HoloPanel:
Interactive Augmented Reality Panel Interface for Android

ABRAHAM BOTROS
SUNet ID: abotros
abotros@stanford.edu
Stanford University, Winter 2015 - CS231M Final Project Report

1 Introduction

Augmented reality (AR) promises to bridge the gap between
the physical and virtual worlds. AR would allow users to in-
teract with mobile devices in novel and intuitive ways, and
would allow better integration into everyday life, as users
would not have to look strictly at a handheld device with
limited screen and input space, and could instead essentially
interact with the world in front of them.

Especially in recent years, AR has become more and more
of a popular topic even in the public eye, with numerous ap-
pearances in media such as in films such as “Minority Report”
and the “Iron Man” series. We have even seen the initial
stages of formidable commercially-available AR devices for
the near future, such as Microsoft HoloLens. Especially with
the advent of ubiquitous smartphone ownership and wearable
heads-up displays (HUDs) such as Google Glass and Microsoft
HoloLens, utility-focused AR, applications may become in-
creasingly more practical and useful. Applications include
such things as AR panels when walking, driving, or otherwise
in-motion; elegant interfaces for seamless interaction without
handheld devices in the case of wearable displays; intuitive
interaction with AR objects, such as 3D models; and in gen-
eral allow us to take baby steps towards some of the related
AR or hologram-based technology prevalent through science
fiction.

While many current AR applications for mobile phones and
wearable devices focus on providing graphical entertainment,
the current project aims to experiment with more practical
implementations for every-day use of an AR interface. In par-
ticular, we aim to create an AR-based panel-like interface that
the user can interact with using hand and finger motion to
do things such as easily gleaning summary information (time,
system information, location, weather, recent activity, etc.)
or performing simple shortcut-like actions.

Overall, the proposed system here is implemented on an
NVIDIA Shield tablet running Android OS, and uses contin-
uous camera image frames to detect hand and finger location
in front of the device in real-time. This first involves a cali-
bration step, where the user shows their hand to the system,
and the system extracts color/hue information to use for fu-
ture reference for detection. In subsequent frames, the system
finds similar hues to those seen in the hand in the calibration
step, and uses this to detect hand/finger locations in these
new frames. These locations are then used to interact with
the AR panel interface displayed on the device screen, also in
real-time. We observe reliable hand/finger location and accu-
rate interaction with the panel interface in simple and even

changing backgrounds, but see failure when backgrounds con-
tain similar hues as the foreground hand/fingers. In general,
these results suggest this system is a simple yet effective com-
bination of hand/finger tracking and AR interaction, though
there is certainly room for future improvement before such a
system would be practical in real-world applications for end
users.

2 Comparison to previous work

2.1 Previous work

In [4], the authors evaluate performance on a mobile AR sys-
tem using marker-based finger tracking and the Qualcomm
Augmented Reality (QCAR) SDK. Their work mainly focuses
on comparing this AR system to normal touch-screen inter-
action, with results indicating that the AR-based approaches
they implement are usually more fun and engaging than more
traditional touch-screen interfaces, but not as always as quick
or efficient for performing mundane on-screen object manipu-
lation. Since their approach is focused on marker-based track-
ing, and we intentionally want to avoid markers to increase
robustness and practical relevance, this work presents more
an overview of the current near-upper-bound of what AR in-
terfaces can do and how they compare with traditional screen
interfaces.

In [3], Bradski introduces a now-common algorithm called
CAMSHIFT, based on the mean shift algorithm. As we will
see is similar to our approach for modeling hand/flesh prob-
ability, CAMSHIFT is applied to face tracking by forming
histograms of hues in reference images to create a reference
distribution of probabilities relating hues to flesh probabili-
ties. This mapping is then used in subsequent frames to find
the most likely region containing a face, with the main contri-
bution of the CAMSHIFT algorithm being tracking of high-
probability-density regions making small movements between
frames using an adapting search window.

In [5], the authors present a robust system for marker-
less fingertip tracking for manipulating AR objects. They
present a complex yet real-time system for robustly deriving
a mapping from camera position to a single hand pose (with
relatively-assumed fingertip positions) over successive frames.
Using this single pose, fingertips are then segmented from the
hand, and tracked in subsequent frames. Estimation of hand
and finger position allows derivation of the camera location
and orientation, which in the end allows for relatively reliable
use of hand and finger location in the AR interface. However,
we specifically did not want to assume a fixed hand/finger
pose, as in real-world applications we would hope a system

mailto:abotros@stanford.edu

would be able to intelligently detect user intent given varied
hand poses.

Numerous academic works, such as [6], and commercial
products, such as Microsoft Kinect, provide accurate hand-
tracking for often controlled environments with the help of
depth information. This allows robust segmentation from
background, potentially even with changing backgrounds,
poor lighting, similarities in color between foreground and
background, etc. While these could all lead to relatively high
performance AR systems due to the accuracy in tracking body
parts, depth-estimating devices are not currently widely avail-
able in mobile platforms (and certainly not available in devices
like smartphones and tablets at the moment), so we intention-
ally avoid assuming depth sensor information input for our
system.

Works such as [6] and [2] also require extensive setup and
specific positioning of table spaces, cameras, users, etc. Simi-
lar to depth information above, this leads to large constraints
on practical usability, and in particular makes such systems
irrelevant to mobile computing applications.

2.2 Differences

The current work aims to combine several of the techniques
and approaches used in the literature to develop a simple yet
efficient system for end-to-end tracking and AR interaction.
As hinted at above, though, the goal of this work is to im-
plement a system that works with minimal assumptions and
inputs. In particular, we:

e Allow both different and changing backgrounds. Users
do not need to be sitting at a specific desk with exten-
sive setup (as in [6] and [2]), and only need the sin-
gle camera on the back of an NVIDIA Shield tablet,
for example. There are no specific assumptions on the
background, and therefore any background is techni-
cally permissable; however, as we see in Section [cer-
tain backgrounds do end up performing better/worse
than others due to similarities in hand and background
hues.

e Do not require a depth sensor. As mentioned above,
many systems use depth information, but since mobile
devices rarely have such a sensor, we do not assume it
to be present.

e Do not require a specific hand pose, as in [6]. Users
should be able to use the interface with a variety of
deformable hand poses.

e Do not use markers, as in [4]; we intentionally want to
avoid markers, as we cannot realistically assume end
users would carry/wear markers throughout the day if
using such a system.

e Require more than just the location of a high-
probability-density region, such as is output by the
CAMSHIFT algorithm discussed in [3]. In particu-
lar, we want to be able to find the actual locations of
the fingertips, along with the number of convexity de-
fects to get an estimate of the number of fingers being
shown. As a side note, we also do not assume that
the hands/fingers only move a small amount between
frames; while this seems a reasonable assumption, this
requires reliable initial estimates, which we did not as-

sume at this point in the project (see Section .

e We require our system to function in real-time, us-
ing only the local processing power of a commercially-
available Android tablet. More complex modeling of
hand structure and other complex computations (in-
cluding finger classification, etc.) were, as a result, not
considered.

3 Technical approach

Our system uses the NVIDIA Shield Android tablet as
our testing platform, with code implemented in C++ using
OpenCV 2.4.8 and in Java/Android using the Android NDK
interface. We first provide a quick, general summary of our
approach in Section and then break down the pipeline
into more detail in Section 3.2

3.1 Technical summary

Our approach involves first performing hand/finger tracking,
and then using those tracked locations to allow the user to in-
teract with an AR panel interface. We can therefore break our
overall approach down into those two components as follows
in this subsection.

3.1.1 Hand/finger tracking

We adapt an approach somewhat similar to that used in the
CAMSHIFT paper ([3]) for finding the general hand location,
and then augment slightly using standard computer vision al-
gorithms to get finger locations. This is outlined as follows:

e Extracting reference hues from the user’s hand on an
initial calibration image.

e Creating a normalized histogram of these hues to proxy
the probability of a given hue value being flesh.

e Back-projecting hue-flesh probabilities onto the image
space.

e Using these back-projections to find the largest convex
hull of pixels above some flesh probability, giving us the
approximate hand location.

e Estimating the main pointing finger’s location by eval-
uating corners of the largest convex hull.

e Estimating the number of fingers extended by evaluat-
ing convexity defects of the largest convex hull.

3.1.2 AR panel interface

Using the estimated locations of the user’s hand and fingers,
we then use these locations to allow the user to interact with
the AR panel interface:

e The main pointing finger’s location is used for selecting
objects in the panel interface.

e The number of fingers is currently only displayed as aux-
iliary information, but could be used for varying actions
and selections based on the number of fingers showing
at the given time.

e Object selection triggers corresponding actions in the
Android system, such as displaying information to the
user, or potentially launching other applications (the
latter was not yet implemented).

3.2 Technical pipeline

We then convert the RGBA of the center box to HSV color
space, getting an image matrix Iy . (I for image, H for HSV,

3.2.1 Hand/finger tracking - Initialization/calibration ¢ for center region) that represents the HSV values in the

To begin tracking, we first must initialize on a calibration
image. Once the HoloPanel application is started on the An-
droid system, the user uses the on-screen camera display to
place their hand in a rectangular box in the image. Since most
of the action in the HoloPanel application will be via pointing
with the palm of the hand facing away from the camera, we
find it is best if the user fills the entire rectangular box with
the full back of his/her hand. The box outline surrounds the
center 36% of the image (60% along each dimension). The
user then taps the screen to initialize on a given frame. Our
initial frame (and all subsequent frames) are of size 720x480
pixels. An example calibration frame is shown in Figure

Figure 1: Example of initial calibration frame against simple black back-
ground.

Ideally, the user places his/her hand in front of a totally
black background for calibration. Assuming this, we first con-
vert the RGBA image to grayscale, and threshold out pixels
with intensities less than some value (empirically, masking
out pixels with values less than 10 of 255 seemed to work
best, followed by eroding the mask around 3 times or so to
eliminate some scattered noise). An example of such a binary
mask is shown in Figure [2] The user is not required to use a
completely black background, though, as this only marginally
helps performance, if any; it is most important that the user
simply fill up the entire calibration box with his/her hand,
so hopefully no background would be showing anyway (see

Section [5)).

A

»
1 hat Mg . is not appliwo-Tch {_iT:"Tﬁ
]

center of the original calibration frame. Similarly, we can ex-
tract only hues to get I . (lower-case h to indicate only hue
values as opposed to full HSV tuples). Using I ., we cre-
ate and store a mask My ., which indicates if a given pixel
has a valid HSV value or not; we use ranges from OpenCV
CAMSHIFT examples, where the HSV value must be between
the tuples (0, 60, 32) and (180, 256, 256). As explained in [3],
this allows us to exclude pixels with poor S/saturation and
V /values, which correlate to noisy H/hue values[l| Lastly, we
apply a very generous Gaussian blur to the hue values in I}, .
(in practice, a kernel size of (21, 21) seemed to work best),
which helps in smoothing our some of the noisy hue values we
consistently get from the low-quality images we are capturing
from our camera video stream. Without such smoothing, we
are very prone to forming a flesh model based on noisy and
misleading hue values. An example of the output of the hue
extracted from the full and cropped (only the center region)
calibration images are shown in Figure

We then compute a histogram based on the hues we have
extracted from the center of the calibration image. As in most
CAMSHIFT implementations, we use 16 histogram bins. We
also apply the mask Mg . we computed in the previous step
when creating our histogram, completely avoid counting pix-
els that have invalid HSV values. We then normalize the
histogram, giving us a normalized histogram Hj (initial H
for histogram, subscript h since based only on hue), where the
* corresponds to the fact that this is used as our reference his-
togram for hand/finger/flesh probabilities for all subsequent
steps. As a result, the exact histogram we form here essen-
tially determines the performance of the rest of the runtime
of this particular calibrated instance of our system. We hope
that hues that have higher histogram counts/probabilities re-
liably correspond to pixel hues of ground-truth flesh pixels,
and use this assumption going forward to measure the proba-
bility of future pixel hues corresponding to flesh, too. Figure
shows an example of the histogram formed from the initial
image center I, . in Figure 3| and using the mask Mg ..

Figure 4: Example of reference histogram H;;)C formed from I, . (Figure
3b) using mask Mgy ..

reated from Iz) and will only be used in later steps.

3.2.2 Hand/finger tracking - Tracking after initial-
ization

Now that we have completed our initialization/calibration
phase using our initialization/calibration image, we are ready
to proceed with all subsequent image frames where we want
to track hands/fingers for AR panel interaction.

Figure 5: Example of new frame I’ against simple black background.

Given a new image frame I’ (we will use the Figureas our
running example), we convert to HSV (I};) and extract hues
over the entire new image frame to give I; (shown in Figure
@ﬂ When computing the new image’s hue values, we store
a new mask M}, (mask based on HSV tuples; ’ to indicate
this is for our new image) representing whether each pixel has
a valid HSV value or not based on the conditions explained
earlier. We note again that M}, is not applied to I’, I};, or
I;.

abotros 4

Figure 6: Example of new frame’s extracted hue values, I} .

Given that we already computed our reference histogram
Hy . in the previous section, and now that we have our
new image’s hues I, for each pixel location, we can compute
back-projection probabilities for each pixel in any new image
I’/I;LE| Thus, for the hue for each pixel location in I} , we look
up that hue’s corresponding bin in our normalized reference
histogram, assign it the probability of that bin, and store it in
a back-projection probability matrix P’ (P for probability).
Again, the assumption is that, if our initial calibration image
was able to create a reliable initial reference histogram with
higher probabilities assigned to flesh-colored pixels, we can
then assign reliable probabilities to any future pixels by using
our histogram. We note that P’ uses probabilities from our
reference histogram Hj ., but scales values to the full range
of hues (0 to 180 in the case of applications using OpenCV).

Given that P’ has the same size as our hue image I}, P’
has a corresponding value for each pixel location that is some
scaled value between 0 and 180 depending on the probability
of the hue in that pixel location being flesh. We can then
apply our previously-computed mask M}, on our image-like
P’ matrix to zero out pixels corresponding to invalid HSV

values. From here, we threshold our back-projection prob-

2Note that the word “entire” is specifically used here to indicate that we no longer are looking at only the center of an image; use of image
centers was only for initialization/calibration, where we assumed the user’s hand was contained in said center.
3Note that the reference histogram H . was formed on only the center region of our initial calibration image, but since it was normalized, it

can serve as reference for any new entire image /1 }/1

abilities (taking only pixel locations with a value of 50% of
the max 180 value seemed to work best empirically), apply
another generous Gaussian blur (again, with a kernel size of
(21, 21)), and perform a single erosion on the image to again
eliminate some unwanted, scattered noise. An example of P’
for I' is shown in Figure

Figure 7: Example of back-projection probabilities P’ computed from I’ in
Figure [5|and I;, in Figure

The back-projection probabilities in P’ are then used ex-
tensively to compute the remaining unknowns for our system
for this new image frame I’. First, to locate and isolate our
prediction for the user’s entire hand in the image I’, we com-
pute the contours C’ of P’, and use these contours to find the
largest convex hull CH’ of P’. We restrict that the largest
convex hull must have an area larger than some minimum size
(we used 0.152 the size of the full image area) and yet smaller
than some maximum size (80% of the full image area); these
restrictions help us eliminate detecting hulls that are either
too small (likely the hand is not in the picture and we are
picking up some other noise) or too large (likely detecting the
hand and large portions of flesh-hue-like background instead
of just the hand). An example of an accurate detection of the
largest convex hull from P’ is shown in Figure

Figure 8: Example of largest convex hull CH’ computed from P’ in Figure
The blue circle indicates the location of the centroid C'H’, and the green
circle indicates the location of the farthest corner F’.

Given CH’, we then want to approximate the centroid

CH’. As in CAMSHIFT, we can do so by using image mo-

ments, and setting the location of the centroid to:

—7 _ Mo

CH ;= — 1

PE— My

o, = -2 2
Yy A-/[OO ()

Where My is the zero-th order moment, and My and My
are the first-order moments with respect to x and y directions
of the image. The centroid of C H’ is shown in blue in Figure
B

Given the largest convex hull CH’ and the hull centroid
CH’, we can then compute the estimated location of the fin-
ger the user is most likely using to point with and therefore
to interact with the AR panel interface. To do so without
restricting that any certain finger or pose is used, we simply
find the farthest convex hull corner from the centroid; we re-
strict that this corner must be some threshold distance away
from the image edges to avoid detecting corners along the arm
or wrist, for example, when the hand is outstretched into the
center of the image. This gives us the location of the main
finger we want to track, F’, as shown in green in Figure

Lastly, we compute convexity defects on CH’ to estimate
the number of fingers being shown in I’ (note that we will be
using a different I’ example just for the illustration of con-
vexity defects). We use the contours C’ and hull CH’ corre-
sponding to the largest convex hull, and count the number of
convexity defects that have a convexity depth exceeding some
minimal threshold and not having a contour contour that lies
too close to an image edge (these would likely correspond to
the defect between the thumb or pinky finger and the fore-
arm). Counting the number of valid defects, we then take the
number of fingers to be:

(# extended fingers) = min (5, (# convexity defects) +1
(3)

An example of correct detection of 5 fingers is shown in Figure

Figure 9: Example of convexity defects computed on some largest convex
hull CH’ for some image frame where the user has extended all five fingers.

3.2.3 AR panel interface - Interaction

Now that we have extracted all relevant summary information
from our new frame I’, we hopefully have a decently-accurate
representation of where the hand and fingers are in the image,
and in particular where the user might be pointing (F’). We

have five possible panel selections/actions, as outlined in Sec-
tion therefore, we choose the corresponding five points
in the image to serve as our action points Aj,..., A5 (A for

action). If the user’s finger (again, approximated by our point
F') enters some radius around one of we then trigger the cor-
responding actionE] Visualized on our running example I’
we can think of circles of some fixed radius around our action
., As, as seen in Figure

points Ay, ..

Figure 10:
Ai,...,As.

Example of circles of fixed radius around action points

3.2.4 AR panel interface - Actions

60° - Cloudy
San Flancwsco‘ 94122

Figure 11: Example of AR panel interface. The main extended fingertip
(at point F’ in green) is shown selecting action A, which corresponds to
checking the current location and weather.

An example of the panel interface running on the NVIDIA
tablet in real-time is shown in Figure The five actions are:

e Ay: (Top-left) Show a pre-selected saved image on the
device (currently pre-compiled and not changeable by
the runtime user).

e Ay: (Top-center) Show the current location and weather
of the user.

e As: (Top-right) Show general system information, in-
cluding current date, time, and battery level.

o A,: (Bottom-left) Show current number of unread email
messages (currently just displays a fixed number).

o As: (Bottom-right) Show current number of social me-
dia (Facebook and Twitter) notifications (currently just
displays fixed numbers).

Note that the actions are simple so far, as we were focusing

on the computer-vision aspects of the AR system; they could
easily and certainly be extended as discussed in Section

Each action point Aq,...,As always contains some icon
representing the corresponding action, as seen in Figure

When an action is triggered, a blue circle is shown sur-
rounding the relevant icon (and corresponding to the cir-
cles shown in Figure , and a translucent Android view
is brought to the foreground to overlay the screen with the
relevant information. Icons, views, and other panel informa-
tion are all drawn in Android, not in C++ or OpenCV (with
the exception of the blue circles around selected icons), and
allows us to avoid manually redrawing such complex graphics
with each camera frame.

In particular, for action As, user location and weather are
computed when the Android activity starts up, using the de-
vice’s last known location and querying the Yahoo Weather
APT [1]. Weather information is parsed to prepare a corre-
sponding weather image. For action As, time, date, and bat-
tery status are queried from the device on action selection.

4 Results

Videos of results can be seen at:

e https://www.youtube.com/watch?v=0qX5HqUQyog -
Video ID 1 in this paper.

e https://www.youtube.com/watch?v=qMgk0652SM0| -
Video ID 2 in this paper.

e https://www.youtube.com/watch?v=NZFL_Qf-qcQ -
Video ID 3 in this paper.

e https://www.youtube.com/watch?v=_V23NV6Lwnl| -
Video ID 4 in this paper.

e https://www.youtube.com/watch?v=6dmQIckf jDg
Video ID 5 in this paper.
Preliminary results that visualize a bit more of the system
(though in its earlier stages) can be seen at:

e https://www.youtube.com/watch?v=WpzBGLEidbk
e https://www.youtube.com/watch?v=5rIsTagGW6T

On the NVIDIA Shield tablet running Android 5.1,
OpenCV 2.4.8, and using the Android NDK, our system
obtains frame rates of approximately 25FPS on calibration
(serving as a benchmark for our resolution and code, as we
are simply drawing a single rectangle for calibration frames),
and approximately 10FPS after initialization/during process-
ing of new frames for hand/finger tracking and AR panel in-
teraction. All work is done locally on the device, and no
computation is off-loaded from the device to any server else-
where.

The testing procedure was done on the actual device, and
each time roughly involved a series of motions after initializa-
tion to primarily test tracking:

(1) Only index finger extended, moving successively be-
tween each region Ay, ..., As, with brief pausing at each
action region. Note that due to the author’s right-
handedness and constraints on screen size, the thumb
was often used to select specifically As.

(2) Only thumb extended, repeating the movements above,

4In practice, to avoid spurious selections, we enforce that the user’s finger must remain in a given action point’s radius for these points, at least

five consecutive frames, or about half a second in a 10FPS system.

https://www.youtube.com/watch?v=oqX5HqUQyog
https://www.youtube.com/watch?v=qMgkO652SM0
https://www.youtube.com/watch?v=NZFL_Qf-qcQ
https://www.youtube.com/watch?v=_V23NV6LwnA
https://www.youtube.com/watch?v=6dmQIckfjDg
https://www.youtube.com/watch?v=WpzBGLEidbk
https://www.youtube.com/watch?v=5rIsTagGW6I

with slightly farther distance from camera.

(3) Test of detection of all five fingers extended, showing
both palm and back of hand towards camera succes-
sively.

(4) Testing of detected/non-detected finger locations when
the hand was removed from the camera view.

(5) Testing of detection upon the hand re-entering the cam-
era view with index finger extended, and selecting As.

For the duration of each testing session on the different back-
grounds (discussed below),

Table [1] shows results against different backgrounds and
runtime conditions. Relevant notes for each runtime condi-
tion are then included afterwards. Each session took roughly
45-55 seconds (just depending on variations in the author’s
movements), and were only subsets of the linked videos given.
The author manually counted image frames where the esti-
mated main fingertip location F’ (see Section [3.2)) was or was
not either touching the fingertip or within approximately 1
centimeter from the finger (in real-world, not image, coordi-
nates); frames where the estimated fingertip location was not
accurate according to these criterion were labeled as error
frames. As a side note: this was a rather stringent criterion
for error analysis, as even estimating the fingertip was in-
stead along the finger, somewhere inside the hand region, or
on a different edge of the hand would constitute error frames,
though relaxing this criterion would not have improved results
too significantly.

e For the black chair background (video ID 1), all errors
occurred when the hand was totally out of view, and
were due to spurious detections of small convex hulls of
light reflecting off the back of the chair.

e For the white wall background (video ID 2), all er-
rors occurred due to the estimated fingertip location
F’ switching to an erroneous hand edge when the finger
was bent towards the hand and the hand was near the
edge of the image.

e For the desk background (video ID 3), all errors oc-
curred when the hand and finger were in compromised
conditions, as in the white wall background condition.

e For the wood floor background with some background
movement (video ID 4), results were quite terrible. See
Section [l for a discussion of these results.

e For the backyard/outdoor background with significant
camera movement and background changing (video ID
5), results varied greatly depending on initialization,
and best results for best initialization in the full test
video were shown (in the video ID 5 link, this was ap-
proximately from 00:41 to 01:34 in the video). However,
results can dip down to the 50% error/success level or
lower depending on the initialization and specific back-
grounds.

We lastly note that no formal testing of the panel selection
process itself was done, as this always appeared to work flaw-
lessly (if the finger was detected to be in an action region for
the minimum amount of consecutive frames, the action was
always activated as expected).

5 Discussion

5.1 Backgrounds, initializations, and light-
ing

The system works quite well in simpler backgrounds, such as
solid, non-flesh-colored backgrounds (a black chair or white
wall), or a somewhat-crowded desk background (varying col-
ors, objects, and lighting in the background, but few flesh-
colored pixels in the background). The system also works
decently in the case of a moving camera against a cluttered
backyard background, though results vary depending on the
specifics of the initialization and the items in the background.
Unfortunately, the system fails miserably when the back-
ground has similar hues to the user’s flesh hue.

In simpler backgrounds that do not contain flesh-hue-like
pixels, we can more easily segment the hand out from the
background (as discussed earlier, we do not put any con-
straints on the background and instead assume it might be
constantly changing, so segmentation does not come as easy
as background subtraction). As long as initialization is de-
cent and does not include much of the background, we can
form a reliable reference histogram that places high probabil-
ities on hues that are quite different from the background; if
subsequent frames also contain hand/finger pixels that have
different hues than the background, then the task becomes
fairly easy and our tracking works effectively.

In the case of changing backgrounds (such as the user walk-
ing around, or objects in the background scene moving), the
task is a bit more difficult, especially because flesh-hue-like
pixels that pop up in the background can degrade clean seg-
mentation of the hand and fingers from the background. In
addition, changes in lighting have large effects on our seg-
mentation and tracking, as relying on hues alone makes us
vulnerable to unreliable hues obtained from high or low sat-
uration or brightness pixels that were not masked out by our
HSV thresholds.

When the background contains significant amounts of flesh-
hue-like pixels, the system fails because it cannot distin-
guish the foreground hand/fingers from the background ob-
jects/scene. This is a major problem that comes with relying
strictly on hue - if the hues are not differentiable between
foreground and background, we have little hope of recover-
ing. This was especially apparent in the case of the wooden
floor background, which had similar hue to the author’s hand;
the system simply believes that most or all of the image is the
user’s hand. While some constraints were placed on minimum
and maximum convex hull size for identifying the hand region
in the image (see Section , modifying these constraints
to be a little harsher (such as restricting convex hulls to not
cover either the entire width or height of the image) might
help a bit. However, even if we do better and excluding such
convex hulls, we would still need to have a way to distinguish
the hand from the surrounding background image pixels with
similar hue. To this end, we did put some work into augment-
ing back-projection probabilities with 0-valued contours cre-
ated from edges detected in the new frame’s RGB colorspace,
but this did not improve performance (see Figure .

If instead we had depth information via depth sensors im-

Video ID Condition summary Errors | Test frames | Error (%) | Success (%) | 5 fingers detected
1 Black chair, inside 12 550 2.2% 97.8% Yes
2 White wall, inside 9 550 1.6% 98.4% Yes
3 Crowded desk, inside 6 450 1.3% 98.7% Yes
4 Cluttered wood floor, inside 485 550 97.0% 3.0% No
5 Cluttered backyard, outside 150 550 27.3% 72.7% Shaky

Table 1: Table of results. Note that numbers are approximate.

Figure 12: Example of attempts to augment back-projection probabilities for a given image with edge contours detected from RGB space (grayscale was
also tried, to no avail). We used edges detected from RGB colorspace for a given image to draw 0-valued contours on top of the back-projection probabilities,
which would ideally prevent convex hulls from being created through the edges of the hand. However, we found that either (1) gaps existed between edge
contours, precluding forming perfectly-segmented convex hull regions, as in (a); or (2), too many edges were detected as in (b; though a rather extreme
example), causing only very small convex hulls to be formed, usually along only a small portion of the hand.

plemented on mobile platforms, we could then easily segment
a foreground user hand/fingers from the farther-away back-
ground, which would almost certainly drastically improve the
robustness of the system and allow for this to be used in
a variety of environments. However, depth sensors are not
currently widely available on commercial mobile devices like
smartphones and tablets, so this is not a viable option at the
time, despite the potential it possesses.

In addition, we also observed that sometimes the HSV
range checks we applied in Section masked out some
HSV pixels that actually belonged to the hand/fingers, usu-
ally when specific lighting conditions (such as shadows or un-
usual light cast from nearby monitors, etc.) caused variations
away from normal-lit hues. However, the used ranges seemed
to be the best choise for overall use, and the problematic cases
for these HSV ranges were relatively few and far between.

Lastly, we should note that initialization quality has an ex-
tremely large effect on system performance. As can be seen
in the outdoor background video (video ID 5 in Section [4),
various initializations are tried in the beginning and end of
the video that result in very poor performance, while an ini-
tialization in the middle of the video (and used for test results
for this condition) led to much better hand/finger segmenta-
tion/tracking. Instead of using a rectangular box to capture
the center of the calibration image, we might in the future
attempt to use a hand-and-finger-shaped region shown to the
user so that the user could show exactly the pose they would
mainly be using to select panel items (usually a closed fist
with only the index finger extended).

5.2 Number of outstretched fingers

We also did not yet implement any actions depending on the
number of outstretched fingers, which could be a potential
extension. For example, different icons and actions could be
shown based on the number of fingers detected at the time, or
different numbers of fingers could be shown to indicate user
intent for more general actions, such as turning on/off the sys-
tem tracking, swiping between panels, or switching between
icon sets.

5.3 CAMSHIFT

We also experimented with using CAMSHIFT to detect a
CAMSHIFT window around the user’s hand and fingers, as
can be seen in Figure[I3]and in an earlier prototype of the sys-
tem at https://www.youtube.com/watch?v=WpzBGLEidbk.
However, the CAMSHIFT window often only covered the
main region of the hand, leaving the extended finger (which
is exactly what we wanted to track in the first place) outside
of the box. Still, CAMSHIFT provides a good estimation
of the main high-probability-density region where the hand
might lie, so our system could be further extended to include
information from CAMSHIFT (such as the location of the
CAMSHIFT window center and size) to compute the likely
location of the finger (such as requiring that the finger belong
to the same convex hull that eclipses with the CAMSHIFT
window).

https://www.youtube.com/watch?v=WpzBGLEidbk

-

Figure 13: Example of CAMSHIFT applied to a new image. Note that
the CAMSHIFT window (the inner box) only surrounds the main hand area,
and excludes the finger area. The outer box represents the next CAMSHIFT
search window.

5.4 Panel interface

We first note that the panel interface does a decent job of giv-
ing the user basic information in real-time. Users can fairly
quickly select action items in the panel (limited primarily by
the threhsold number of consecutive frames to select a panel
item), and the information is concise and translucent enough
that this does not get in the way of future selection of panel
items or of events occuring in the background of the image,
lending to real-time heads-up display use.

However, the panel interface is currently quite minimal and
could certainly be vastly improved and extended. In particu-
lar, actions such as checking email and social media notifica-
tions could be fully implemented, and more information could
be shown in the information-based actions, such as the loca-
tion/weather action and the system information action. In
addition, panel selection areas could be moved around, as se-
lecting the region at the bottom on the side of the user’s hand
is quite awkward, as the user must struggle to keep the hand
and fingers in view (and, under the hood, above the minimal
convex hull area) while still putting an extended finger into
the panel region. The bottom regions could instead be ac-
cessed at the sides of the image/screen, which would provide
for better user experience.

5.5 Runtime

The system was able to function in real-time at 10FPS, and
did not seem too slow for prototype performance. However,
frame rate would need to be increased before any widespread
use. This would likely involve minimizing use of heavier func-
tions, such as generous Gaussian blurring, and might include
setting more fast-fail constraints on search spaces, such as
limiting the number of contours searched for convex hulls,
or minimizing the number of contours generated in the first
place through better hyperparameter tweaking. More analy-
sis could also be done using tools such as NVIDIA’s PerfHUD
ES.

5.6 Future platforms

Implementing such a system on platforms such as Microsoft
HoloLens or Google Glass would be ideal, as these systems
have heads-up displays that could fully benefit from such an
AR interface. Users would potentially be able to call up the

system when wanted, and the system would recognize finger
position and gestures to interact with the device without ever
having to use hardware input on the device itself. This is opti-
mal as it would allow users to have a fully AR-like experience
in real-time, and would potentially have real utility.

5.7 Conclusion

Overall, we present a system that performs real-time tracking
of the user’s hand and fingers from a mobile camera and that
allows the user to interact with an augmented reality panel
interface. The entire system can be run on a single NVIDIA
Shield tablet (or device with similar specifications), and thus
allows interaction with the underlying Android operating sys-
tem via panel selections and actions. This work provides a
utility-focused AR application that could potentially be used
in everyday life to glean quick information from a mobile de-
vice (and ideally one with a heads-up display) with minimal
intrusion into current activities. This would create a novel,
intuitive, and efficient user experience that would augment,
instead of distract from, real life.

References

[1] Yahoo weather api.
weather/.

https://developer.yahoo.com/

[2] Integrating paper and digital information on enhanced-
desk: A method for realtime finger tracking on an aug-
mented desk system. ACM Trans. Comput.-Hum. Inter-
act., 8(4):307-322, December 2001.

[3] G.R. Bradski. Computer vision face tracking for use in a
perceptual user interface. Interface, 2(2), 1998.

[4] Wolfgang Hurst and Casper van Wezel. Gesture-based in-
teraction via finger tracking for mobile augmented reality.
Multimedia Tools and Applications, 62(1):233-258, 2013.

[5] Tachee Lee and Tobias Hollerer. Handy ar: Markerless
inspection of augmented reality objects using fingertip
tracking. In Proceedings of the 2007 11th IEEE Inter-
national Symposium on Wearable Computers, ISWC 07,
pages 1-8, Washington, DC, USA, 2007. IEEE Computer
Society.

[6] Robert Wang, Sylvain Paris, and Jovan Popovié¢. 6d
hands: Markerless hand-tracking for computer aided de-
sign. In Proceedings of the 24th Annual ACM Sympo-
stum on User Interface Software and Technology, UIST
11, pages 549-558, New York, NY, USA, 2011. ACM.

https://developer.yahoo.com/weather/
https://developer.yahoo.com/weather/

	Introduction
	Comparison to previous work
	Previous work
	Differences

	Technical approach
	Technical summary
	Hand/finger tracking
	AR panel interface

	Technical pipeline
	Hand/finger tracking - Initialization/calibration
	Hand/finger tracking - Tracking after initialization
	AR panel interface - Interaction
	AR panel interface - Actions

	Results
	Discussion
	Backgrounds, initializations, and lighting
	Number of outstretched fingers
	CAMSHIFT
	Panel interface
	Runtime
	Future platforms

