depth of lay-
ers, we look to derive power from suitable loss functions
with a limited number of parameters and functional repre-
sentation. Interesting future work includes trying to extend
the training loss function to more accurately capture the de-
sired metrics at hand, increasing the prediction speed by
sharing computation, and increasing the size of data trained
and tested on.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[2] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[3] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1440-1448,
2015.

[4] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In

(6]

(7]

(8]

(9]

(10]

(11]

Advances in neural information processing systems, pages
1097-1105, 2012.

M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al. Fast-
slam: A factored solution to the simultaneous localization
and mapping problem. 2002.

V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
pages 807-814, 2010.

R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep un-
supervised learning using graphics processors. In Proceed-
ings of the 26th Annual International Conference on Ma-
chine Learning, ICML 09, pages 873-880, New York, NY,
USA, 2009. ACM.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. arXiv
preprint arXiv:1506.02640, 2015.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

