3D Image Reconstruction from Stereo Images and Single Images

Todd Macdonald
Stanford University

tmacd@cs.stanford.edu

Abstract

We attempt to reconstruct 3D scenes from stereo images
by selecting 3D models from a dataset and placing them
in the scene. Specifically, we segment the input stereo im-
ages into silhouettes of objects and search for the closest 3D
model in our database using Zernike descriptors. Then, we
orientate the 3D model properly and place it in the scene.
Whereas previous work has depended on depth information
from active depth sensors or 3D scanners, we attempt to re-
construct scenes using only stereo images. With our system,
we can ideally reconstruct semantically plausible scenes
from images, enabling rapid generation of 3D scenes for
applications such as virtual reality. We currently work with
10* models in our 3D model database.

Although we do not have many results yet, the ones that
we do have are promising and often semantically make
sense. As an extension, we may apply the same ideas to
3D reconstruction from a single image if our 3D model
database is labeled such that each model is associated with
its real world size.

1. Introduction

The reconstruction of 3D scenes can be described as tak-
ing as input a pair of 2D stereo photos and producing as
output a scene of 3D points constructed using those photos.

In our approach to this problem, instead of merely solv-
ing for the 3D points of the features in the images, we select
and fit 3D models to the contours obtained from segmenta-
tion of the input images.

This approach is useful in practice since 3D reconstruc-
tions that depict a scene using only reconstructed points
without the additional use of pre-made 3D models are in-
complete and greatly prone to error. Compared to pure 3D
construction, 3D reconstruction with 3D model retrieval al-
lows for one to create immersive environments without a
plethora of extremely accurate sensor data.

This type of model-based reconstruction is used exten-
sively in industry to recreate outdoor scenes. For instance,
Google has used pre-made 3D models of buildings to popu-

Wilbur Yang
Stanford University

wilbury@cs.stanford.edu

late its maps on Google Earth. In the academic community,
several papers such as Funkhouser ef al. have pioneered us-
ing 3D model retrieval to turn 2D sketches into 3D models.

2. Previous Work
2.1. Review of Previous Work

Many attempts to solve similar problems have already
been made in this well-researched topic.Perhaps most simi-
larly to our study, Chen, Lai, et al. perform 3D scene recon-
struction from RGB-D input images obtained using active
depth sensors (Kinect) [2]].

Furthermore, using contextual information, they add
constraints to the objects selected by 3D model retrieval
such that the generated output scenes are semantically rea-
sonable. Because we are working with inputs of higher error
(stereo images as opposed to active 3D scans), we expect for
the results from this project to be a target for our study.

The two major components to our project have been ex-
plored separately in other papers:

1. That of retrieving the correct 3D models from 2D im-
ages.

2. That of reconstructing the 3D scene using the found
3D models.

Regarding the first component, several 3D model re-
trieval systems have been created in the past. Chen, Tian,
et al. describes the process of building a 3D model re-
trieval system based on Funkhouser et al.’s initial approach.
Whereas in the earlier paper spherical harmonic descriptors
were used to identify similarities between 3D models and
their contours, Chen, Tian, et al. instead explores the use of
Zernike moment descriptors and Fourier descriptors [4] [LL].

These descriptors are found to work well due to their ro-
tation and scale invariance. They have both implemented
systems which allow users to draw a 2D silhouette to re-
trieve any 3D mesh. Both papers achieve speeds of under
one second for retrieval from a 3D model dataset containing
on the order of 10° models, employing optimized computa-
tion of the respective descriptors’ coefficient similarities.



For the second component, the state of the art locates
and orientates 3D models by leveraging scanner data. Kim
et al. uses 3D scans of indoor scenes to perform faithful re-
constructions of large, cluttered indoor environments [6]. It
does so by first fitting planar patches to the 3D point cloud,
then using RANSAC to fit primitive shapes such as boxes
and cylinders to those patches, and finally learning to group
sets of primitives into objects.

Fisher et al. uses scene understanding to generate plau-
sible 3D scenes [3]]. By segmenting the 3D point cloud into
planes and attempting to understand the purpose of each
plane (i.e. for holding up objects vs. for holding up hu-
mans), they are able to semantically classify parts of objects
(e.g. as “gaze,” “touch,” “back support,” and “hip support”).
Using these categorizations, the relevant 3D models are re-
trieved and added to the scene.

Because we are working with 2D stereo images, it is dif-
ficult to incorporate all of these 3D point cloud techniques
into our study. However, it is useful to keep in mind the
extent to which 3D point cloud data can benefit a 3D scene
reconstruction.

2.2. Novelty of Our Study

In our study, we experiment with methods involving 3D
model retrieval from images alone. Our work is novel in
that the depth data is computed from the stereo images. Re-
lated work, such as that from Chen, Lai, ef al., performs 3D
scene reconstruction from RGB-D images. Unlike previous
papers, which have used 3D scanner or depth sensor infor-
mation in their reconstructions, we use only 2D stereo im-
ages to perform the reconstruction, while still recognizing
the orientation and depth of the objects in the 2D images.
In other words, by comparison, in our study, the input im-
ages have only RGB values. We compensate for depth by
by calculating the disparity map of a pair of stereo images,
from which we can derive depth values.

In addition, our proposal to work with single images and
a labeled 3D model dataset has not been attempted to the
best of our knowledge.

3. Methods
3.1. Summary of Technical Solution

We base our procedures off of those in Chen, Tian, ef al.,
as well as Funkhouser et al.

When recreating our 3D scene from a pair of stereo im-
ages, we first precompute several pieces of information. To
begin with, we take our database of 3D models and then
form orthographic projections of each of the models. We
currently use 6 orthographic projections per model, which
consists of the six sides of the object.

Once the projections have been calculated, we calculate
the Zernike moment descriptor and Fourier descriptor of

each projection.

Once this precomputation has been completed, we then
take an input of a pair of stereo images. Using the OpenCV
library that utilizes the block matching algorithm, we form
a single disparity map from the two input images. From this
disparity map, we are able to segment the different objects
that are present in the original pictures and create contours
from the segments. This segmentation is performed by bin-
ning different areas of the image by their respective depths
in the depth map.

Next, once our images have been segmented into individ-
ual objects, we calculate the Zernike and Fourier descriptors
for each object. By computing the Euclidean distance be-
tween the descriptor for our 2D contour and the descriptors
for each of our 3D models, we are able to identify which 3D
model matches our object from the 2D contour best.

Once we have located our corresponding 3D model for
the object, we then place this object in our reconstructed
scene. The x and y coordinates are the same as in our in-
put images. To calculate the depth, we use the depth map
calculated from before. Each 3D model in our database has
its orientation saved, so we are also able to reproduce the
orientation of the object.

For the more ambitious approach, when using only a sin-
gle image, we are able to find the depth at which to place a
model by measurement information that is provided in our
labeled dataset. By knowing the actual height and width
of our models, we can attempt to approximate the depth at
which they would exist in a 3D scene.

3.2. Overview of Technical Solution

3.2.1 Datasets

We work with the NTU 3D Model Database, which consists
of 10° 3D models scraped from the Internet. As the models
originate in the “wild,” there are many different categories
of objects, ranging from airplanes to fish to flowers.

This dataset originates from Chen, Tian, et al.

The Middlebury Stereo Dataset consists of about 40 rec-
tified stereo images, which we use as our inputs.

3.2.2 Frameworks and Architectures

Our architecture consists of C++ code. We use openFrame-
works (specifically ofxAssimpModelLoader to load, pro-
cess, and render 3D models), Eigen (for orthographic pro-
jections and image transformations using matrices), and
OpenCV (used classes including StereoBM to create dispar-
ity map, used Mat class to represent and manipulate images
(read image, change color scheme, create new image with
additional channels of information)).



3.2.3 Scene Segmentation Framework

3.2.3.1 CIELab Conversion

Based off of the reasoning in Dal Mutto et al., we propose
convert our RGB input images into the CIELab color space.
Instead of measuring the amounts of red, blue, and green
light as with RGB, CIELab measures the color lightness, as
well as the location on the spectrum between magenta and
green and yellow and blue.

For segmentation, CIELab offers several benefits over
RGB. Most importantly, CIELab is a more perceptually uni-
form color space, which means that changes to the values
of the 3-dimensional color vector are more proportional to
the visual changes that a human would perceive [?]. This
attribute of the CIELab color space enables us to better seg-
ment an image, as color vectors corresponding to each pixel
will be a greater euclidean distance apart for visual differ-
ences. In our color transformation, we also normalize our
color vectors by the standard deviation of the color light-
ness.

3.2.3.2 Stereo Reconstruction

To better match the 3D models to the objects in our 2D
stereo input, we derive depth information from the pair of
input stereo images that describe our scene. These depth
values enable our segmentation algorithm to be more accu-
rate, as the segmentation algorithm is given an additional
channel of information (ie, depth) with which to perform
the segmentation.

We calculate these depth values using a disparity map. A
disparity map is a one channeled image whose pixel values
indicate to the level of disparity between locations in the left
and right stereo images. Pixels with greater disparities are
closer to the camera; thus the disparity map can be used to
gauge depth in a scene from a pair of stereo images.

For our implementation, we use the StereoBM class in
OpenCV. This class utilizes a version of the block matching
algorithm to produce a disparity map. The block matching
algorithm itself is fairly straightforward.

The block matching algorithm is as follows. Consider
the window as divided into many windows. These windows
are also sometimes referred to as blocks. We then create a
new image of the same size as the input images and then
populate it with the disparity values corresponding to each
window in the left stereo image.

Figure 1. Reconstructed disparity map of a piano from the 2014
Middlebury Stereo Image Dataset.

These disparity values are calculated by finding which
windows in right image most closely correspond to the win-
dows in the left image. When finding the correspondence
between two windows, you start by examining the same
window locations in both images. Next, you sum the square
distance between the pixel values in one window with all
windows in the other image that are within a certain dis-
tance. The window that has the smallest sum of square dis-
tances is now considered the best corresponding window.

This process is repeated for many iterations, with the
most closely corresponding window in the previous itera-
tion becoming the center of the search in the next iteration.
The farther apart distance-wise the two corresponding win-
dows are, the darker that window of pixels will be in the
disparity map. Therefore, the color of the pixels in a dispar-
ity map is a proxy for depth.

3.2.3.3 Segmentation via Meanshift

The segmentation of our 2D stereo images is critical, as we
need to be able to isolate the individual objects in our scene
in order to run our matching algorithm and retrieve the 3D
models with which to place in our scene. To perform this
segmentation, we use the meanshift algorithm with six dif-
ferent channels of information: X, y, and z position coordi-
nates, as well as 1, a, and b color values (see CIELab color
conversion above). All of these values, save for the z co-
ordinate, are taken directly from the left stereo image. To
obtain the z coordinate corresponding to each pixel in the
left stereo image, we use the depth values from the dispar-
ity map that we calculated previously.

However, due to time constraints, we segment the images
manually by looking at depth values, resulting in segments
that resemble that of meanshift for images involving flatter
objects.



Figure 2. A stereo image of a motorcycle, its stereo reconstruction,
and a segment of the motorcycle.

3.2.4 Orthographic Projections of 3D Models

In our matching algorithm, discussed below, we are match-
ing a pair of 2D stereo images with the closest correspond-
ing 3D model. To accomplish this matching, we in effect
match a pair of 2D stereo images with a 2D orthographic
projection of a 3D model.

To perform the 2D orthographic projections of our 3D
models, we center, we first read in a file on a 3D model. We
convert the mesh triangles describing the 3D model into a
series of 3D points. With these points, we then translate the
points so the model’s center is at the origin and then appro-
priately scale the model. Finally, we use a rotation matrix to
transform each point in the model into a variety of orienta-
tions, from which we take an orthographic projection. The
figure below shows some example orientations of the same

rQ~ 3

Figure 3. Several orthographic projections of varying orientation
of a man walking from the NTU 3D Model Database v1.

Since the objects in our scene may contain objects that
are in non-standard orientations, we take 6 orientations of
each 3D model for use in our matching algorithm. By tak-
ing several projections of the same 3D model, we help en-
sure our matching algorithm is robust enough to handle for
different orientations.

3.2.5 Matching Algorithm

Our matching algorithm is fairly straightforward. First, we
calculate the 36-dimensional Zernike moment descriptor for
a segment from our pair of stereo images. This segment
describes an object for which we are trying to find a cor-
responding 3D model. Next, calculate the distance between
the Zernike descriptor of our segment and the pre-processed
Zernike descriptors of all of the orthographic projections of
our models from the MLU 3D Model dataset. The model
whose descriptor is the closest euclidean distance from the
descriptor of the segment is considered a match.

We chose to use Zernike moment descriptors for several
reasons. The descriptors are invariant to scale and rotation,
are robust to minor errors, and efficiently represented, as
each descriptor entry is derived from a polynomial that is
orthogonal on the unit disk.

4. Experiments

4.1. Performance of Matching 3D Models with 3D
Models

L H =

Figure 4. Some 3D models (top) matched with the closest 3D mod-
els (bottom).

The matching of 3D models to 3D models seems to make
sense visually, even with a low number of 3D models used.

4.2. Performance Matching 3D Models with Stereo
Images

We see potential in the matching of segments to 3D mod-
els. The instance below is a match which makes semantic
Ssense.



Figure 5. A motorcycle segment and its 3D match (a scooter, ro-
tated 90 degrees).

In other cases, the match makes less sense, such as an
umbrella to a plane or a recycle bin to a plane. Since the
segments are noisy, and the subset of 3D models that we
used includes many plane models, this result is undesirable
but makes sense.

4.3. Performance Tradeoffs Between Using Stereo
Images and Single Images For Scene Recon-
struction

We have not yet implemented the single image recon-
struction, but we forsee the following challenges:

In terms of matching to the correct model, the dispar-
ity map enables the mean shift algorithm to run with one
additional channel of information (depth). Without this in-
formation, our segments will have more error than in the
stereo version.

In terms of placement in the scene, the single images re-
quire a labeled dataset, which is hard to obtain for a dataset
of size 10° models downloaded from the Internet. In addi-
tion, the single images require accurate image segmentation
to effectively calculate depth (if the image segmentation has
dimensions that do not represent the object in the image,
then the calculated depth will be wrong)

5. Future work

More work could be done in ensuring that the 3D model
match is semantically correct. Occlusion and stereo recon-
struction / segmentation error presents challenges in iden-
tifying the correct models to place in the scene. Perhaps
implementing a semantic graph like in previous works will
benefit this model greatly.

The code for this project can be found at https://
github.com/wilburyvang/cs23la—-project.

References

[1] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung. On vi-
sual similarity based 3d model retrieval. In Computer graph-
ics forum, volume 22, pages 223-232. Wiley Online Library,
2003.

[2] K. Chen, Y. Lai, Y.-X. Wu, R. R. Martin, and S.-M. Hu. Au-
tomatic semantic modeling of indoor scenes from low-quality
rgb-d data using contextual information. ACM Transactions
on Graphics, 33(6), 2014.

[3] M. Fisher, M. Savva, Y. Li, P. Hanrahan, and M. NieBner.
Activity-centric scene synthesis for functional 3d scene mod-
eling. ACM Transactions on Graphics (TOG), 34(6):179,
2015.

[4] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman,
D. Dobkin, and D. Jacobs. A search engine for 3d models.
ACM Transactions on Graphics (TOG), 22(1):83-105, 2003.

[5] W.-Y. Kim and Y.-S. Kim. A region-based shape descriptor
using zernike moments. Signal Processing: Image Communi-
cation, 16(1):95-102, 2000.

[6] Y. M. Kim, N. J. Mitra, D.-M. Yan, and L. Guibas. Acquiring
3d indoor environments with variability and repetition. ACM
Transactions on Graphics (TOG), 31(6):138, 2012.

[7]1 D. Zhang, G. Lu, et al. A comparative study of fourier de-
scriptors for shape representation and retrieval. Citeseer.


https://github.com/wilburyang/cs231a-project
https://github.com/wilburyang/cs231a-project

