CS 231A Section: Computer Vision Libraries Overview

Amir Sadeghian
May 2017
Overview

- **OpenCV**
- Deep Learning Frameworks
 - **Caffe**
 - Torch
 - Tensorflow
Other CV libraries

- **Vlfeat**: An Open source library with popular computer vision algorithms specializing in image understanding and local features extraction and matching.
- **scikit-learn**: An open source Python library that implements a range of machine learning, preprocessing, cross-validation and visualization algorithms.
- **PCL**: A standalone, large scale, open project for 2D/3D image and point cloud processing.
- **SLAM frameworks (bundler, visualsfm, meshlab)**: Applications for 3D reconstruction using structure from motion (SFM).
- **Libraries for specific tasks**: e.g. tracking libraries, Detection libraries ...
OpenCV
Introduction to OpenCV

- Open source computer vision and machine learning library
- Contains implementations of a large number of vision algorithms
- Written natively in C++, also has C, Python, Java, and MATLAB interfaces
- Supports Windows, Linux, Mac OS X, Android, and iOS
Installation

- Download from http://opencv.org and compile from source
- Windows: Run executable downloaded from OpenCV website
- Mac OS X: Install through MacPorts, easy_install, ...
- Linux: Install through the package manager (e.g. yum, apt) but make sure the version is sufficiently up-to-date for your needs
Basic OpenCV Structures

- **Point, Point2f** - 2D Point
- **Size** - 2D size structure
- **Rect** - 2D rectangle object
- **RotatedRect** - Rect object with angle
- **Mat** - image object
Point

- 2D Point Object
 - int x, y;

- Sample Functions
 - Point.dot(<Point>) - computes dot product
 - Point.inside(<Rect>) - returns true if point is inside

Math operators, you may use
- Point operator +
- Point operator +=
- Point operator -
- Point operator -=
- Point operator *
- Point operator *=
- bool operator ==
- bool operator !=
- double norm
Size

• 2D Size Structure
 - int width, height;

• Functions
 - Size.area() - returns (width * height)

Rect

• 2D Rectangle Structure
 - int x, y, width, height;

• Functions
 - Rect.tl() - return top left point
 - Rect.br() - return bottom right point
cv::Mat

• The primary data structure in OpenCV is the Mat object. It stores images and their components.

• Main items
 - rows, cols - length and width(int)
 - channels - 1: grayscale, 3: BGR
 - depth: CV_<depth>C<num chan>

• See the manuals for more information
cv::Mat- Functions

- `Mat.at<datatype>(row, col)[channel]` - returns pointer to image location
- `Mat.channels()` - returns the number of channels
- `Mat.clone()` - returns a deep copy of the image
- `Mat.create(rows, cols, TYPE)` - re-allocates new memory to matrix
- `Mat.cross(<Mat>)` - computes cross product of two matrices
- `Mat.depth()` - returns data type of matrix
- `Mat.dot(<Mat>)` - computes the dot product of two matrices
PixelTypes

- PixelTypes shows how the image is represented in data
 - **BGR** - The default color of imread(). Normal 3 channel color
 - **HSV** - Hue is color, Saturation is amount, Value is lightness. 3 channels
 - **GRAYSCALE** - Gray values, Single channel
- OpenCV requires that images be in BGR or Grayscale in order to be shown or saved. Otherwise, undesirable effects may appear.
Image Normalization and Thresholding

- Normalization remaps a range of pixel values to another range of pixel values
 - `void normalize(InputArray src, OutputArray dst,...)`

- OpenCV provides a general purpose method for thresholding an image
 - `double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type)`
 - Specify thresholding scheme specified by the type variable
Image Smoothing

- Reduces the sharpness of edges and smooths out details in an image
- OpenCV implements several of the most commonly used methods
 - `void GaussianBlur(InputArray src, OutputArray dst, ...)`
 - `void medianBlur(InputArray src, OutputArray dst, ...)`
- Other functions include generic convolution, separable convolution, dilate, and erode.
Image Smoothing: Code

```c++
#include <cv.h>
#include <cvaux.h>
#include <highgui.h>

int main(int argc, char** argv) {
    // Read in colored image
    cv::Mat image = cv::imread(argv[1]);
    cv::imwrite("photo.jpg", image);
    // Apply Gaussian blur
    cv::Mat image_gaussian_blur;
    image.convertTo(image_gaussian_blur, CV_8UC3);
    cv::GaussianBlur(image_gaussian_blur, image_gaussian_blur, cv::Size(0, 0), 9);
    cv::imwrite("photo_gaussian_blur.jpg", image_gaussian_blur);

    // Apply median blur
    cv::Mat image_median_blur;
    image.convertTo(image Median_blur, CV_8UC3);
    cv::medianBlur(image_median_blur, image_median_blur, 17);
    cv::imwrite("photo_median_blur.jpg", image_median_blur);
}
```
Image Smoothing: Sample Image

Original | Gaussian Blur | Median Blur
Edge Detection

• OpenCV implements a number of operators to help detect edges in an image
 • Sobel Operator
 • void cv::Sobel(image in, image out, CV_DEPTH, dx, dy);
 • Scharr Operator
 • void cv::Scharr(image in, image out, CV_DEPTH, dx, dy);
 • Laplacian Operator
 • void cv::Laplacian(image in, image out, CV_DEPTH);

• OpenCV also implements multi-stage edge detection algorithms such as Canny edge detection

• Tip: If your image is noisy, then edge detection will often exaggerate the noise

• Sometimes smoothing the image before running edge detection gives better results
Edge Detection: Code

```cpp
#include <cv.h>
#include <cvaux.h>
#include <highgui.h>

int main(int argc, char** argv) {
    // Read image as grayscale, delete zero to read in color
    cv::Mat image = cv::imread(argv[1], 0);
    cv::imwrite("photo_gray.jpg", image);

    // Calculate x-gradient using Sobel operator
    cv::Mat image_gradient_x;
    image.convertTo(image_gradient_x, CV_32FC1);
    cv::Sobel(image_gradient_x, image_gradient_x, CV_32FC1, 0, 1);
    // Absolute value and normalize
    cv::convertScaleAbs(image_gradient_x, image_gradient_x);

    // Calculate y-gradient using Sobel operator
    cv::Mat image_gradient_y;
    image.convertTo(image_gradient_y, CV_32FC1);
    cv::Sobel(image_gradient_y, image_gradient_y, CV_32FC1, 1, 0);
    // Absolute value and normalize
    cv::convertScaleAbs(image_gradient_y, image_gradient_y);

    // Average the x and y gradients into one image
    cv::Mat image_gradient;
    cv::addWeighted(image_gradient_x, 0.5, image_gradient_y, 0.5, 0, image_gradient);
    cv::imwrite("photo_gradient.jpg", image_gradient);
}
```
Edge Detection: Sample Results
Face Detection: Viola-Jones

- Robust and fast
- Introduced by Paul Viola and Michael Jones
- Haar-like Features
And Many More ...

- Object Tracking using OpenCV
- Handwritten Digits Classification: An OpenCV (C++ / Python) Tutorial
- Eye Detector using OpenCV
- Image Recognition and Object Detection
- Head Pose Estimation using OpenCV
- Configuring Qt for OpenCV
- ...
Deep Learning Frameworks
Deep Learning Frameworks

• Caffe
• Torch/PyTorch
 • NYU
 • scientific computing framework in Lua
 • supported by Facebook
• TensorFlow
 • Google
 • Python
• Theano/Pylearn2
 • U. Montreal
 • Python
 • symbolic computation and automatic differentiation
• MatConvNet
 • Oxford U.
 • Deep Learning in MATLAB
Framework Comparison

- More alike than different
 - All express deep models
 - All are open-source (contributions differ)
 - Most include scripting for hacking and prototyping

- No strict winners, experiment and choose the framework that best fits your work
Caffe: Overview

• What is Caffe?
• Training/Finetuning a simple model
• Deep dive into Caffe!
What is Caffe?

• A deep learning framework

• Open framework, models, and worked examples for deep learning

• 4000+ citations, 250+ contributors, 11,000+ forks

• Focus has been vision, but branching out: sequences, reinforcement learning, speech + text
Caffe

- Pure C++ / CUDA architecture for deep learning
 - command line, Python, MATLAB interfaces
- Fast, well-tested code
- Tools, reference models, demos, and recipes
- Switch between CPU and GPU
 - Caffe::set_mode(Caffe::GPU);
Installation

- http://caffe.berkeleyvision.org/installation.html
- CUDA, OPENCV
- BLAS (Basic Linear Algebra Subprograms): operations like matrix multiplication, matrix addition, both implementation for CPU(cBLAS) and GPU(cuBLAS). provided by MKL(INTEL), ATLAS, openBLAS, etc.
- Boost: a c++ library. > Use some of its math functions and shared_pointer.
- glog,gflags provide logging & command line utilities. > Essential for debugging.
- leveldb, lmdb: database io for your program. > Need to know this for preparing your own data.
- protobuf: an efficient and flexible way to define data structure. > Need to know this for defining new layers.
Caffe Tutorial

- **Nets, Layers, and Blobs**: the anatomy of a Caffe model.
- **Forward / Backward**: the essential computations of layered compositional models.
- **Loss**: the task to be learned is defined by the loss.
- **Solver**: the solver coordinates model optimization.
- **Interfaces**: command line, Python, and MATLAB Caffe.
- **Data**: how to caffeinate data for model input.

http://caffe.berkeleyvision.org/tutorial/
Caffe

- **Blob**: Storage and Communication of Data
 - Data blobs are $N \times C \times H \times W$

- **Net**: Contains all the layers in the networks
 - Performs forward/backward pass through the entire network

- **Solver**: Used to set training/testing parameters
 - Number of iterations, back propagation method, etc..
Training: Step 1

• Create a lenet_train.prototxt

• Data Layers

• Operational Layers

• Loss Layers
Network Definition(train.prototxt)

```
name: "LeNet"

layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
```
Network Definition (train.prototxt)

```
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}

layer {
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}

layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
```
Network Definition(train.prototxt)

```protobuf
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}
```
Training: Step 2

- Create a lenet_solver.prototxt

```plaintext
train_net:  "lenet_train.prototxt"
base_lr:    0.01
momentum:  0.9
weight_decay:  0.0005
max_iter:  10000
snapshot_prefix:  "lenet_snapshot"
# ... and some other options ...
```
Solver(solver.prototxt)

The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
test_iter specifies how many forward passes the test should carry out.
In the case of MNIST, we have test batch size 100 and 100 test iterations,
covering the full 10,000 testing images.
test_iter: 100
Carry out testing every 500 training iterations.
test_interval: 500
The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
The learning rate policy
lr_policy: "step"
gamma: 0.1
stepsize: 3000
Display every 100 iterations
display: 100
The maximum number of iterations
max_iter: 10000
snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver mode: CPU or GPU
solver_mode: GPU
Training: Step 2

- Some details on SGD parameters

\[V_{t+1} = \mu V_t - \alpha (\nabla L(W_t) + \lambda W_t) \]
\[W_{t+1} = W_t + V_{t+1} \]
Training: Step 3

• # train LeNet
 • caffe train -solver examples/mnist/lenet_solver.prototxt

• # train on GPU 2
 • caffe train -solver examples/mnist/lenet_solver.prototxt -gpu 2

• # resume training from the half-way point snapshot
 • caffe train -solver examples/mnist/lenet_solver.prototxt -snapshot examples/mnist/lenet_iter_5000.solverstate
Network Definition(test.prototxt)

Previously

```
name: "LeNet"
layers {
  name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
  phase: TRAIN
}
transform_param {
  scale: 0.00390625
}
data_param {
  source: "examples/mnist/mnist_train_lmdb"
  batch_size: 64
  backend: LMDB
}
}
```

```
layer {
  name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
  phase: TEST
}
transform_param {
  scale: 0.00390625
}
data_param {
  source: "examples/mnist/mnist_test_lmdb"
  batch_size: 100
  backend: LMDB
}
```
Network Definition(test.prototxt)
PyCaffe (Training in Python)

- Add caffe python directory to path and import caffe

```python
caffe_root = '../'  # this file should be run from {caffe_root}/examples (otherwise change this line)

import sys
sys.path.insert(0, caffe_root + 'python')
import caffe
```
Use NetSpec to define layers

```python
from caffe import layers as L, params as P

def lenet(lmdb, batch_size):
    # our version of LeNet: a series of linear and simple nonlinear transformations
    n = caffe.NetSpec()

    n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
        transform_param=dict(scale=1./255), ntop=2)

    n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
    n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
    n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
    n.relu1 = L.ReLU(n.fc1, in_place=True)
    n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
    n.loss = L.SoftmaxWithLoss(n.score, n.label)

    return n.to_proto()

with open('mnist/lenet_auto_train.prototxt', 'w') as f:
    f.write(str(lenet('mnist/mnist_train_lmdb', 64)))

with open('mnist/lenet_auto_test.prototxt', 'w') as f:
    f.write(str(lenet('mnist/mnist_test_lmdb', 100)))
```
Define solver and train network

```python
caffe.set_device(0)
caffe.set_mode_gpu()

## load the solver and create train and test nets
solver = None  # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)
solver = caffe.SGDSolver('mnist/lenet_auto_solver.prototxt')

# each output is (batch size, feature dim, spatial dim)
[(k, v.data.shape) for k, v in solver.net.blobs.items()]

[('data', (64, 1, 28, 28)),
 ('label', (64,)),
 ('conv1', (64, 20, 24, 24)),
 ('pool1', (64, 20, 12, 12)),
 ('conv2', (64, 50, 8, 8)),
 ('pool2', (64, 50, 4, 4)),
 ('fc1', (64, 500)),
 ('score', (64, 10)),
 ('loss', ())]

solver.net.forward()  # train net
```
Access Net data

```python
# we use a little trick to tile the first eight images
imsho\nolver.net.blobs['data'].data[:8, 0].\nanspose(1, 0, 2).r\neshape(28, 8*28), cmap='gray'); ax\nis('off')
print 'train labels:', solver.net.blobs['\nlabel'].data[:8]

train labels: [ 5.  0.  4.  1.  9.  2.  1.  3.]
```

50419213
PyCaffe (Testing in Python)

```python
#load the model
net = caffe.Net('models/bvlc_reference_caffenet/train.prototxt',
                'models/bvlc_reference_caffenet/train_iter30000.caffemodel',
                caffe.TEST)

# load input and configure preprocessing
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_mean('data', np.load('ilsvrc_2012_mean.npy').mean(1).mean(1))
transformer.set_transpose('data', (2,0,1))
transformer.set_channel_swap('data', (2,1,0))
transformer.set_raw_scale('data', 255.0)

#note we can change the batch size on-the-fly
#since we classify only one image, we change batch size from 10 to 1
net.blobs['data'].reshape(1,3,227,227)

#load the image in the data layer
im = caffe.io.load_image('examples/images/cat.jpg')
net.blobs['data'].data[[...]] = transformer.preprocess('data', im)

#compute
out = net.forward()

# other possibility : out = net.forward_all(data=np.asarray([transformer.preprocess('data', im)]))
#predicted predicted class
print out['prob'].argmax()
```
Open Model Collection

• The Caffe Model Zoo

• open collection of deep models to share innovation
 • VGG ILSVRC14 + Devil models in the zoo
 • Network-in-Network / CCCP model in the zoo
 • MIT Places scene recognition model in the zoo
 • Help reproduce research
 • Bundled tools for loading and publishing models

• Share Your Models! with your citation + license of course
Reference Models

Alexnet: Imagenet Classification

Caffe offers the

- Model definitions
- Optimization settings
- Pre-trained weights so you can start right away.

R-CNN: Regions with CNN features

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions
When to Fine-tune?

• A good first step!
 • More robust optimization
 • good initialization helps
 • Needs less data
 • Faster learning

• State-of-the-art results in
 • recognition
 • detection
 • segmentation
Fine-tuning Tricks

• Learn the last layer first
 • Caffe layers have local learning rates: blobs_lr
 • Freeze all but the last layer for fast optimization and avoiding early divergence.
 • Stop if good enough, or keep fine-tuning

• Reduce the learning rate
 • Drop the solver learning rate by 10x, 100x –
 • Preserve the initialization from pre-training and avoid thrashing
CNN Training tips

- Before running final/long training
 - Make sure you can overfit on a small training set
 - Make sure your loss decreases over first several iterations
 - Otherwise adjust parameter until it does, especially learning rate

- Separate train/val/test data
Any Questions?