CS231M · Mobile Computer VisionSpring 2015

Instructors: - Prof Silvio Savarese (Stanford, CVGLab)

- Dr Kari Pulli (Light)

CA: - Saumitro Dasgupta <u>saumitro@stanford.edu</u>

Agenda

- Administrative
 - Requirements
 - Grading policy

- Mobile Computer Vision
- Syllabus & Projects

Structure of the course

First part:

- Familiarize with android mobile platform
- Work on two programming assignments on the mobile platform

Second part:

- Teams will work on a final project
- Teams present in class 1-2 state-of-the-art papers on mobile computer vision

What you will learn

How to program on the Android development platform

State-of-the computer vision algorithms for mobile platforms

 Implement a working vision-based app on a mobile device

What you need to do

- Two programming assignments [40%]
- Course project [40%]
- Team presentations in class [15%]
- Class participation [5%]
- No midterms no finals!

Programming assignments [40%]

- Problem-0: warm up assignment (it won't be graded)
 - Self-calibration; it will guide you through installing the Android platform and help you run a simple toy application
- Two problem sets [20% each]
- Each graded problem set includes
 - a programming assignment [15%]
 - a write-up [5%]
- Two topics:
 - Feature detection, descriptors, image matching, panorama and HDR image construction
 - Object and landmark recognition; Image classification

Programming assignments [40%]

- Programming assignments will be implemented on Nvidia Shield: a Tegra-based (K1) Android tablet
 - Simulators can only be used for debugging
- NVIDIA tablets are available for each student who is taking the course for credit.
- Tablets kindly lent by Nvidia
- Supporting material/tutorials will be based upon the Android platform

Programming assignments [40%]

Important dates:

- Problem-0
 - Released: 4/6 (next Monday)
 - Due: 4/13
- First problem assignment:
 - Released on 4/13
 - Due on 4/24
- Second problem assignment:
 - Released on 4/24
 - Due on 5/6

- Goal: implement a computer vision application on a mobile platform
- We encourage students to use the NVIDIA Tegra-based Android tablet
- Students can use iOS for final project (but please let us know if this is the case)
- NOTE: programming assignments must be completed on android

Simulator can only be used for debugging

- Teams: 1-3 people per team
 - The quality of your project will be judged regardless of the number of people on the team
 - Be nice to your partner: do you plan to drop the course?

Evaluation:

- Proposal report 10%
- Final report 20%
- Final presentation 10%

- Important dates:
 - Project proposal report due on 5/8
 - Project presentations on 5/27, 6/1, 6/3
 - Final project due: 6/7

Some examples of projects are:

- Recover the 3D layout of a room and augment it with new IKEA furniture
- Recognize your friend's face and link it to your friends on Facebook
- Localize yourself in a google map and visualize the closest restaurant on the smart phone's display
- Detect and face and turn it into a cartoon (and share it with friends)
- Create HDR panoramic images
- Recognize landmarks on the Stanford campus (e.g.: Memorial Church) and link it to relevant info from the web (Wikipedia, photos from other users, etc...)

Presentations in class [15%]

- Each student team will present <u>1-2</u> state-of-the-art papers on mobile computer vision
- Topics are pre-assigned but student teams can bid to present a paper of interest.
- Paper topics will be uploaded to the course syllabus soon.
- We are currently estimating a 15-30 minutes presentation per team

Evaluation:

- Clarity of the presentation
- Ability to master the topic
- Ability to answer questions

Class participation [5%]

- Participate in class by attending, asking questions and participate in class discussions
 - During lectures
 - During team presentations
- In-class and <u>piazza</u> participation both count.
- Quantity and quality of your questions will be used for evaluating class participation.

Late policy

- No late submission for problem sets and Project
- Two "24-hours one-time late submission bonus" are available;
 - that is, you can use this bonus to submit your PA late after at most 24 hours. After you use your bonuses, you must submit on your assignment on time
- NOTE: 24-hours bonuses are not available for projects; project reports must be submitted in time.

Prerequisites

- CS131A, CS231A, CS232 or equivalent
- Familiar with C++ and JAVA

Collaboration policy

- Read the student code book, understand what is 'collaboration' and what is 'academic infraction'.
- Discussing project assignment with each other is allowed, but coding must be done individually
- Using on line presentation material (slides, etc...) is not allowed in general. Exceptions can be made and individual cases will be discussed with the instructor.
- On line software/code can be used but students must consult instructor beforehand. Failing to communicate this to the instructor will result to a penalty

Agenda

- Administrative
 - Requirements
 - Grading policy
- Advanced topics in computer vision

Syllabus & Projects

From the movie Minority Report, 2002

Computer vision and Mobile **Applications**

- More powerful machine vision
- Better clouds ©
- Increase computational power
- More bandwidth

Google Goggles

kooaba

Mobileye

Panoramic Photography

HDR

Intellsys

Digital photography

3D modeling of landmarks

VLSAM

By Johnny Lee

Augmented reality

Fingerprint biometrics

Visual search and landmarks recognition

Image search engines

Face detection

Computer vision and Mobile Applications

Current state of computer vision

3D Reconstruction

- 3D shape recovery
- 3D scene reconstruction
- Camera localization
- Pose estimation

2D Recognition

- Image matching
- Object detection
- Texture classification
- Activity recognition

Mobile computer vision

Embedded systems

A special purpose computer system enclosed or encapsulated within a physical system

They are everywhere today!

- Consumer electronics
- Communication
- Entertainment
- Transportation
- Health
- Home appliances

Examples of embedded systems

- Video-assisted robots
- Medical imaging devices

Examples of embedded systems

- Video-assisted robots
- Medical imaging devices
- Autonomous cars

Automotive Vision

Automotive Vision

Examples of embedded systems

- Video-assisted robots
- Medical imaging devices
- Autonomous cars
- Smart phones
- Tablets
- Glasses

Smart phones & tablets: common characteristics

- Low cost
- Small package
- Resource constraints
- Real-time constraints (for some systems/applications)

Hardware Components

- Powerful mobile processors
- Dedicated chips for display driver, touchscreen control, GPS, bluetooth, WiFi more...
- Storage/Memory
- Display/touchscreen
- Communications/Connectivity
- Graphics
- Camera
- Accelerometer
- Compass/gyroscope

Powerful Mobile Processors

- Microcontrollers/Microprocessors—run OS, applications
- GPU architected for fast rendering operations
- DSP architected for fast, parallel vector operations
- Nvidia Tegra-K1 based Android tablet

Operating systems

Android OS

- Released in 2008
- Software platform based on Linux 2.6
- Developed by Google and the Open Handset Alliance
- Emulators on Mac, Windows, and Linux
- Version 5 (lollipop)

Challenges

- The mobile system has limited: computational power - bandwidth - memory
 - What to compute on the client (features, tracks)
 - How much data must be transferred to the back end
 - What to compute on the back end
 - How much data must be transferred back to the client to visualize results
- Computer vision algorithms with
 - Guaranteed (high)accuracy
 - Efficient (use little computational power/memory)
 - Fast (possibly real time)
- Many of these CV problems are still open

Client and Server paradigm

mobile system (client)

The internet; on-line repositories

Computing nodes (back end) (cloud, server)

In this class

- We will explore computer vision algorithms
 - Meet challenges above
 - Can be implemented on a mobile system

Class organization

Part 1:

- Review the Android architecture
- Introduce Android development platform

Part 2:

- Feature detection and descriptors
- Image matching
- Panorama and HDR images

Part 3:

- Object detection, landmark recognition and image classification
- Deep Learning and random forest

Part 4:

Tracking, VSLAM, and virtual augmentation

Part 5:

- Special topics in mobile computer vision
- Project discussion and presentations

Class organization

Part 1:

- Review the Android architecture
- Introduce Android development platform

Part 2:

- Feature detection and descriptors
- Image matching
- Panorama and HDR images

Part 3:

- Object detection, landmark recognition and image classification
- Deep Learning and random forest

Part 4:

Tracking, VSLAM, and virtual augmentation

Part 5:

- Special topics in mobile computer vision
- Project discussion and presentations

Features and descriptors

•Detectors:

- DoG
- Harris

•Descriptors:

- SURF: Speeded Up Robust Features
- Implementation on mobile platforms [Bay et al 06] [Chen et al 07]

Image matching

- M. Brown and D. Lowe, "recognizing panoramas", 03
- Yingen Xiong and Kari Pulli, "Fast Panorama Stitching for High-Quality Panoramic Images on Mobile Phones", IEEE Transactions on consumer electronics, 2010

Automatic Panorama Stitching

- M. Brown and D. Lowe, "recognizing panoramas", 03
- Yingen Xiong and Kari Pulli, "Fast Panorama Stitching for High-Quality Panoramic Images on Mobile Phones", IEEE Transactions on consumer electronics, 2010

Sources: M. Brown

Automatic Panorama Stitching

- M. Brown and D. Lowe, "recognizing panoramas", 03
- Yingen Xiong and Kari Pulli, "Fast Panorama Stitching for High-Quality Panoramic Images on Mobile Phones", IEEE Transactions on consumer electronics, 2010

Sources: M. Brown

High Dynamic Range (HDR) images

Mertens, Kautz, van Reeth PG 2007

LDR images

Weight maps

Class organization

Part 1:

- Review the Android architecture
- Introduce Android development platform

Part 2:

- Feature detection and descriptors
- Image matching
- Panorama and HDR images

Part 3:

- Object detection, landmark recognition and image classification
- Deep Learning and random forest

Part 4:

Tracking, VSLAM, and virtual augmentation

Part 5:

- Special topics in mobile computer vision
- Project discussion and presentations

Visual search and landmarks recognition

Location/landmark recognition

Quack et al 08 Hays & Efros 08 Li et al 08

Courtesy of R. Szelisky and S. Seitz

Web repositories

Yeh et al 04 Zheng et al 09

Facebook

(on the cloud; eg picasa)

Shape and object matching

• Shape Classification Using the Inner-Distance [Ling and Jacobs 07]

Bag of words representations

- Pyramid matching
- Recognition with a Vocabulary Tree

- Efficiency
- Scalability to large database

Deep learning and random forests

Hinton, Bengio, Lecun, Ng, Breiman, Amit, Geman, etc....

Class organization

Part 1:

- Review the Android architecture
- Introduce Android development platform

Part 2:

- Feature detection and descriptors
- Image matching
- Panorama and HDR images

Part 3:

- Object detection, landmark recognition and image classification
- Deep Learning and random forest

Part 4:

Tracking, VSLAM, and virtual augmentation

Part 5:

- Special topics in mobile computer vision
- Project discussion and presentations

Features from videos

Courtesy of Jean-Yves Bouguet

- Features from videos
- Descriptors from videos
- On-line feature tracking

- •Ferrari et al 01
- Skrypnyk & Lowe 04
- •Takacs et al 07
- •Ta et al 09
- •Klein & Murray 09

3D reconstruction and camera localization

Courtesy of Jean-Yves Bouguet

- SFM
- VSLAM

- •Ferrari et al 01
- •Skrypnyk & Lowe 04
- •Takacs et al 07
- •Ta et al 09
- •Klein & Murray 09

Tracking and Virtual Reality insertions

"Server-side object recognition and client-side object tracking for mobile augmented reality", Stephan Gammeter, Alexander Gassmann, Lukas Bossard, Till Quack, and Luc Van Gool

Class organization

Part 1:

- Review the Android architecture
- Introduce Android development platform

Part 2:

- Feature detection and descriptors
- Image matching
- Panorama and HDR images

Part 3:

- Object detection, landmark recognition and image classification
- Deep Learning and random forest

Part 4:

Tracking, VSLAM, and virtual augmentation

Part 5:

- Special topics in mobile computer vision
- Project discussion and presentations

Agenda

- Administrative
 - Requirements
 - Grading policy

- Mobile Computer Vision
- Syllabus

Next Lecture

 Overview of the Android platform & guiding examples by Dr Alejandro Troccoli (Nvidia)

- Please come and pick up your tablet!
 - Today until 6pm, 126 Gates
 - Tomorrow from 2-3pm, 126 Gates

Computer vision and Applications

Computer vision and Applications

How to make this to work?

Solve a number of challenging computer vision problems and implement them on a mobile system

- Image classification
- Object detection
- Tracking
- Matching
- 3D reconstruction

Detection & object recognition

Does this image contain a car? [where?]

Detection:

Which object does this image contain? [where?]

Detection & object recognition

Does this image contain a clock? [where?]

Challenges: illumination

Challenges: scale

slide credit: Fei-Fei, Fergus & Torralba

Challenges: deformation

Challenges: occlusion

Challenges: background clutter

Challenges: viewpoint variation

Challenges: intra-class variation

Recognition

Search strategy: Sliding Windows

Viola, Jones 2001,

- Simple
- Computational complexity (x,y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10

Recognition

- Recognition task
- Search strategy: Sliding Windows
 Viola, Jones 2001,
 - Simple
 - Computational complexity (x,y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10
 - Localization
 - Objects are not boxes

Recognition

- Recognition task
- Search strategy: Sliding Windows
 Viola, Jones 2001,
 - Simple
 - Computational complexity (x,y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10
 - Localization
 - Objects are not boxes
 - Prone to false positive

Non max suppression:

Canny '86

••••

Desai et al, 2009

Star models by Latent SVM

Felzenszwalb, McAllester, Ramanan, 08

• Source code:

Implicit shape models

Visual codebook is used to index votes for object position

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit</u> Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Credit slide: S. Lazebnik

Face Recognition

Digital photography

Automatic face tagging

The Viola/Jones Face Detector

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

- A "paradigmatic" method for real-time object detection
- Training is slow, but detection is very fast
- Extensions to mobile applications

Single 3D Object Recognition

- No intra-class variation
- High view point changes

Single 3D Object Recognition

Lowe. '99, '04 Hsiao et al CVPR 10

- Handle severe occlusions
- •Fast!

Courtesy of D. Lowe

Single 3D Object Recognition

Tracking and 3D modeling

G. Klein and D. Murray. Improving the agility of keyframebased SLAM. In ECCV08, 2008.

G. Klein and D. Murray. Parallel tracking and mapping on a camera phone. In ISMAR'09, 2009

Tracking and Virtual Reality insertions

"Server-side object recognition and client-side object tracking for mobile augmented reality", Stephan Gammeter, Alexander Gassmann, Lukas Bossard, Till Quack, and Luc Van Gool

Detection and 3d Modeling

Min Sun, Gary Bradski, Bing-xin Xu, Silvio Savarese, Depth-Encoded Hough Voting for Joint Object Detection and Shape Recovery, ECCV 2009

Detection and 3d Modeling

Min Sun, Gary Bradski, Bing-xin Xu, Silvio Savarese, Depth-Encoded Hough Voting for Joint Object Detection and Shape Recovery, ECCV 2009

Automatic Panorama Stitching

Automatic Panorama Stitching

- •M. Brown and D. Lowe, "recognizing panoramas", 03
- •Yingen Xiong and Kari Pulli, "Fast Panorama Stitching for High-Quality Panoramic Images on Mobile Phones", IEEE Transactions on consumer electronics, 2010

Agenda

- Administrative
 - Requirements
 - Grading policy

- Advanced Topics in Mobile Computer Vision
- Syllabus & Projects