
Sketch 2 Graybox: A Tool for Rapid 3D Video Game Level Prototyping

Cole Sohn
Stanford University
csohn@stanford.edu

Abstract

Sketch 2 Graybox is a tool for 3D game designers to au-
tomatically generate a graybox prototype level from an im-
age of a top-down level layout drawing [Fig 1]. This ap-
proach for level prototyping aims to speed up game devel-
opment by removing the bottleneck of modeling 3D graybox
levels. It allows the designer to control wall and floor ge-
ometry, as well as the placement of gameplay actors based
on the contents of their sketch. This is acheived through
computer vision techniques such as edge detection and con-
tour finding, as well as drawing classification through a
multi-class non-linear SVM classifier trained on the Google
Quickdraw Dataset.

1. Introduction
To build a level for a 3D video game, the game designer

first draws a sketch: a top-down level layout on paper to
fulfill a set of gameplay objectives. Next, the designer
models a 3D prototype level, often called a blockout
or graybox level, which matches the 2D layout. This
prototyping process allows the designer to playtest the level
and get feedback to assess if the level fulfills its objectives.
Oftentimes, the level fails and the designer returns to the
drawing board to iterate on their initial sketch or start over.
The designer repeats this process until the level design
fulfills its objectives. This process is illustrated in [Fig 2].

The modeling of graybox levels can be a bottleneck in
the level design process. It slows the designer’s ability to
iterate because with every unique layout the designer has
to reconstruct the level in 3D. This discourages significant
changes due to the extra work generated. The designer
may prefer to tweak a level they have already modeled over
starting from scratch. Additionally, this can be a costly
process for a game studio as an art department may be
waiting for a completed level design to begin their work
shaping the final level.

This project addresses the bottleneck problem by

Figure 1. Example of Sketch 2 Graybox Results

automatically generating level grayboxes from sketches,
with results as seen in [Fig 1]. This approach aims to boost
creativity by allowing the designer to instantly playtest
their designs and iterate without 3D modeling slowing
down the process. It can also save money by speeding
up the level design process and allowing artists to begin
working on levels earlier in production.

An image of a top-down level layout drawing is con-
verted to a graybox level as such. First, relevant data is
extracted from the image such as level contours and in-
stancer object bounding boxes. Secondly, 3D static level
geometry and instance points are generated from that data.
Thirdly, static level geometry is processed and actors are
transformed to the instance points and scaled appropriately
[Fig 6]. This whole process is packaged into the game en-
gine such that the level designer only needs to specify a
filepath to their input image and tune relevant parameters
such as wall and floor thickness to generate a graybox level.

Figure 2. Iterative approach to designing successful 3D levels.

1



Figure 3. Example of HSV thresholding and level geometry contour extraction.

2. Related Work:

Procedural Content Generation (PCG) is the automated
creation of game content. Existing methods have been ap-
plied to many types of game content such as levels, audio,
character models, and 2D textures [14]. Traditionally, this
has been achieved through algorithms based on grammars,
search, constraints, and solvers.

Summerville et al.[15] have defined the term PCGML to
categorize PCG that utilizes machine learning techniques
to further extend what content creation is possible to
automate. They define several use cases for PCGML
one of which is Mixed-Initiative Design where traditional
Autonomous Generation PCGML is focused on fully au-
tomating the creation of a piece of content. Mixed-Initiative
Design utilizes algorithms to assist the designer in their
work by speeding up bottlenecks in the design process, by
suggesting new directions during iterative processes, or by
evaluating a designer’s work.

Some of these approaches interact with a designer by
utilizing hand-drawn input. Wang et al.[18] propose a
GAN approach for generating terrain heightmaps from
hand-drawn contours representing the bounds of bodies of
water such as lakes and rivers. This approach can save time
and allow for more artist control in the design of games
featuring open world environments. Another exciting
approach for generating levels from a hand drawn input by
Dewantoro et. al.[6] utilizes a CycleGan with the Google
Quickdraw Dataset to generate levels for the mobile game
Angry Birds. While this is a specific use case, a similar
approach can be generalized to many types of games.

There is also much work being done focused on
the application of deep learning to the interpretation of
sketches [19]. Many of the techniques discussed can be
applied to game level design if combined with existing
PCG techniques. Level prototyping processes vary greatly

depending on the studio, designer, and use-cases. There has
been work to understand the current prototyping process
[13]. Level designers often start with a top-down sketch
[22] which is used as reference to construct a playable
prototype called a graybox [21].

Because traditional 3D modeling processes are often
too slow and cumbersome for level prototyping, the cur-
rent remedy is to use simplified “geometry brushes”, which
are variations on traditional Constructive Solid Geometry
(CSG) approaches. Unreal Engine 4[8] uses an approach
called BSP Brushes and Unity[16] uses a toolset ProBuilder
which are both built using traditional CSG approaches. Re-
altime CSG allows for basic 3D modeling for level design-
ers through a series of extrudes and boolean operations.
More detailed modeling operations require manual work in
a standalone modeling package such as Blender[4], or Au-
todesk 3DSMax[10] and Maya[1], which introduces more
complexity for exporting models and importing them into
the level designer’s game engine. While CSG modeling is
simpler and faster than traditional modeling, it can still cre-
ate a bottleneck when attempting fast iteration of level de-
signs.

Inspiration for the approach detailed in this paper came
from previous projects for CS231A that have interpreted
2D information using contour finding approaches [12, 7],
which serves as an essential step of this project. [17] devel-
oped a simple linear SVM classifier trained on the Google
Quickdraw dataset which also served as inspiration for the
sketch classification portion of this project. There are many
applications and methods for page scanning. [20] provided
inspiration for my approach.

3. Approach:

Automatically generating a graybox level from an image
requires 1. Extracting relevant data from an input image of
a sketch, 2. Generating level geometry and instance points
from the data, and 3. Processing level geometry and match-

2



ing game actors to instance points in a game engine.

Figure 4. Example of contour-based page scanning algorithm.

3.1. Data from Image

The designer supplies an image of a sketch, a photo of
a drawing of a top-down level. The sketch should contain
blue contours (drawn using a regular blue pen) representing
the walls and bounds on the floors, and red drawings
(red pen) representing instancer objects [Fig 3]. These
instancer drawings represent some actor or primitive object
the designer would like to be placed in the scene. In the
figures shown, an instancer drawing can be a circle, square,
and triangle which represent a sphere, cube, or pyramid
primitive object, respectively. This system can be extended
to include more categories and the user can define new
correspondences to allow for any placeable gameplay actor
in the game engine to be represented by a drawing. For
example, a gameplay actor can be a point light, a player
character, or an enemy.

Constraints on this input are that the full page must be
visible on a background which is a different color from the
page and which is preferably a lambertian material so light
reflections do not mask the page contour.

3.1.1 Page Scanning

First, an image containing only the contents of the page pro-
jected onto the image plane is extracted. This is achieved
using the approach described by [20].
First, a gaussian blur kernel is convolved with the image
then Canny Edge Detection is run on the output. Canny
Edge detection is an algorithm that uses gradient extraction
via Sobel Filter convolutions, non-max supression, and hys-
teresis thresholding to return a binary image from an input
image with white pixels representing contour lines. The
OpenCV[2] function cv2.findContours() is called
on the output of Canny edge detection to approximate these
contours with a number of vertices connected by edges.
The Douglas-Peuckar algorithm is run on the output with
ϵ = 0.05p where p is the perimeter of the contour. This
approximates fewer essential vertices from the contours.
The closed contour bordering the largest area with a four-

point Douglas-Peucker approximation is chosen as the im-
age contour. A four-point transformation is done using the
corner points of this contour to “scan” the image by warp-
ing the input to the image plane. The image is cropped
around the edges to remove any artifacts on the edges due
to the page bounds not being straight. Results can be seen
in [Fig 4]

3.1.2 HSV Thresholding

To extract level contours, first all contours are extracted
from the image using a similar approach to the previous
section. These contours are used as a mask to the input
scanned image to set all pixel values not on or near a
contour to white. Otherwise, thresholding may create
artifical contours on undesired parts of the image, such as a
shadow.

Next, the blue and red contours are separated. To do
so, the image is converted to a Hue-Saturation-Value (HSV)
colorspace and use the bounds [70, 0, 0] and [150, 255, 255]
to segment blue contours and [0, 80, 20], [10, 255, 255]
unioned with [160, 80, 20] and [179, 255, 255] to segment
red contours. Thresholding returns two unique bit masks
representing blue and red contours. Results can be seen in
[Fig 3, 5].

Figure 5. Example of bounding box detection

3.1.3 Level Contours

The output blue contour bitmasks represent the level con-
tours. cv2.findContours() is called to find vertices
and edges representing the bounds of the blue contour bit-
mask. cv2.findContours() returns hierarchical in-
formation from which the outermost contour can be de-
duced. The outermost contour represents the floor bounds
for closed surfaces and all contours are used to represent
walls. Results can be seen in [Fig 3].

3.1.4 Instancer Bounding Boxes

Bounding boxes are drawn around each red instancer
sketch. To do so, contours representing red pen strokes
are extracted using the HSV thresholding method described

3



above in Section 3.1.2. A bounding box is drawn around
each separate red contour. Next, bounding boxes are
merged together iteratively based on the intersection over
union method. This outputs a unique bounding box per sep-
arate drawing, which can be used to extract and classify in-
dividual sketches. Results can be seen in [Fig 5].

Figure 6. Example of results using level design as an input

3.1.5 SVM Model Training:

In order to assign labels to sketches, an SVM classifier
is trained using data from the Google Quickdraw Dataset
[9]. The classifier is trained to assign one of three labels to
an input bitmask based on learned weights. This model is
trained with 2000 images from each category and achieves
a 95% accuracy on the test dataset which consists of
another 2000 images per category. The resulting confusion
matrix can be seen in [Table 4.1].

The SVM classifier model used is non-linear and uses the
Radial Basis Function as a kernel, which determines how
the datapoints are categorized when training.

ϕrbf(x) = exp(−γ∥x− x′∥2) (1)

The rbf kernel equation (1) takes one hyperparameter γ
which defines how much influence a datapoint has on the
training[5]. The SVM classifier solves the following opti-
mization problem:

min
w,b,ζ

1

2
wTw + C

n∑
i=1

ζi (2)

subject to yi(w
Tϕrbf(xi) + b) ≥ 1− ζi,

ζi ≥ 0, i = 1, ..., n

The optimization formulation in (2) maximizes the mar-
gin that separates different classes in the data. The formu-
lation takes one hyperparameter C. Since some datasets
cannot be perfectly separated, the hyperparameter C allows
this formulation to be a soft margin SVM classifier and con-
trols the strength by which samples in the wrong region are
penalized[5].

When the training is complete and the optimization prob-
lem solved, the trained model classifies test data by using
the following formula:∑

i∈SV

yiαiK(xi, x) + b (3)

The predicted class is the sign of the output from
Equation(3). When training the multi-class SVM, the
sklearn[3] package implements a “one-versus-one” ap-
proach[5] under the hood where multiple SVM classifiers
are trained, one for each set of two labels. Since the dataset
used contains 3 classes, the multi-class SVM classifier in-
ternally constructs and trains the following number of clas-
sifiers:

n classes ∗ (n classes − 1)/2 = 3 ∗ (3− 1)/2 = 3 (4)

Figure 7. Example of real predictions using the classifier.

3.1.6 Instancer Classification

Once an input image is processed, the bounding boxes are
extracted and resized to a 28x28 bitmap using padding to
preserve its aspect ratio. Next, pixel intensity thresholding
is applied to extract a bitmap representing the sketch. With
the bitmap as an input, the trained SVM model 3.1.5 is used
to predict and assign an output label to the bitmap. This
process is repeated for each segmented sketch. Results can
be seen in [Fig 7].

For testing purposes, only three categories were used.
However, the Google Quickdraw dataset contains 345 cate-
gories so the system can be extended to classify more cat-
egories. For example, a sketch of a person could specify
the starting location of a player character, a light-bulb could

4



specify the location of a point light, and a cross might spec-
ify some objective location or special item. Implementing
an extended number of categories and allowing categories
to be chosen by the user from within the game engine re-
main as possible future work.

Figure 8. Example of results using a maze level as an input. Exam-
ple of convex-hull approximation for open shape floor geometery.

3.2. Geometry from Data

Geometry is generated from the extracted data using
processes built with SideFX Houdini[11]. The Houdini
subnetwork used to generate geometry is then packaged
into an importable asset called an HDA, which is loaded
into the game engine, Unreal Engine 4[8]. The same
approach can be used for any game engine that supports
Houdini Engine, such as Unity[16].

Wall and floor polygons are generated from the input
level contours. The outermost level contours are used as
input to generate floor polygons. If desired floor polygon
contours are not closed, the user can instead specify to gen-
erate a floor using a Convex Hull approach, which is shown
in [Fig 8]. Next, the polygon is extruded based on the users
input for thickness to generate floor geometry.

Wall contours are approximated from all the contours.
Because contours represent the edges of pen strokes,
center-lines are desired to be the spline driving wall
locations. The centerlines are extracted in Houdini[11]
through a series of fuse, re-sample, and feature sharpen
nodes. These centerlines are given thickness by extruding
polygons in the direction obtained from ⟨[0 1 0], t⟩ and
−⟨[0 1 0], t⟩ where t is the tangent direction for each
contour vertex. The amount of this extrusion is based on
a user-defined thickness parameter. Next, these polygons
are extruded upwards to form the level walls based on user
input for wall height.

Instancer bounding boxes and labels are extracted from
the input and used during geometry generation to place in-
stance points and set instance attributes to be interpreted by
the game engine. Instance points are placed in the center
of each bounding box. Bouding box max sizes are used
to set a pscale attribute, which is interpreted in Unreal En-
gine[8] to set the scale of the actors. Instancer labels are
combined with an unreal directory specified by the user to

copy objects into the scene that have the same name as the
category label. In the results shown, a cube primitive is
named “square” to be placed on instance points represented
by the square label, spheres with “circle” and pyramids with
“triangle”.

3.3. Final Level

The Houdini Digital Asset, which calls the data ex-
traction code and generates the geometry, is imported to
Unreal Engine 4[8] using the Houdini Engine Plugin[11].
From Unreal Engine, the user can specify the filepath to
their input drawing and tune relevant geometry parameters.
Unreal Engine’s integration with Houdini allows collision
geometry to be generated from Houdini’s output geometry
and actors to be copied to Houdini’s output instance points.
This allows a final playable level to be generated from
within the game engine.

The user can specify input parameters such as wall
height, wall thickness, floor thickness, and a toggle for con-
vex hull approximation of the floor in the case of open con-
tours. The user can also specify different actors other than
the default cube, sphere, and pyramid provided to spawn
with the relevant transformations. They can do so by spec-
ifying a directory parameter to an Unreal Engine folder
which contains actors with names corresponding to the de-
sired class label name. This provides the flexibility to use
new primitive assets. For example, a cone instead of a pyra-
mid can be specified to spawn where triangles are drawn.

This approach could be used with any other gameplay
actor such as lighting, playable and nonplayable characters,
objectives, etc, so long as the actor can be made a spawnable
blueprint in the content browser of the engine.

Figure 9. Example of training data and predictions from the
Google Quickdraw Dataset [9].

4. Experiments:
4.1. Quantitative

For classifying instancer doodles, an multi-class non-
linear SVM classifier was trained using data from the

5



Training Testing Accuracy
6000 6000 0.95

↓
Label Precision Recall f1-score
Circle 0.96 0.93 0.95
Square 0.94 0.98 0.96
Triangle 0.95 0.93 0.94

Training Testing Accuracy
15000 15000 0.96

↓
Label Precision Recall f1-score
Circle 0.96 0.95 0.95
Square 0.96 0.98 0.97
Triangle 0.95 0.94 0.95

Table 1. Confusion Matrices for models with different numbers of
datapoints.

Google Quickdraw Dataset[9] and the SciKit Learn[3] Li-
brary. This dataset contains 50 Million doodles over 345
categories extracted from the web-based drawing game
Quickdraw [9]. For this paper, only three categories were
used, but the large number of possible categories provides
room for expansion on this idea. Examples of training data
can be seen in [Fig 9]. The SVM was trained with only
6,000 samples spread over the three categories. When tested
on another 6,000 samples, it acheived 95% accuracy. Exam-
ple predictions are shown in [Fig 7]. Increasing the training
and testing samples to a total of 15,000 each increased ac-
curacy to only 96%. The confusion matrices are shown in
[Table 4.1]. A softmax layer was added so that the proba-
bility for each category could be read.

4.2. Qualitative

4.2.1 Quality Evaluation: Classification

There are classifying inaccuracies higher than 95 percent
when used on real-world hand drawn data. These inaccu-
racies mostly occur on larger drawings. This is due to a
difference between the training data and the data extracted
from the drawings. Bounding boxes are extracted from the
image and the image data is resized to have a width of 28
pixels to match the training data. The result of this is that
larger objects have a thinner contour width than the training
data with constant contour widths.

There are two methods that can be employed to resolve
this. One method is to use contour detection from the
extracted and resized image inputs. These contours can be
redrawn on a blank image at constant widths matching the
training data.

Another possible method is to extend the training data
using morphology functions such as erode and dilate to
account for varying line widths. This method has the cost of
addition data pre-processing with the benefit of additional
robustness against drawing tools of varying line widths.

Other challenges arose when working with the Google
Quickdraw Dataset. The dataset appears unfiltered from the
data collected using the Google Quickdraw web game. As a
result, there are a number of inaccurate and obscene results
contained in the dataset. This may pose a problem when in-
creasing category counts and may be a problem for projects
that attempt to synthesize new sketches.

Figure 10. Qualitative Error: Page Scanning on warped page
edges.

4.2.2 Quality Evaluation: Page Scanning

As seen in [Fig 10], page scanning is prone to failure in
cases where the edges of the page are overly concave or
convex in the input image. This is because the Douglas-
Peuckar algorithm will approximate the page bounding
contours with more than four points. As a result, another
contour or no contour will be chosen instead. In [Fig 10],
a drawing of a square is the largest closed four point
approximated contour in the image, so it is chosen as the
page bounds.

Other page scanning problems occur when the whole
page is not contained within the image, or the background
contains bright white reflections that obscure a page bound-
ary.

A solution to these problems is to use a more robust
page-scanning algorithm that detects corner points and par-
allel lines. In such cases only two points would need to be
visible to do a perspective projection of the page contents to
the image plane.

4.2.3 Quality Evaluation: HSV Thresholding

HSV Thresholding can produce different results under dif-
ferent lighting conditions, as shown in [Fig 11]. This could
be resolved by using automatic white balancing or color bal-
ancing algorithms to fix the color space of the input image.
We can find a transform that takes the page background off-
white color to a pure white value. We can apply the trans-
formation to all pixels to get a standardized color set.

6



Figure 11. Qualitative Error: Thresholding under varying lighting
conditions

4.2.4 Quality Evaluation: Level Contours

Another significant challenge was interpreting level con-
tours and creating geometry. Contours are extracted from
both sides of a pen stroke when using the described Canny
edge dection and cv2.findContours() approach. As
a result, wall contours had to be merged using Houdini En-
gine[11] through a series of point merges. This caused fea-
tures to become smooth, which was counteracted with ge-
ometry sharpening. This approach is not ideal as it does
not always provide results that match hand drawn input. A
better solution would be an approach that either estimates
centroid contours from the pen stroke outline contours, or
an approach to extract a contour that estimates the stroke
by using a thresholding technique as apposed to canny edge
detection.

5. Conclusion:
This project highlights the challenges and possibilities

for generating procedural level prototype geometry from
2D input images.

Future work involves investigating how to approximate
depth changes in the ground plane that actors are placed
on. Current results do not produce variations in the ground
plane, which a level designer may desire for their prototype.

This is a difficult problem to solve due to the inherent diffi-
culties of interpreting 3-dimensionality from a 2D sketch.
Ad-hoc solutions could be to require different colored
pens for different floors as input. Another ad-hoc solution
could be using stair symbols to specify changes in elevation.

There are many more difficulties that arise from attempts
to interpret 3-dimensionality from more complex images
- such as underpasses and multi-story overlapping levels.
One potential direction is to utilize more automation in the
generation of 3D levels from 2D contours. For example,
Wave Function Collapse is a popular algorithm that can be
used to generate 3D levels from a grid. A grid could be fit
to user-defined contours, and a constraint-based algorithm
such as WFC could generate multiple tile-based 3D levels
with a combination of designer input and selection.

While the current approach requires little input from
the designer except for a file path to generate levels, it
requires some set up such as installing the Houdini Engine
plugin[11]. Future work could include implementing
this approach directly in the game engine as a plugin
or stand-alone build to allow use with minimal setup.
Additionally, a stand-alone build could allow levels to be
generating on mobile devices such an a smart phone or
tablet, which could allow for faster seamless iteration in
the design process as photos can be taken directly from the
device from within the build environment, and time would
not be lost saving, sending, and selecting files.

More work could be done interacting with game design-
ers using a human-computer-interaction design framework
to make the tools more seamless and useful to level design-
ers in ways not previously thought of.

6. Code:
The code implementation for Sketch 2

Graybox can be found at this address:
https://github.com/ColeSohn/Sketch-2-Graybox

References
[1] Autodesk, INC. Maya. Version 2019. Jan. 15, 2019.

URL: https:/%20autodesk.com/maya.

[2] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s
Journal of Software Tools (2000).

[3] Lars Buitinck et al. “API design for machine learning
software: experiences from the scikit-learn project”.
In: ECML PKDD Workshop: Languages for Data
Mining and Machine Learning. 2013, pp. 108–122.

7

https:/%20autodesk.com/maya


[4] Blender Online Community. Blender - a 3D mod-
elling and rendering package. Blender Foundation.
Stichting Blender Foundation, Amsterdam, 2018.
URL: http://www.blender.org.

[5] scikit-learn developers. Support Vector Machines.
Scikit Learn. URL: https://scikit-learn.
org/stable/modules/svm.html.

[6] Mury F. Dewantoro et al. “Enhancement of An-
gry Birds Level Generation from Sketches Using
Cycle-Consistent Adversarial Networks”. In: 2020
IEEE 9th Global Conference on Consumer Electron-
ics (GCCE). 2020, pp. 564–565. DOI: 10.1109/
GCCE50665.2020.9291893.

[7] Bradley Emi. “CS231A Final Project: Optical
Recognition of Hand-Drawn Chemical Structures”.
In: 2020.

[8] Epic Games. Unreal Engine. Version 4.22.1. Apr. 25,
2019. URL: https://www.unrealengine.
com.

[9] Googlecreativelab. Googlecreativelab/quickdraw-
dataset: Documentation on how to access and
use the quick, draw! dataset. URL: https :
/ / github . com / googlecreativelab /
quickdraw-dataset.

[10] Jeffrey Harper. Mastering Autodesk 3ds Max 2013.
John Wiley & Sons, 2012.

[11] Houdini. SideFX. URL: https://www.sidefx.
com/.

[12] Aditi Jain. “CS231A Final Project Report: Set AI”.
In: 2021.

[13] Annakaisa Kultima, Juha Köönikkä, and Juho Karvi-
nen. “The Four Different Innovation Philosophies
Guiding the Game Development Processes : An Ex-
perimental Study on Finnish Game Professionals De-
velopment Processes”. English. In: Games and Inno-
vation Research Seminar 2011 Working Papers. Ed.
by Annakaisa Kultima and Mirva Peltoniemi. TRIM
Research Reports 7. 2012, pp. 34–41. ISBN: 978-
951-44-8705-7.

[14] Jialin Liu et al. “Deep learning for procedural con-
tent generation”. In: Neural Computing and Applica-
tions 33.1 (Oct. 2020), pp. 19–37. ISSN: 1433-3058.
DOI: 10.1007/s00521-020-05383-8. URL:
http://dx.doi.org/10.1007/s00521-
020-05383-8.

[15] Adam Summerville et al. “Procedural Content Gen-
eration via Machine Learning (PCGML)”. In: IEEE
Transactions on Games 10.3 (2018), pp. 257–270.
DOI: 10.1109/TG.2018.2846639.

[16] Unity Technologies. Unity. Version 2019.4 LTS.
URL: https://unity.com/.

[17] Using google’s quickdraw to create an mnist
style dataset! URL: http : / / projects .
rajivshah . com / blog / 2017 / 07 / 14 /
QuickDraw/.

[18] Tong Wang and Shuichi Kurabayashi. “Sketch2Map:
A Game Map Design Support System Allowing
Quick Hand Sketch Prototyping”. In: 2020 IEEE
Conference on Games (CoG). 2020, pp. 596–599.
DOI: 10.1109/CoG47356.2020.9231754.

[19] Peng Xu. “Deep Learning for Free-Hand Sketch: A
Survey”. In: CoRR abs/2001.02600 (2020). arXiv:
2001 . 02600. URL: http : / / arxiv . org /
abs/2001.02600.

[20] Rouizi Yacine. Learn opencv by building
a document scanner. URL: https : / /
dontrepeatyourself.org/post/learn-
opencv - by - building - a - document -
scanner/.

[21] Robert Yang. Blockout - How to build a basic
3D version of the level with massing, metrics,
composition, and iteration. URL: https : / /
book.leveldesignbook.com/process/
blockout.

[22] Robert Yang. Layout - How to draw a top-down
floor plan for a level, with flow, balance, encoun-
ters, and typology. URL: https : / / book .
leveldesignbook.com/process/layout.

8

http://www.blender.org
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://doi.org/10.1109/GCCE50665.2020.9291893
https://doi.org/10.1109/GCCE50665.2020.9291893
https://www.unrealengine.com
https://www.unrealengine.com
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset
https://www.sidefx.com/
https://www.sidefx.com/
https://doi.org/10.1007/s00521-020-05383-8
http://dx.doi.org/10.1007/s00521-020-05383-8
http://dx.doi.org/10.1007/s00521-020-05383-8
https://doi.org/10.1109/TG.2018.2846639
https://unity.com/
http://projects.rajivshah.com/blog/2017/07/14/QuickDraw/
http://projects.rajivshah.com/blog/2017/07/14/QuickDraw/
http://projects.rajivshah.com/blog/2017/07/14/QuickDraw/
https://doi.org/10.1109/CoG47356.2020.9231754
https://arxiv.org/abs/2001.02600
http://arxiv.org/abs/2001.02600
http://arxiv.org/abs/2001.02600
https://dontrepeatyourself.org/post/learn-opencv-by-building-a-document-scanner/
https://dontrepeatyourself.org/post/learn-opencv-by-building-a-document-scanner/
https://dontrepeatyourself.org/post/learn-opencv-by-building-a-document-scanner/
https://dontrepeatyourself.org/post/learn-opencv-by-building-a-document-scanner/
https://book.leveldesignbook.com/process/blockout
https://book.leveldesignbook.com/process/blockout
https://book.leveldesignbook.com/process/blockout
https://book.leveldesignbook.com/process/layout
https://book.leveldesignbook.com/process/layout

	. Introduction
	. Related Work:
	. Approach:
	. Data from Image
	Page Scanning
	HSV Thresholding
	Level Contours
	Instancer Bounding Boxes
	SVM Model Training:
	Instancer Classification

	. Geometry from Data
	. Final Level

	. Experiments:
	. Quantitative
	. Qualitative
	Quality Evaluation: Classification
	Quality Evaluation: Page Scanning
	Quality Evaluation: HSV Thresholding
	Quality Evaluation: Level Contours


	. Conclusion:
	. Code:

