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Imaging without optics? 

!   Each point on sensor 

!   would record  

the integral of light  

!   arriving from every point  

on subject 

!   All sensor points would 

record similar colors 
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Pinhole camera (a.k.a. camera obscura) 

 Linear perspective with viewpoint at pinhole 
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Effect of pinhole size 
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Stopping down the pinhole 

!   Large pinhole 

!   geometric blur 

!   Optimal pinhole 

!   too little light 

!   Small pinhole 

!   diffraction blur 
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Add a lens to get more light 
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Changing the focus distance 

!   To focus on objects at 
different distances 

!   move sensor relative to 

the lens  
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Changing the focus distance 

!   To focus on objects at 
different distances 

!   move sensor relative to 

the lens  

!   At so = si = 2f  we get 1:1 

imaging because 
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Changing the focus distance 

!   To focus on objects at 
different distances 

!   move sensor relative to 

the lens  

!   At so = si = 2f  we get 1:1 

imaging because 

!   Can’t focus on objects 

closer to the lens than f 
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http://graphics.stanford.edu/courses/cs178/applets/gaussian.html 
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Circle of confusion 
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Focusing 
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DOF 

• Depth of field (DOF) = the range of distances that are in focus 

• Diopters [1/m] are used as the units for focal distance 

• Focus limits 

•  Near focus: the closest distance the device can focus, about 5cm (20 D) in N900 

•  Far focus   : infinity (0 diopters) http://graphics.stanford.edu/courses/cs178/applets/dof.html 
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Chromatic aberration 

!   Different wavelengths refract at different rates 

!   so have different focal lengths 

!   Correct with achromatic doublet 

!   strong positive lens + weak negative lens  

 = weak positive compound lens 

!   align red and blue 
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Lens distortion 

!   Radial change in magnification  

!   (a) pincushion 

!   (b) barrel distortion 
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Vignetting 

!   Irradiance is proportional to 

!   projected area of aperture  

as seen from pixel 

!   projected area of pixel  

as seen from aperture 

!   distance2 from aperture to pixel 

!   Combining all these 

!   each ~ a factor of cos θ  

!   light drops as cos4 θ 

!   Fix by calibrating 

!   take a photo of a uniformly white object 

!   the picture shows the attenuation, divide the pixel values by it 
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CMOS sensor 
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Front- vs. Back-illuminated sensor 

(Sony) 
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Anti-aliasing filter 

!   Two layers of birefrigent material 

!   splits one ray into 4 rays 

normal anti-aliasing filter removed 
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From “raw-raw” to RAW 

!   Pixel Non-Uniformity 

!   each pixel in a CCD has a slightly different sensitivity to light, 

typically within 1% to 2% of the average signal 

!   can be reduced by calibrating an image with a flat-field image 

!   flat-field images are also used to eliminate the effects  

of vignetting and other optical variations 

!   Stuck pixels 

!   some pixels are turned always on or off 

!   identify, replace with filtered values 

!   Dark floor 

!   temperature adds noise 

!   sensors usually have a ring of covered pixels  

around the exposed sensor, subtract their signal 
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AD Conversion 

!   Sensor converts the 
continuous light signal to 

a continuous electrical 

signal 

!   The analog signal is 

converted to a digital 

signal 

!   at least 10 bits (even on 

cell phones), often 12 or 

more 

!   (roughly) linear sensor 
response 
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ISO = amplification in AD conversion 

!   Before conversion the signal can be amplified 

!   ISO 100 means no amplification 

!   ISO 1600 means 16x amplification 

!   +: can see details in dark areas better 

!   -: noise is amplified as well; sensor more likely to saturate 
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ISO 
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From “raw-raw” to RAW 

!   Pixel Non-Uniformity 

!   each pixel in a CCD has a slightly different sensitivity to light, 

typically within 1% to 2% of the average signal 

!   can be reduced by calibrating an image with a flat-field image 

!   flat-field images are also used to eliminate the effects of 

vignetting and other optical variations 

!   Stuck pixels 

!   some pixels are turned always on or off 

!   identify, replace with filtered values 

!   Dark floor 

!   temperature adds noise 

!   sensors usually have a ring of covered pixels  

around the exposed sensor, subtract their signal 



NVIDIA Research 

Color filter array 

!   Bayer pattern 
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Demosaicking 
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Your eyes do it too… 
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Demosaicking 
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First choice: bilinear interpolation 

!   Easy to implement 

!   But fails at sharp edges 



NVIDIA Research 

Take edges into account 

!   Use bilateral filtering 

!   avoid interpolating across edges 

ADAPTIVE DEMOSAICKING 
Ramanath, Snyder, JEI 2003 
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Start with Gaussian filtering 

!   Here, input is a step function + noise 

output input

=J f I⊗
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Start with Gaussian filtering 

!   Spatial Gaussian f 

output input

=J f I⊗
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Start with Gaussian filtering 

!   Output is blurred 

output input

=J f I⊗
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The problem of edges 

!   Weight f(x, ξ)  depends on distance from ξ to x 

!   Here, I(ξ) pollutes  our estimate J(x) at I(x) 

!   It is too different  

),( ξxf
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Principle of Bilateral filtering 

[Tomasi and Manduchi 1998] 

!   Penalty g on the intensity difference 
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∑
ξ

Bilateral filtering 

[Tomasi and Manduchi 1998] 

!   Spatial Gaussian f 
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Bilateral filtering 

[Tomasi and Manduchi 1998] 

!   Spatial Gaussian f 

!   Gaussian g on the intensity difference 
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Normalization factor 

[Tomasi and Manduchi 1998] 

!   k(x) = 

=)(xJ )(ξI∑
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Bilateral filtering is non-linear 

[Tomasi and Manduchi 1998] 

!   The weights are different for each output pixel 

=)(xJ ),( ξxf ))()(( xIIg −ξ )(ξI∑
ξ)(

1

xk

output input

=)(xJ )(ξI∑
ξ)(

1

xk
),( ξxf ))()(( xIIg −ξ

x x



NVIDIA Research 

Other view 

!   The bilateral filter uses the 3D distance 
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Take edges into account 

!   Use bilateral filtering 

!   avoid interpolating across edges 

ADAPTIVE DEMOSAICKING 
Ramanath, Snyder, JEI 2003 
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Take edges into account 

!   Predict edges and adjust 

!   assumptions 

!   luminance correlates with RGB 

!   edges = luminance change 

!   When estimating G at R 

!   if the R differs from bilinearly 
estimated R 

!    luminance changes 

!   Correct the bilinear estimate 

!   by the difference between the 

estimate and real value 

HIGH-QUALITY LINEAR INTERPOLATION FOR 
DEMOSAICING OF BAYER-PATTERNED COLOR IMAGES 

Malvar, He, Cutler, ICASSP 2004 
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Denoising using non-local means 

!   Most image details occur 
repeatedly 

!   Each color indicates a group 

of squares in the image which 
are almost indistinguishable 

!   Image self-similarity can be 

used to eliminate noise 

!   it suffices to average the 
squares which resemble each 

other 

Image and movie denoising by nonlocal means 
Buades, Coll, Morel, IJCV 2006 
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BM3D (Block Matching 3D) 
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The CIE XYZ System 

!   A standard created in 1931 
by CIE 
!   Commission Internationale de 

L'Eclairage 

!   Defined in terms of three 
color matching functions 

!   Given an emission spectrum, 
we can use the CIE matching 
functions to obtain the x, y 
and z coordinates 
!   y corresponds to luminance 

perception 

x y 

z 
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!   Intensity is measured as 
the distance from origin 
!   black = (0, 0, 0) 

!   Chromaticity coordinates 
give a notion of color 
independent of brightness 

 

!   A projection of the plane 
x + y + z = 1 yields a 
chromaticity value 
dependent on  
!   dominant wavelength  

(= hue), and  

!   excitation purity  
(= saturation) 
!   the distance from the  

white at (1/3, 1/3, 1/33) 

The CIE Chromaticity Diagram 
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Perceptual (non-)uniformity 

!   The XYZ color space is 
not perceptually uniform!   

!   Enlarged ellipses of 

constant color in XYZ 
space 
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CIE L*a*b*: uniform color space 

!   Lab is designed to approximate human vision 

!   it aspires to perceptual uniformity 

!   L component closely matches human perception 

of lightness 

!   A good color space for image processing 
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Break RGB to Lab channels 
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Blur “a” channel (red-green) 
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Blur “b” channel (blue-yellow) 
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Blur “L” channel 
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YUV, YCbCr, … 

!   Family of color spaces for video encoding 

!   including in FCam, video and viewfinder usually YUV 

!   Channels 

!   Y = luminance [linear]; Y’ = luma [gamma corrected] 

! CbCr / UV = chrominance [always linear] 

! Y′CbCr is not an absolute color space 

!   it is a way of encoding RGB information 

!   the actual color depends on the RGB primaries used 

!   Colors are often filtered down   

!   2:1, 4:1 

!   Many formulas! 
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How many bits are needed for smooth 

shading? 

!   With a given adaptation, human vision has contrast 

sensitivity ~1% 

!   call black 1, white 100 

!   you can see differences 

!   1, 1.01, 1.02, …  needed step size ~ 0.01 

!   98, 99, 100   needed step size ~ 1 

!   with linear encoding  

!   delta 0.01 

–  100 steps between 99 & 100  wasteful 

!   delta 1 

–  only 1 step between 1 & 2  lose detail in shadows 

!   instead, apply a non-linear power function, gamma 

!   provides adaptive step size 

55 
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Gamma encoding 

!   With the delta  ratio of 1.01 

!   need about 480 steps to reach 100 

!   takes almost 9 bits 

!   8 bits, nonlinearly encoded 

!   sufficient for broadcast quality digital TV 

!   contrast ratio ~ 50 : 1 

!   With poor viewing conditions or display quality 

!   fewer bits needed 
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Luminance from RGB 

!   If three sources of same radiance appear R, G, B: 
!   green will appear the brightest, it has high luminous efficiency 

!   red will appear less bright 

!   blue will be the darkest 

!   Luminance by NTSC:  0.2990 R + 0.5870 G + 0.1140 B 
!   based on phosphors in use in 1953 

!   Luminance by CIE:  0.2126 R + 0.7152 G + 0.0722 B 
!   based on contemporary phosphors 

!   Luminance by ITU:  0.2125 R + 0.7154 G + 0.0721 B 

!   1/4 R + 5/8 G + 1/8 B works fine 
!   quick to compute: R>>2 + G>>1 + G>>3 + B>>3 

!   range is [0, 252] 
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Cameras use sRGB 

! sRGB is a standard RGB color space (since 1996) 

!   uses the same primaries as used in studio monitors and HDTV 

!   and a gamma curve typical of CRTs 

!   allows direct display 

!   The sRGB gamma  

!   cannot be expressed as a single numerical value 

!   the overall gamma is approximately 2.2, consisting of  

!   a linear (gamma 1.0) section near black,  

!   and a non-linear section elsewhere  

involving a 2.4 exponent  

!   First need to map from sensor RGB to standard 

!   need calibration 
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blue red 

nonlinear distortion 

linear relation between XYZ und sRGB: 

Primaries according to ITU-R BT.709.3 

green 

X !   0.4124! !       0.3576 !         0.1805            RsRGB!

Y       =      0.2126! !       0.7152 !         0.0722            GsRGB!

Z               0.0193! !       0.1192 !         0.9505            BsRGB!

  

matrix(3x3) RGBsRGB XYZ 

RGB´sRGB 

quantization 

linear transformation 

RGB8Bit 

sRGB from XYZ 

RsRGB < 0.0031308 
R´sRGB = 12.92 RsRGB 

RsRGB > 0.0031308  

R´sRGB = 1.055 RsRGB
(1/2.4) - 0.055 

R8Bit = round[255 R'sRGB] 
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Image processing in  

        linear or non-linear space? 

!   Simulating physical world 

!   use linear light 

!   a weighted average of gamma-corrected pixel values is not a 
linear convolution!  

!   Bad for antialiasing 

!   want to numerically simulate lens?  

!   Undo gamma first 

!   Dealing with human perception 

!   using non-linear coding allows  

minimizing perceptual errors due to quantization 
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Film response curve 

!   Middle 

!   follows a power function 

!   if a given amount of light 

turned half of a grain 

crystals to silver, the same 

amount turns again half of 
the rest 

!   Toe region 

!   the chemical process is 
just starting 

!   Shoulder region 

!   close to saturation 

!   Film has more dynamic 

range than print 

!   ~12bits 



NVIDIA Research 

Digital camera response curve 

!   Digital cameras modify the response curve 

 

!   Toe and shoulder preserve more dynamic range around 

dark and bright areas, at the cost of reduced contrast 

!   May use different response curves at different exposures 

!   impossible to calibrate and invert! 
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3A 

!   Automated selection of key camera control values 

!   auto-focus 

!   auto-exposure 

!   auto-white-balance 
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Digital auto-focus (as in FCam) 

!   Passive autofocus method using contrast measurements 

!   ISP can filter pixels with configurable IIR filters 

!   to produce a low-resolution sharpness map of the image 

!   The sharpness map helps estimate the best lens position 

!   by summing the sharpness values (= Focus Value) 

!   either over the entire image  

!   or over a rectangular area 

! http://graphics.stanford.edu/courses/cs178/applets/autofocusCD.html 
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Auto-focus in FCam 

!   A history of sharpness values at different lens positions 

! FCam provides a helper class called AutoFocus!

Focus Value

Lens 

position

Scan direction

1
2

3
4 5

6 7
8

Peak 

passing

9
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Auto-White-Balance 

!   The dominant light source (illuminant) produces a color 
cast that affects the appearance of the scene objects 

!   The color of the illuminant determines the color normally 

associated with white by the human visual system 

!   Auto-white-balance 

!   Identify the illuminant color 

!   Neutralize the color of the illuminant 

(source: www.cambridgeincolour.com) 
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Identify the color of the illuminant 

!   Prior knowledge about the ambient light 

!   Candle flame light (18500K) 

!   Sunset light (20000K) 

!   Summer sunlight at noon (54000K) 

!   … 

!   Known reference object  

in the picture 

!   best: find something that is 

white or gray 

 

!   Assumptions about the scene 

!   Gray world assumption  

(gray in sRGB space!) 
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Best way to do white balance 

!   Grey card 

!   take a picture of a neutral object (white or gray) 

!   deduce the weight of each channel 

!   If the object is recoded as rw, gw, bw  

!   use weights k/rw, k/gw, k/bw  

!   where k controls the exposure 
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Brightest pixel assumption 

!   Highlights usually have the color of the light source 

!   at least for dielectric materials 

!   White balance by using the brightest pixels 

!   plus potentially a bunch of heuristics 

!   in particular use a pixel that is not saturated / clipped 
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Color temperature 

!   Colors of a black-body heated at different temperatures 

fall on a curve (Planckian locus) 

!   Colors change non-linearly with temperature 

!   but almost linearly with reciprocal temperatures 1/T 

x, y chromaticity diagram 
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Mapping the colors 

!   For a given sensor  

!   pre-compute the transformation matrices between the sensor 

color space and sRGB at different temperatures 

! FCam provides two precomputed transformations 

!   for 3200oK and 7000oK 

!   Estimate a new transformation by interpolating between 

pre-computed matrices 

!   ISP can apply the linear transformation 
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Estimating the color temperature 

!   Use scene mode 

!   Use gray world assumption (R = G = B) in sRGB space 

!   really, just R = B, ignore G 

!   Estimate color temperature in a given image 

!   apply pre-computed matrix to get sRGB for T1 and T2 

!   calculate the average values R, B 

!   solve α, use to interpolate matrices (or 1/T) 

1/T1 1/T2 

1

T
= 1−α( )

1

T
1

+α
1

T
2

R = (1−α)R
1
+αR

2
, B = (1−α)B

1
+αB

2

1/T 
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Auto-exposure 

!   Goal: well-exposed image (not a very well defined goal!) 

!   Possible parameters to adjust 

!   Exposure time 

!   Longer exposure time leads to brighter image, but also motion blur 

!   Aperture (f-number) 

!   Larger aperture (smaller f-number) lets more light in causing the 

image to be brighter, also makes depth of field shallower 

!   Phone cameras often have fixed aperture 

!   Analog and digital gain 

!   Higher gain makes image brighter but amplifies noise as well 

!   ND filters on some cameras 
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Exposure metering 

!   Cumulative Density Function of image intensity values 

!   P percent of image pixels have an intensity lower than Y 

100 

Percentile 

Intensity 

P 

Y 1 
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Exposure metering examples 

!   Adjustment examples 

!   P = 0.995,  Y = 0.9 

!   max 0.5% of pixels are saturated (highlights) 

!   P = 0.1,       Y = 0.1 

!   max 10% of pixels are under-exposed (shadows) 

!   Auto-exposure somewhere in between, e.g., P = 0.9, Y = 0.4 

Highlights Shadows Auto-exposure 
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Simple metering algorithm 

void meter (Shot s, Frame frame, float P, float Y, float sm) { 

   const Histogram &h = frame.histogram(); 

   int N = h.buckets(); // number of histogram bins 

   ... Calculate the cumulative intensity histogram CDF 

   ... Determine the histogram bin i, s.t. CDF[i]<=P<CDF[i+1]  

   float Ycurr = (i+1)/N; 

   float adjustment = Y / Ycurr;  

   // Current exposure 

   float currExp = frame.exposure * frame.gain; 

   float desiredExp = adjustment * currExp ; 

   // Make the change smooth 

   desiredExp = (1-sm) * desiredExp + sm * currExp; 

   ... Set s.exposure and s.gain to fit desiredExposure 

} 
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JPEG Encoding 

1.  Transform RGB to YUV or YIQ and subsample color 

2.  DCT on 8x8 image blocks 

3.  Quantization 

4.  Zig-zag ordering and run-length encoding 

5.  Entropy coding 
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Alternatives? 

!   JPEG 2000 

!   ISO, 2000 

!   better compression, inherently hierarchical, random access, … 

!   but much more complex than JPEG 

!   JPEG XR 

!   Microsoft, 2006; ISO / ITU-T, 2010 

!   good compression, supports tiling (random access without 

having to decode whole image), better color accuracy (incl. 

HDR), transparency, compressed domain editing 

!   But JPEG stays 

!   too large an install base 
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Traditional camera APIs 

!   Real image sensors are pipelined 

!   while one frame exposing 

!   next one is being prepared 

!   previous one is being read out 

! Viewfinding / video mode: 

!   pipelined, high frame rate 

!   settings changes take effect sometime later 

!   Still capture mode: 

!   need to know which parameters were used 

!    reset pipeline between shots  slow 

Exposure, 

Frame rate
Image Sensor

...

Conigure

1

Expose

2

Readout

3

Imaging 

Pipeline

Color corr

6

Receive

4

 Demosaic

5

Gain,

Digital Zoom

Format

Coeicients

White balance
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The FCam Architecture 

!   A software architecture for programmable cameras  

!   that attempts to expose the maximum device capabilities 

!   while remaining easy to program 
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Sensor 

!   A pipeline that converts requests into images 

!   No global state 

!   state travels in the requests through the pipeline 

!   all parameters packed into the requests 
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Image Signal Processor (ISP) 

!   Receives sensor data, and optionally transforms it 

!   untransformed raw data must also be available 

!   Computes helpful statistics 

!   histograms, sharpness maps 
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Devices 

!   Devices (like the Lens and Flash) can 

!   schedule Actions  

!   to be triggered at a given time into an exposure 

!   Tag returned images with metadata 
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Everything is visible 

!   Programmer has full control over sensor settings 

!   and access to the supplemental statistics from ISP 

!   No hidden daemon running autofocus/metering 
!   nobody changes the settings under you  
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Simple HDR Burst 

#include <FCam/Tegra.h> 

… 
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Simple HDR Burst 

#include <FCam/Tegra.h> 

... 

Sensor sensor; 

Shot   shortReq, midReq, longReq;  

Frame  short, mid, long; 
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Simple HDR Burst 

#include <FCam/Tegra.h> 

... 

Sensor sensor; 

Shot   shortReq, midReq, longReq;  

Frame  short, mid, long; 

 

shortReq.exposure =  10000; // microseconds 

midReq.exposure   =  40000;  

longReq.exposure  = 160000; 

shortReq.image = Image(sensor.maxImageSize(), RAW); 

midReq.image   = Image(sensor.maxImageSize(), RAW); 

longReq.image  = Image(sensor.maxImageSize(), RAW); 
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Simple HDR Burst 

#include <FCam/Tegra.h> 

... 

Sensor sensor; 

Shot   shortReq, midReq, longReq;  

Frame  short, mid, long; 

 

shortReq.exposure =  10000; // microseconds 

midReq.exposure   =  40000;  

longReq.exposure  = 160000; 

shortReq.image = Image(sensor.maxImageSize(), RAW); 

midReq.image   = Image(sensor.maxImageSize(), RAW); 

longReq.image  = Image(sensor.maxImageSize(), RAW); 

 

sensor.capture(shortReq); 

sensor.capture(midReq); 

sensor.capture(longReq); 
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Simple HDR Burst 

#include <FCam/Tegra.h> 

... 

Sensor sensor; 

Shot   shortReq, midReq, longReq;  

Frame  short, mid, long; 

 

shortReq.exposure =  10000; // microseconds 

midReq.exposure   =  40000;  

longReq.exposure  = 160000; 

shortReq.image = Image(sensor.maxImageSize(), RAW); 

midReq.image   = Image(sensor.maxImageSize(), RAW); 

longReq.image  = Image(sensor.maxImageSize(), RAW); 

 

sensor.capture(shortReq); 

sensor.capture(midReq); 

sensor.capture(longReq); 

 

short = sensor.getFrame(); 

mid   = sensor.getFrame(); 

long  = sensor.getFrame(); 
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Shot specifies capture & post-process 

!   Sensor parameters 

!   analog gain (~= ISO) 

!   exposure time (in microseconds) 

!   total time (to set frame rate) 

!   output resolution 

!   format (raw or demosaicked [RGB, YUV]) 

!   white balance (only relevant if format is demosaicked) 

!   memory location where to place the Image data 

!   unique id (auto-generated on construction) 

!   Configures fixed-function statistics 

!   region for Histogram 

!   region and resolution for Sharpness Map 
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A Shot is passed to a Sensor 

!   Sensor manages a Shot queue in  
a separate thread 

!   Sensor::capture() 

!   just sticks a Shot on the end of the queue 

!   Sensor::stream() 

!   adds a copy of Shot to queue when the queue becomes empty 

!   Change the parameters of a streaming Shot 

!   just alter it and call stream again with the updated Shot 

!   You can also specify a burst = vector of Shots 

!   e.g., to capture quickly a full HDR stack, or for HDR viewfinder 
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Sensor produces Frames 

!   Sensor::getFrame() is the only blocking call 

!   A Frame contains 

!   image data and statistics 

!   the precise time the exposure began and ended 

!   the actual and requested (Shot) parameters 

!   Tags from Devices (in Frame::tags() dictionary) 

!   Exactly one Frame for each Shot  

!   If Image data is lost or corrupted 

!   a Frame is still returned 

–  with Image marked as invalid 

–  statistics may be valid 
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Devices 

!   Lens 

!   focus  

!   measured in diopters: d * f = 1m 

–  20D => f = 5cm,  0D => f = inf 

!   the lens starts moving (at specified speed) in the background 

!   focal length (zooming factor)  (fixed on N900) 

!   aperture    (fixed on N900) 

!   Flash 

!   fire with a specified brightness and duration 

!   Other Devices can be created 

! FCam example 6 creates a Device for playing the click sound 
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Actions allow Devices to coordinate 

!   Devices may have a set of Actions, with 

!   start time w.r.t. image exposure start 

!   Action::doAction() to initiate the action 

!   a latency field 

!   indicates the delay between the method call and the action begin 

!   Shots perform Actions during the exposure 

!   with predictable latency Actions can be precisely scheduled 

!   e.g., the timing of Flash in second-curtain sync must be accurate to 
within a millisecond 
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Tags 

!   Frames are tagged with metadata  

!   after they leave the pipeline 

!   Devices need to keep a short state history 

!   match with time stamps 

!   Lens and Flash tag each Frame with their state 

!   writing an autofocus algorithm becomes straightforward 

!   the focus position of the Lens is known for each Frame 

!   Other appropriate uses of Tags 

!   sensor fusion 
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Tegra implementation of FCam 
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Android Camera 



NVIDIA Research 



NVIDIA Research 


