Training Monocular Depth Estimation Models on a Budget

Thatcher Freeman
Department of Computer Science
Stanford University
tfr@stanford.edu

Abstract

Monocular Depth Estimation is an underspecified prob-
lem, as a given 2D image can correspond to multiple 3D
scenes. Deep Learning has been shown to attain good per-
formance in monocular depth estimation, but the state-of-
the-art models are costly to train. In this paper, we present
a series of modifications and optimizations that can be used
to reduce the cost of training models, making monocu-
lar depth estimation models more accessible for financially
constrained teams.

1. Introduction

Depth estimation from 2D images is critical for a myr-
iad of applications such as autonomous driving, robotics,
virtual reality, and surveillance. In more restrictive applica-
tions, models that can estimate depth based on a mere sin-
gle 2D image are becoming increasingly popular. However,
monocular depth estimation is a mathematically underspec-
ified problem: for a given image, there are multiple depth
maps and real-world geometry that would result in the same
projection. However, given a few assumptions, the prob-
lem of mapping a single image to a depth map becomes
tractable.

Due to the complexity and non-linear structure of the
problem, many proposed solutions for monocular depth es-
timation (MDE) involve the use of various types of neu-
ral networks. In addition, the goal of a depth map presents
some potential changes in loss functions. Traditional loss
functions that only examine pixel-to-pixel changes only
sense for depth changes in each pixel individually; they
fail to account for changes in surrounding neighbors. This
makes them less robust to depth image shifts on the x-y axes
and easily manipulated by high-frequency noise. In order
to combat such issues, many papers, as discussed below,
have proposed the use of loss functions that take advantage
of the gradient- and normal-vectors of an image. This pa-
per experiments with both the architecture and loss function
optimizations within the tighter resource constraints to find

Schuyler Tilney-Volk
Department of Electrical Engineering
Stanford University

stilneyv@stanford.edu

more accessible solutions to the MDE problem.

2. Related Work

Hu et al. [2] discuss an architecture involving a convo-
lutional auto-encoder, followed by a method through which
several resized versions of the input image are passed into a
convolutional block. [2] also proposes a composite of three
loss functions, based on the per-pixel depth error, smooth-
ness similarity, and accuracy of normal vectors in the sur-
faces of the depth map.

In addition, other works have reframed the problem as an
ordinal regression problem. Fu et. al. [1] recognized that
using raw pixel MSE led to slow convergence and subopti-
mal local minima. They argued that most modern systems
lost resolution as a result of deep networks of convolutional
and pooling layers, and this issue was not completely re-
solved by the industry standard of including skip connec-
tions. Consequently, they opted for a spacing-increasing
discretization strategy that recast the depth network learn-
ing as an ordinal regression problem, using ordinal regres-
sion loss. However, as discovered by Swami et. al. [6], this
method led to a formulation that was not entirely differen-
tial. [6] then built on the method from [1] to create a full
differentiable function, allowing them to include boundary
and smoothness constraints in their optimization objective.

Wu et al. [7] approach the depth estimation task using
a U-net and a similar loss function to [2]]. They trained on
a synthetic dataset consisting of rendered images, and also
used their model to design an optical component in a cam-
era.

In addition, Yin et. al. [8]] discuss using gradient and nor-
mal vectors in the loss function that are determined by ran-
domly sampled points in the reconstructed 3D space to im-
prove the depth prediction accuracy and computational effi-
ciency. Their results were of such high fidelity that the team
was able to accurately reconstruct a 3D point cloud without
training additional sub-models as other research teams had
done. As they demonstrated, using gradient and normal vec-
tors in the objective makes the model more robust to noise,
including noise from the sensors in the ground truth labels.

In the space of shrinking networks to reduce computa-
tional load, Iandola et al. [3]] discuss the creation of an
image classification model with AlexNet performance, but
with 50x fewer parameters. They describe three main tech-
niques in reducing the size of convolutional neural networks
without significantly impacting its expressiveness: reduc-
ing the kernel size of the convolutional layers, reducing the
number of input channels to larger convolutional layers, and
downsampling late in the network.

3. Data

One of the standard datasets for the monocular depth es-
timation task is the NYU-depth-v2 dataset [S]. It is com-
prised of images of a variety of indoor household locations
as recorded by both the RGB and Depth cameras from the
Microsoft Kinect, providing about 47k RGB images and
their ground truth depth maps.

4. Approach
4.1. Data Augmentation

For each image, we applied four forms of data augmen-
tation. Random horizontal flipping with an 0.5 probability,
Color Jitter where brightness, contrast, and saturation are
randomly scaled by a value in the range of 0.6 to 1.4, ran-
dom cropping shrinking the image by 0 to 20% in size, and
rotation by between -5 and 5 degrees.

4.2. Architecture

We largely considered two kinds of architectures. The
first was a U-Net architecture consisting of a ResNet en-
coder, and a decoder consisting of four Up-Projection
blocks, similar to the ones used by Hu et al. [2] and in-
troduced by Laina et al. [4], followed by two convolutional
layers. In the later charts in this report, we will refer to
this model as the “U-Net” model. The other architecture
was based on the one used by Hu et al. [2], consisting of a
ResNet encoder, a decoder consisting of four Up-Projection
layers, an MFF module consisting of four Up-Projection
layers and a convolutional layer, and a Refinement module
that processes the concatenated outputs of the decoder and
the MFF module using four convolutional layers. We will
refer to this model later as the “Hu et al.”” model.

In their original forms, all convolutions outside of the en-
coders are 5x5 ‘same’ convolutions. A diagram illustrating
the architecture is visible in Figure[I]and our source code is
available on github. [[]

The bulk of this report consists of the modifications we
made to these models to improve inference speed during
training time. When using the Hu et al. model, as described
in the original paper, our profiling tools informed us that

lIhttps:// github.com/thatcherfreeman/CS23 lA—FinalProjectI

the vast majority of the inference time was spent through
backpropagation through the convolutional layers, particu-
larly in the Up-Projection layers. We therefore considered
the following modifications:

4.2.1 Intermediate Resolution

While the NYU-Depth-V2 dataset consists of 640 x 480 im-
ages, it is not necessary to use the image’s full resolution as
input to the model. By resizing the input images to a lower
resolution and outputting a depth map at the same, reduced
resolution, the convolution operation will have to operate
on a smaller number of windows and therefore reduce the
computational load. We used Area interpolation to reduce
the resolution of the input images to the target intermedi-
ate resolution, and we used Bicubic interpolation to upscale
the model’s predicted depth maps back to 640 x 480. Our
loss functions and evaluation metrics are all computed at the
final 640 x 480 resolution to maintain consistency. We ex-
perimented with five different intermediate resolutions and
report our results in section

4.2.2 Encoder Size

Hu et al. used a ResNet50 encoder, resulting in the four Up-
Projection layers in the MFF module taking inputs with 256,
512, 1024, and 2048 channels respectively. As those Up-
Projection layers rescale their inputs all the way up to the
model’s intermediate resolution, the fourth Up-Projection
layer has a substantial computational load, taking 2048
channels as input. Similarly, in our U-Net architecture,
when the encoder activations have many channels, our de-
coder up-projection layers would have to operate on a large
number of channels as well.

We used a ResNet34 encoder in all our models simply
because using a ResNet50 would be too expensive to train.
The intermediate activations coming from the four blocks
of a ResNet34 model have four times fewer channels as a
ResNet50 encoder. We measured the inference speed on
the Hu et al. model with both a ResNet34 and a ResNet50
encoder, and those results are available in section[6.3]

4.2.3 Convolutional Kernel Size

The model used by Hu et al. [2] consisted of a ResNet50
encoder, pretrained for the ImageNet image classification
challenge, followed by three fully convolutional modules.
Each of those modules consisted of standard convolutional
layers, and Up-Projection layers very similar to the ones
described by [4)]. In [2], all convolutional layers in their
model, outside of the encoder, were 5 x 5 ‘same’ convolu-
tions. Our initial U-Net and Hu et al. models used 5 x 5
convolutional layers as well.

Encoder

Decoder

Encoder

il

%
=

Decoder

Multi-scale Feature Fusion Module

Refinement Module

Figure 1. Comparison of the two model architectures we used. Top is the U-Net model, an the bottom is the Hu et al. model.

We looked at the method described by [3], which de-
scribed an approach for designing smaller network archi-
tectures. Applying their techniques to our U-Net model and
the Hu et al. model, we experimented with shrinking the
convolutional kernel size to 3 x 3 in all convolutional layers
outside of the encoder. It should be noted that while [4] jus-
tified the use of 5 x5 convolution layers in the Up-Projection
layers because they followed a 2 x 2 unpool layer, [2] sim-
ply uses bilinear interpolation instead of an unpooling layer,
therefore avoiding the concern that the kernel would poten-
tially operate on the zeros outputted by a unpooling layer.
Thus, using 3 x 3 convolutional layers in the Up-Projection
layers is acceptable. The performance and inference speeds
of our models with and without this change are discussed in
6.3]

4.2.4 Modifying the Up-Projection Layers

The Up-Projection layers used by consisted of a bilin-
ear interpolation to upscale the C' x H x W input along
the height and width, followed by a series of convolutional
layers that reduced the number of channels to C'/2. We ob-
served that this is computationally expensive during train-
ing, as the activations leaving the interpolation layer can
be quite large. Again, in following the method used by
SqueezeNet [3], we considered the effect of introducing
a 1 x 1 convolutional layer before the interpolation step,
whose sole purpose was to reduce the number of channels
from C to C'/2. This allowed the later convolutional layers
to operate with smaller filters, on a smaller input, therefore
improving performance. This change made a larger differ-
ence in inference speed with the Hu et al. model than with
our U-Net model, and the results of this experiment will be
discussed in section[6.3]

4.3. Loss Functions

The simplest loss function commonly used in monocular
depth estimation is to simply treat the problem as a per-pixel
regression task. If y is the ground truth depth map and g is
the model’s predicted depth map, with T pixels, then we
can simply compute the L1 loss in the following way:

. 1 .
Lri(g,y) = % > ldis = vl (1
4]

However, simply using the above loss function typically
results in jagged, distorted depth maps, and incorrectly pe-
nalizes inaccuracies for distant objects as much as nearby
ones, where nearby objects should be given more impor-
tance in accuracy. A simple solution to this is to instead
take the log. As we expect errors to be larger on distant ob-
jects, this penalizes a 1cm increase in error at a distance less
than a 1cm increase in error near the camera.

Elog error(:ga y) = % Z 10g(|gij - yij‘ + a) (2)
i,j

We have also implemented the two other loss functions
from [2]], which provide the model with more information
about the surfaces in the ground truth depth map. The first
loss function compares the surface gradients in the horizon-
tal and vertical directions between the ground truth and es-

timated depth maps, as so:

N 1 "
Egrad(ya y) = T Z IOg(Vaslij - yij' + Oé)
)
+10g(Vyl9ij — yij| + @)

ejejodisju] seauig Xz

Sjejodiaju) Jeaulg Xz

Figure 2. Comparison of the Up-Projection layer used by Hu et al. [2]], based on [4] (Top), and our modified Up-Projection layer with a

1 x 1 channel reduction layer and 3 X 3 convolutions (Bottom).

This loss function is expected to encourage smoothness
in the model’s predicted depth map. The final loss func-
tion compares the cosine similarity of the per-pixel normal
vectors in the ground truth and estimated depth maps.

Lo (3,) = 5 3 |1 = cos sim(n™, 1)
ij
Where cos sim(A, B) is the cosine similarity function
A - B/(]|A]l ||B]]) and n¥# is the normal vector given by
[—Vayij, —Vyyij, 1JT. This loss function encourages the
model’s estimated depth map to match the surface normals
of the objects in the scene.
We sum these three loss functions together to get our
overall training loss:

L= Edepth + ACgrad + ACnormal

We experimented with Lgepn = Liogerror and Lyepn =
L11. Additionally, we considered the effect of just using
L1 as the only loss function. The results of these experi-
ments are available in section [6.2]

4.3.1 Improving Gradient and Normal Vector Loss
Functions

Yin et al. [8] made an astute observation that the NYU-
Depth-V2 dataset is captured using a cheap consumer de-
vice, the Kinect, and therefore while the ground truth depth
map distances are overall accurate, the surface gradients can
be noisy. Yin et al. address this issue by constructing a point
cloud from the depth maps and sampling normal vectors
over larger surfaces, rather than simply in the local neigh-
borhood of individual pixels.

The loss function used by Hu et al. and described above
in section {£.3] calculates gradients based on adjacent pix-
els in the predicted and ground-truth depth maps. If the
ground truth normal vectors and gradients are excessively
noisy, then these noisy labels could impede training per-
formance. As following the method used in [8] would be
computationally expensive and difficult, we propose a naive
data augmentation method to expand the neighborhood used
to calculate the ground truth surface normal vectors. Our
method is to simply apply a subtle gaussian blur to the
640 x 480 ground truth depth maps, but only for the Lgpq
and Lormal portions of the loss function. We applied a gaus-
sian blur with a standard deviation of 1.4 and a kernel size
of 7. When this data augmentation is used, we will refer to
it as a “blurred normal” loss function. The results of this
experiment are discussed in section[6.2]

5. Experiments
5.1. Evaluation Methods

There are several evaluation metrics commonly used to
evaluate the quality of depth maps. The most common one
is Root-Mean-Squared (RMS) error. Given a model’s out-
put depth map ¢ and a ground truth depth map y, over T’
pixels, we simply compute:

1 N
RMS =, /= ;(yz‘j — Yij)?
»J

And the RMS error is averaged over all images in the test
dataset. Another metric is the Mean Relative Error (REL).

1 .
REL = Z |9i5 — v
1,

Mean Log10 error is similar, deprioritizing accuracy for
points far from the camera.

1 .
Logl0 = T Z [[1og10(9i5) — log1o(yis)l 11
]

And the final commonly used metric is the Threshold,
measuring the fraction of pixels in the model’s prediction
that deviate from the ground truth label by less than a certain
amount.

1 Yij Yij
Threshold 6§ = T Z 1 {max (, =) <d

ij Yij Yij

We evaluate the above with §; = 1.25, 5, = 1.252, and
85 = 1.253. All of the above error metrics iterate over all T’
pixels in the ground truth depth map that are nonzero.

We will evaluate our results by measuring all of the
above metrics on the test split of the NYU-depth V2 dataset,
in accordance to the standard benchmark on that task. We
would expect the depth maps to visually appear to be
smooth, with clean edges around objects.

5.2. Training

As we had two overall model architectures, two loss
functions, the choice of blurring the ground truth depth
maps, five intermediate resolutions, two different encoders,
two convolutional kernel sizes, and the choice of whether
to include the 1 x 1 filter in the Up-Projection layers, re-
sulting in an enormous number of possible experiments, we
decided to approach the experiments in a linear fashion. We
made a reasonable guess about the rest of the model and
compared all options for a given experiment with all other
factors kept constant, and then we used the best outcome to
inform our later experiments.

We trained our models on a Tesla T4 with the Adam opti-
mizer and a learning rate of 1e-4 and a batch size of 1, for 3
epochs. We partitioned the training split of the NYU-Depth-
V2 dataset so that 3% were reserved for validation and the
other 46156 examples were used for training. When we had
run all the small experiments and selected the best choice
for each one, we trained the resulting models for 20 epochs.

6. Results
6.1. Intermediate Resolution

To compare intermediate resolutions, we used our U-net
model with a ResNet-34 encoder, 3 x 3 convolutions, and
the 1 x 1 channel reduction in the Up-Projection layers. We
trained for three epochs against the Hu et al loss function
(Laepth = Liog error) Without blurring the ground truth depth
maps at the resolutions of 640 x 480, 512 x 384, 384 x

Resolution | RMS | REL | LOG10 01 02 03
640 x 480 | 0.999 | 0.201 | 0.110 | 0.580 | 0.831 | 0.924
512 x 384 | 0982 | 0.192 | 0.104 | 0.617 | 0.851 | 0.929
384 %288 | 0.933 | 0.173 | 0.096 | 0.666 | 0.878 | 0.936
256 x 192 | 0.944 | 0.170 | 0.095 | 0.670 | 0.872 | 0.935
128 x 96 0.996 | 0.188 | 0.105 | 0.626 | 0.847 | 0.919
Table 1. Validation time stats vs Intermediate Resolution, using Hu
et al. loss function and U-Net 34 model

Resolution | Speedup
640x480 1.0x
512x314 1.4x
384x288 2.6x
256x192 5.2x
128x96 12.0x

Table 2. Relative inference speed with U-Net model, using a
ResNet 34 encoder and 3 x 3 convolutions, running on CPU. These
speedup figures were similar to the speedup when running on a
GPU.

288, 256 x 192, and 128 x 96, and measured the model’s
performance against the test dataset using the 6 evaluation
measures. We also inspected the qualitative appearance of
the model’s predicted depth maps.

Numerically, we observed that the 384 x 288 model and
the 256 x 192 model had very similar performance, but upon
inspection, the depth maps from the larger resolution were
substantially more detailed and had fewer artifacts. A com-
parison of some depth maps are in Figure 3] We therefore
conducted all later tests using a resolution of 384 x 288,
except when indicated otherwise.

EHEL
BEE. &
BEE. B

Input Image Ground Truth 384x288 Model 256x192 Model

Figure 3. Comparison of depth maps after 3 epochs of training,
with the U-Net model with a kernel size of 3 and the channel re-
duction filter in the up-projection layers, trained at 384 x 288 and
256 x 192. These five images are randomly sampled from the test
split of NYU-Depth V2.

6.2. Loss Function

To compare loss functions, we trained the same model
from section but at an intermediate resolution of 384 x
288. We again trained for three epochs with each configura-
tion of our loss function. The most naive configuration is the
Per-pixel L1 norm loss function. Then, we train with the Hu
et al. loss function, and with that loss function used where
the ground truth depth map is slightly blurred when com-
puting the gradients. We also trained two more times with
the Lyepm portion of the loss function replaced with the £
function, with and without blurring the ground-truth depth
map for the gradient and normal loss functions. We evalu-
ated the six metrics and then inspected the same five images
as before.

Qualitatively, we felt that the Hu et al. loss function
and the blurred version of the same function (with Lgepn =
Liog error) l0oked the best and had the fewest artifacts.

6.3. Architectural Changes

We began by benchmarking inference speed on several
models. As we only had access to $350 of GCP credits and
one other GPU, for expediency we had to prioritize models
that created both the highest quality depth maps, and also fit
within our limited budget, time, and hardware constraints.
The inference speeds of the different models we considered
is visible in Table @l The “Hu et al” model refers to the
model used in the original paper, with 5 X 5 convolutions
and a ResNet 50 encoder, and the various benchmarked al-
terations are listed as well. The “U-Net” model represents
a ResNet 34 encoder, with 5 x 5 convolutions, the models
listed had no 1 x 1 channel reduction filter unless otherwise
specified. All models were trained at 384 x 288 unless oth-
erwise specified.

The five fastest models at the 384 x 288 resolution were
the U-Net models as well as the Hu et al. model with all the
architectural changes suggested in section[4.2] We trained
each of these models to 3 epochs and quantitatively and
qualitatively analyzed their results. Their evaluation metrics
are available in Table[5] Based on the quantitative results,
the U-Net model performed best without the 1 x 1 channel
reduction filter, which made only a minor impact on infer-
ence speed. The modified Hu et al. model was one of the
slower models of these five, but had decent performance.

6.4. Finished Model

Of the five models in the previous section, we ultimately
decided to continue with the U-Net model with a convolu-
tional kernel size of 3, as well as the Hu et al. model with
the ResNet34 encoder, 1 x 1 channel reduction filter, and
the kernel size of 3. We trained these two models for 20
epochs using the Blurred variant of the Hu et al. loss func-
tion, and we also trained the U-Net model again with the
unblurred version of the same loss function. The test results

for these three runs are reported in table[6]and final images
are displayed in Figure[3]

Qualitatively, the two models trained on the blurred gra-
dient depth maps had the best results, with the miniature
version of the Hu et al. model doing a decent job of esti-
mating the depth in distant parts of the image.

7. Future Work

Future research directions would be in applying these
techniques to other State-of-the-art models, and in increas-
ing the depth of the networks while even further reducing
the size of the convolutions as in [3]]. Additionally, while
this work generated depth maps at the same resolution as the
input images, one could choose to output full-sized depth
maps (with a smaller input image), or vice-versa to experi-
ment with performance characteristics.

8. Conclusion

In this work we have demonstrated techniques to get
a usable monocular depth estimation model under limited
time and budget constraints. We apply the techniques of re-
ducing the image resolution, shrinking kernel size, and re-
moving activation channels in a variety of ways. We also
propose a novel data augmentation method that provides
slight improvements to surface normals in monocular depth
estimation models, with a negligible increase in computa-
tion time.

References

[1] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao.
Deep ordinal regression network for monocular depth estima-
tion, 2018.

[2] J. Hu, M. Ozay, Y. Zhang, and T. Okatani. Revisiting single
image depth estimation: Toward higher resolution maps with
accurate object boundaries. 2019.

[3] FE. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and ;0.5mb model size, 2016.

[4] 1. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and
N. Navab. Deeper depth prediction with fully convolutional
residual networks. In 2016 Fourth international conference
on 3D vision (3DV), pages 239-248. IEEE, 2016.

[5] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. In-
door segmentation and support inference from rgbd images.
In ECCV, 2012.

[6] K. Swami, P. V. Bondada, and P. K. Bajpai. Aced: Accurate
and edge-consistent monocular depth estimation, 2020.

[7]1 Y. Wu, V. Boominathan, H. Chen, A. Sankaranarayanan, and
A. Veeraraghavan. Phasecam3d—Iearning phase masks for
passive single view depth estimation. In 2019 IEEE Inter-
national Conference on Computational Photography (ICCP),
pages 1-12. IEEE, 2019.

RMS | REL | LOGI10 01 02 3

L1 loss 0.774 | 0.174 | 0.128 | 0.674 | 0.887 | 0.940
Hu et al. 0.933 | 0.173 | 0.096 | 0.666 | 0.878 | 0.936
Blurred Hu et al. 0.844 | 0.178 | 0.118 | 0.637 | 0.870 | 0.937
L1 Huetal. 0.706 | 0.152 | 0.109 | 0.718 | 0.904 | 0.946

L1 Blurred Huetal. | 0.795 | 0.172 | 0.102 | 0.661 | 0.886 | 0.945

Table 3. Validation scores for each loss function, using Baseline34 model at 288x384 resolution.

|

Input Image Ground Truth L1 Norm Loss Hu Loss Hu Blurred Loss L1 Hu Loss L1 Hu Blurred Loss

Figure 4. Comparison of the U-Net model trained with each loss function for three epochs.

[8] W. Yin, Y. Liu, C. Shen, and Y. Yan. Enforcing geometric
constraints of virtual normal for depth prediction. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 5684-5693, 2019.

Model

Inference Speed (speedup)

U-Net w/ 1x1 filter, ksize 3
U-Net w/ ksize 3

U-Net w/ 1x1 filter

U-Net

Hu et al. w/ Resnet34 Encoder

Hu et al. w/ 1x1 filter, ksize 3
Hu et al. (256x192)
Hu et al.

Hu et al. w/ Resnet34 Encoder, 1x1 filter, ksize 3
Hu et al. w/ Resnet34 Encoder,
Hu et al. w/ Resnet34 Encoder,

1x1 filter
ksize 3

Hu et al. w/ 1x1 filter, ksize 3 (256x192)

11.2 it/s (59x)
10.2 it/s (54x)
3.09 it/s (16x)
2.9 it/s (15x)
4.8 it/s (25%)
1.6 it/s (8.4x)
1.77 it/s (9.3x)
1.351it/s (7.1x)
3.2 it/s (17x)
1.5 it/s (7.9x)
0.35 it/s (1.8x)
0.19 it/s (1.0x)

Table 4. Relative inference speed using Hu et Al. blurred loss function

RMS | REL | LOG10 o1 0o 03

Hu et al. w/ ResNet 34 Encoder, 1x1 filter, ksize 3 | 0.804 | 0.170 | 0.115 | 0.671 | 0.881 | 0.939

U-Net w/ 1x1 filter, ksize 3 0.844 | 0.178 | 0.118 | 0.637 | 0.870 | 0.937

U-Net w/ ksize 3 0.830 | 0.176 | 0.119 | 0.652 | 0.877 | 0.937

U-Net w/ 1x1 filter 0.886 | 0.192 | 0.123 | 0.620 | 0.852 | 0.928

U-Net 0.813 | 0.177 | 0.114 | 0.666 | 0.884 | 0.941

Table 5. Validation scores for each model, using Blurred Hu et al. loss function
Train Time | RMS | REL | LOGI10 01 0o 03

U-Net w/ ksize 3, Blurred Loss 25 Hours | 0.846 | 0.209 | 0.123 | 0.659 | 0.890 | 0.957
U-Net w/ ksize 3, Unblurred Hu et al. Loss 25 Hours 0.850 | 0.209 0.124 0.665 | 0.890 | 0.956
Hu et al. w/ ResNet 34 Encoder, 1x1 filter, ksize 3, Blurred Loss | 54 Hours | 0.876 | 0.210 | 0.106 | 0.660 | 0.885 | 0.959

Table 6. Test scores for each model after 20 epochs of training

Input Image Ground Truth

U-Net Unblurred Loss

U-Net Blurred Loss Hu et al. Blurred Loss

Figure 5. Predicted images by the three models after 20 epochs of training.

