
Camera 

Processing 

Pipeline 

Kari Pulli   
Senior Director 

NVIDIA Research 



NVIDIA Research 

Imaging without optics? 

!   Each point on sensor 

!   would record  

the integral of light  

!   arriving from every point  

on subject 

!   All sensor points would 

record similar colors 



NVIDIA Research 

Pinhole camera (a.k.a. camera obscura) 

 Linear perspective with viewpoint at pinhole 



NVIDIA Research 

Effect of pinhole size 



NVIDIA Research 

Stopping down the pinhole 

!   Large pinhole 

!   geometric blur 

!   Optimal pinhole 

!   too little light 

!   Small pinhole 

!   diffraction blur 



NVIDIA Research 

Add a lens to get more light 



NVIDIA Research 

Changing the focus distance 

!   To focus on objects at 
different distances 

!   move sensor relative to 

the lens  

1

so
+

1

si
=

1

f



NVIDIA Research 

Changing the focus distance 

!   To focus on objects at 
different distances 

!   move sensor relative to 

the lens  

!   At so = si = 2f  we get 1:1 

imaging because 

1

2f
+

1

2f
=

1

f

1

so
+

1

si
=

1

f



NVIDIA Research 

Changing the focus distance 

!   To focus on objects at 
different distances 

!   move sensor relative to 

the lens  

!   At so = si = 2f  we get 1:1 

imaging because 

!   Can’t focus on objects 

closer to the lens than f 

1

so
+

1

si
=

1

f

1

2f
+

1

2f
=

1

f

http://graphics.stanford.edu/courses/cs178/applets/gaussian.html 



NVIDIA Research 

Circle of confusion 



NVIDIA Research 

Focusing 

Dd 

Dfar 
Dnear 

1

D
near

=
1

D
+
1

d
c / A( ),

1

D far

=
1

D
−
1

d
c / A( )

cA

camera scene 

Sensor 

position 

DOF 

• Depth of field (DOF) = the range of distances that are in focus 

• Diopters [1/m] are used as the units for focal distance 

• Focus limits 

•  Near focus: the closest distance the device can focus, about 5cm (20 D) in N900 

•  Far focus   : infinity (0 diopters) http://graphics.stanford.edu/courses/cs178/applets/dof.html 



NVIDIA Research 

Chromatic aberration 

!   Different wavelengths refract at different rates 

!   so have different focal lengths 

!   Correct with achromatic doublet 

!   strong positive lens + weak negative lens  

 = weak positive compound lens 

!   align red and blue 



NVIDIA Research 

Lens distortion 

!   Radial change in magnification  

!   (a) pincushion 

!   (b) barrel distortion 



NVIDIA Research 

Vignetting 

!   Irradiance is proportional to 

!   projected area of aperture  

as seen from pixel 

!   projected area of pixel  

as seen from aperture 

!   distance2 from aperture to pixel 

!   Combining all these 

!   each ~ a factor of cos θ  

!   light drops as cos4 θ 

!   Fix by calibrating 

!   take a photo of a uniformly white object 

!   the picture shows the attenuation, divide the pixel values by it 



NVIDIA Research 



NVIDIA Research 

CMOS sensor 



NVIDIA Research 

Front- vs. Back-illuminated sensor 

(Sony) 



NVIDIA Research 

Anti-aliasing filter 

!   Two layers of birefrigent material 

!   splits one ray into 4 rays 

normal anti-aliasing filter removed 



NVIDIA Research 

From “raw-raw” to RAW 

!   Pixel Non-Uniformity 

!   each pixel in a CCD has a slightly different sensitivity to light, 

typically within 1% to 2% of the average signal 

!   can be reduced by calibrating an image with a flat-field image 

!   flat-field images are also used to eliminate the effects  

of vignetting and other optical variations 

!   Stuck pixels 

!   some pixels are turned always on or off 

!   identify, replace with filtered values 

!   Dark floor 

!   temperature adds noise 

!   sensors usually have a ring of covered pixels  

around the exposed sensor, subtract their signal 



NVIDIA Research 

AD Conversion 

!   Sensor converts the 
continuous light signal to 

a continuous electrical 

signal 

!   The analog signal is 

converted to a digital 

signal 

!   at least 10 bits (even on 

cell phones), often 12 or 

more 

!   (roughly) linear sensor 
response 



NVIDIA Research 

ISO = amplification in AD conversion 

!   Before conversion the signal can be amplified 

!   ISO 100 means no amplification 

!   ISO 1600 means 16x amplification 

!   +: can see details in dark areas better 

!   -: noise is amplified as well; sensor more likely to saturate 



NVIDIA Research 

ISO 



NVIDIA Research 

From “raw-raw” to RAW 

!   Pixel Non-Uniformity 

!   each pixel in a CCD has a slightly different sensitivity to light, 

typically within 1% to 2% of the average signal 

!   can be reduced by calibrating an image with a flat-field image 

!   flat-field images are also used to eliminate the effects of 

vignetting and other optical variations 

!   Stuck pixels 

!   some pixels are turned always on or off 

!   identify, replace with filtered values 

!   Dark floor 

!   temperature adds noise 

!   sensors usually have a ring of covered pixels  

around the exposed sensor, subtract their signal 



NVIDIA Research 

Color filter array 

!   Bayer pattern 



NVIDIA Research 

Demosaicking 



NVIDIA Research 

Your eyes do it too… 





NVIDIA Research 

Demosaicking 



NVIDIA Research 

First choice: bilinear interpolation 

!   Easy to implement 

!   But fails at sharp edges 



NVIDIA Research 

Take edges into account 

!   Use bilateral filtering 

!   avoid interpolating across edges 

ADAPTIVE DEMOSAICKING 
Ramanath, Snyder, JEI 2003 



NVIDIA Research 

Start with Gaussian filtering 

!   Here, input is a step function + noise 

output input

=J f I⊗



NVIDIA Research 

Start with Gaussian filtering 

!   Spatial Gaussian f 

output input

=J f I⊗



NVIDIA Research 

Start with Gaussian filtering 

!   Output is blurred 

output input

=J f I⊗



NVIDIA Research 

The problem of edges 

!   Weight f(x, ξ)  depends on distance from ξ to x 

!   Here, I(ξ) pollutes  our estimate J(x) at I(x) 

!   It is too different  

),( ξxf

output input

=)(xJ ∑
ξ

x
I x( )

I ξ( )

)(ξI



NVIDIA Research 

Principle of Bilateral filtering 

[Tomasi and Manduchi 1998] 

!   Penalty g on the intensity difference 

=)(xJ ),( ξxf ))()(( xIIg −ξ )(ξI∑
ξ)(

1

xk

output input

x
)(xI

)(ξI



NVIDIA Research 

∑
ξ

Bilateral filtering 

[Tomasi and Manduchi 1998] 

!   Spatial Gaussian f 

=)(xJ ),( ξxf ))()(( xIIg −ξ )(ξI
)(

1

xk

output input

x



NVIDIA Research 

Bilateral filtering 

[Tomasi and Manduchi 1998] 

!   Spatial Gaussian f 

!   Gaussian g on the intensity difference 

=)(xJ ),( ξxf ))()(( xIIg −ξ )(ξI∑
ξ)(

1

xk

output input

x



NVIDIA Research 

Normalization factor 

[Tomasi and Manduchi 1998] 

!   k(x) = 

=)(xJ )(ξI∑
ξ)(

1

xk

output input

),( ξxf ))()(( xIIg −ξ

∑
ξ

),( ξxf ))()(( xIIg −ξ

x



NVIDIA Research 

Bilateral filtering is non-linear 

[Tomasi and Manduchi 1998] 

!   The weights are different for each output pixel 

=)(xJ ),( ξxf ))()(( xIIg −ξ )(ξI∑
ξ)(

1

xk

output input

=)(xJ )(ξI∑
ξ)(

1

xk
),( ξxf ))()(( xIIg −ξ

x x



NVIDIA Research 

Other view 

!   The bilateral filter uses the 3D distance 



NVIDIA Research 



NVIDIA Research 

Take edges into account 

!   Use bilateral filtering 

!   avoid interpolating across edges 

ADAPTIVE DEMOSAICKING 
Ramanath, Snyder, JEI 2003 



NVIDIA Research 

Take edges into account 

!   Predict edges and adjust 

!   assumptions 

!   luminance correlates with RGB 

!   edges = luminance change 

!   When estimating G at R 

!   if the R differs from bilinearly 
estimated R 

!    luminance changes 

!   Correct the bilinear estimate 

!   by the difference between the 

estimate and real value 

HIGH-QUALITY LINEAR INTERPOLATION FOR 
DEMOSAICING OF BAYER-PATTERNED COLOR IMAGES 

Malvar, He, Cutler, ICASSP 2004 

 



NVIDIA Research 

Denoising using non-local means 

!   Most image details occur 
repeatedly 

!   Each color indicates a group 

of squares in the image which 
are almost indistinguishable 

!   Image self-similarity can be 

used to eliminate noise 

!   it suffices to average the 
squares which resemble each 

other 

Image and movie denoising by nonlocal means 
Buades, Coll, Morel, IJCV 2006 



NVIDIA Research 

BM3D (Block Matching 3D) 



NVIDIA Research 

The CIE XYZ System 

!   A standard created in 1931 
by CIE 
!   Commission Internationale de 

L'Eclairage 

!   Defined in terms of three 
color matching functions 

!   Given an emission spectrum, 
we can use the CIE matching 
functions to obtain the x, y 
and z coordinates 
!   y corresponds to luminance 

perception 

x y 

z 



NVIDIA Research 

!   Intensity is measured as 
the distance from origin 
!   black = (0, 0, 0) 

!   Chromaticity coordinates 
give a notion of color 
independent of brightness 

 

!   A projection of the plane 
x + y + z = 1 yields a 
chromaticity value 
dependent on  
!   dominant wavelength  

(= hue), and  

!   excitation purity  
(= saturation) 
!   the distance from the  

white at (1/3, 1/3, 1/33) 

The CIE Chromaticity Diagram 



NVIDIA Research 

Perceptual (non-)uniformity 

!   The XYZ color space is 
not perceptually uniform!   

!   Enlarged ellipses of 

constant color in XYZ 
space 



NVIDIA Research 

CIE L*a*b*: uniform color space 

!   Lab is designed to approximate human vision 

!   it aspires to perceptual uniformity 

!   L component closely matches human perception 

of lightness 

!   A good color space for image processing 



NVIDIA Research 

Break RGB to Lab channels 



NVIDIA Research 

Blur “a” channel (red-green) 



NVIDIA Research 

Blur “b” channel (blue-yellow) 



NVIDIA Research 

Blur “L” channel 



NVIDIA Research 

YUV, YCbCr, … 

!   Family of color spaces for video encoding 

!   including in FCam, video and viewfinder usually YUV 

!   Channels 

!   Y = luminance [linear]; Y’ = luma [gamma corrected] 

! CbCr / UV = chrominance [always linear] 

! Y′CbCr is not an absolute color space 

!   it is a way of encoding RGB information 

!   the actual color depends on the RGB primaries used 

!   Colors are often filtered down   

!   2:1, 4:1 

!   Many formulas! 



NVIDIA Research 

How many bits are needed for smooth 

shading? 

!   With a given adaptation, human vision has contrast 

sensitivity ~1% 

!   call black 1, white 100 

!   you can see differences 

!   1, 1.01, 1.02, …  needed step size ~ 0.01 

!   98, 99, 100   needed step size ~ 1 

!   with linear encoding  

!   delta 0.01 

–  100 steps between 99 & 100  wasteful 

!   delta 1 

–  only 1 step between 1 & 2  lose detail in shadows 

!   instead, apply a non-linear power function, gamma 

!   provides adaptive step size 

55 



NVIDIA Research 
56 

Gamma encoding 

!   With the delta  ratio of 1.01 

!   need about 480 steps to reach 100 

!   takes almost 9 bits 

!   8 bits, nonlinearly encoded 

!   sufficient for broadcast quality digital TV 

!   contrast ratio ~ 50 : 1 

!   With poor viewing conditions or display quality 

!   fewer bits needed 



NVIDIA Research 

Luminance from RGB 

!   If three sources of same radiance appear R, G, B: 
!   green will appear the brightest, it has high luminous efficiency 

!   red will appear less bright 

!   blue will be the darkest 

!   Luminance by NTSC:  0.2990 R + 0.5870 G + 0.1140 B 
!   based on phosphors in use in 1953 

!   Luminance by CIE:  0.2126 R + 0.7152 G + 0.0722 B 
!   based on contemporary phosphors 

!   Luminance by ITU:  0.2125 R + 0.7154 G + 0.0721 B 

!   1/4 R + 5/8 G + 1/8 B works fine 
!   quick to compute: R>>2 + G>>1 + G>>3 + B>>3 

!   range is [0, 252] 



NVIDIA Research 

Cameras use sRGB 

! sRGB is a standard RGB color space (since 1996) 

!   uses the same primaries as used in studio monitors and HDTV 

!   and a gamma curve typical of CRTs 

!   allows direct display 

!   The sRGB gamma  

!   cannot be expressed as a single numerical value 

!   the overall gamma is approximately 2.2, consisting of  

!   a linear (gamma 1.0) section near black,  

!   and a non-linear section elsewhere  

involving a 2.4 exponent  

!   First need to map from sensor RGB to standard 

!   need calibration 



NVIDIA Research 

blue red 

nonlinear distortion 

linear relation between XYZ und sRGB: 

Primaries according to ITU-R BT.709.3 

green 

X !   0.4124! !       0.3576 !         0.1805            RsRGB!

Y       =      0.2126! !       0.7152 !         0.0722            GsRGB!

Z               0.0193! !       0.1192 !         0.9505            BsRGB!

  

matrix(3x3) RGBsRGB XYZ 

RGB´sRGB 

quantization 

linear transformation 

RGB8Bit 

sRGB from XYZ 

RsRGB < 0.0031308 
R´sRGB = 12.92 RsRGB 

RsRGB > 0.0031308  

R´sRGB = 1.055 RsRGB
(1/2.4) - 0.055 

R8Bit = round[255 R'sRGB] 



NVIDIA Research 
60 

Image processing in  

        linear or non-linear space? 

!   Simulating physical world 

!   use linear light 

!   a weighted average of gamma-corrected pixel values is not a 
linear convolution!  

!   Bad for antialiasing 

!   want to numerically simulate lens?  

!   Undo gamma first 

!   Dealing with human perception 

!   using non-linear coding allows  

minimizing perceptual errors due to quantization 



NVIDIA Research 
61 

Film response curve 

!   Middle 

!   follows a power function 

!   if a given amount of light 

turned half of a grain 

crystals to silver, the same 

amount turns again half of 
the rest 

!   Toe region 

!   the chemical process is 
just starting 

!   Shoulder region 

!   close to saturation 

!   Film has more dynamic 

range than print 

!   ~12bits 



NVIDIA Research 

Digital camera response curve 

!   Digital cameras modify the response curve 

 

!   Toe and shoulder preserve more dynamic range around 

dark and bright areas, at the cost of reduced contrast 

!   May use different response curves at different exposures 

!   impossible to calibrate and invert! 



NVIDIA Research 

3A 

!   Automated selection of key camera control values 

!   auto-focus 

!   auto-exposure 

!   auto-white-balance 



NVIDIA Research 

Digital auto-focus (as in FCam) 

!   Passive autofocus method using contrast measurements 

!   ISP can filter pixels with configurable IIR filters 

!   to produce a low-resolution sharpness map of the image 

!   The sharpness map helps estimate the best lens position 

!   by summing the sharpness values (= Focus Value) 

!   either over the entire image  

!   or over a rectangular area 

! http://graphics.stanford.edu/courses/cs178/applets/autofocusCD.html 

 



NVIDIA Research 

Auto-focus in FCam 

!   A history of sharpness values at different lens positions 

! FCam provides a helper class called AutoFocus!

Focus Value

Lens 

position

Scan direction

1
2

3
4 5

6 7
8

Peak 

passing

9



NVIDIA Research 

Auto-White-Balance 

!   The dominant light source (illuminant) produces a color 
cast that affects the appearance of the scene objects 

!   The color of the illuminant determines the color normally 

associated with white by the human visual system 

!   Auto-white-balance 

!   Identify the illuminant color 

!   Neutralize the color of the illuminant 

(source: www.cambridgeincolour.com) 



NVIDIA Research 

Identify the color of the illuminant 

!   Prior knowledge about the ambient light 

!   Candle flame light (18500K) 

!   Sunset light (20000K) 

!   Summer sunlight at noon (54000K) 

!   … 

!   Known reference object  

in the picture 

!   best: find something that is 

white or gray 

 

!   Assumptions about the scene 

!   Gray world assumption  

(gray in sRGB space!) 



NVIDIA Research 

Best way to do white balance 

!   Grey card 

!   take a picture of a neutral object (white or gray) 

!   deduce the weight of each channel 

!   If the object is recoded as rw, gw, bw  

!   use weights k/rw, k/gw, k/bw  

!   where k controls the exposure 



NVIDIA Research 

Brightest pixel assumption 

!   Highlights usually have the color of the light source 

!   at least for dielectric materials 

!   White balance by using the brightest pixels 

!   plus potentially a bunch of heuristics 

!   in particular use a pixel that is not saturated / clipped 



NVIDIA Research 

Color temperature 

!   Colors of a black-body heated at different temperatures 

fall on a curve (Planckian locus) 

!   Colors change non-linearly with temperature 

!   but almost linearly with reciprocal temperatures 1/T 

x, y chromaticity diagram 



NVIDIA Research 

Mapping the colors 

!   For a given sensor  

!   pre-compute the transformation matrices between the sensor 

color space and sRGB at different temperatures 

! FCam provides two precomputed transformations 

!   for 3200oK and 7000oK 

!   Estimate a new transformation by interpolating between 

pre-computed matrices 

!   ISP can apply the linear transformation 



NVIDIA Research 

Estimating the color temperature 

!   Use scene mode 

!   Use gray world assumption (R = G = B) in sRGB space 

!   really, just R = B, ignore G 

!   Estimate color temperature in a given image 

!   apply pre-computed matrix to get sRGB for T1 and T2 

!   calculate the average values R, B 

!   solve α, use to interpolate matrices (or 1/T) 

1/T1 1/T2 

1

T
= 1−α( )

1

T
1

+α
1

T
2

R = (1−α)R
1
+αR

2
, B = (1−α)B

1
+αB

2

1/T 



NVIDIA Research 

Auto-exposure 

!   Goal: well-exposed image (not a very well defined goal!) 

!   Possible parameters to adjust 

!   Exposure time 

!   Longer exposure time leads to brighter image, but also motion blur 

!   Aperture (f-number) 

!   Larger aperture (smaller f-number) lets more light in causing the 

image to be brighter, also makes depth of field shallower 

!   Phone cameras often have fixed aperture 

!   Analog and digital gain 

!   Higher gain makes image brighter but amplifies noise as well 

!   ND filters on some cameras 



NVIDIA Research 

Exposure metering 

!   Cumulative Density Function of image intensity values 

!   P percent of image pixels have an intensity lower than Y 

100 

Percentile 

Intensity 

P 

Y 1 



NVIDIA Research 

Exposure metering examples 

!   Adjustment examples 

!   P = 0.995,  Y = 0.9 

!   max 0.5% of pixels are saturated (highlights) 

!   P = 0.1,       Y = 0.1 

!   max 10% of pixels are under-exposed (shadows) 

!   Auto-exposure somewhere in between, e.g., P = 0.9, Y = 0.4 

Highlights Shadows Auto-exposure 



NVIDIA Research 

Simple metering algorithm 

void meter (Shot s, Frame frame, float P, float Y, float sm) { 

   const Histogram &h = frame.histogram(); 

   int N = h.buckets(); // number of histogram bins 

   ... Calculate the cumulative intensity histogram CDF 

   ... Determine the histogram bin i, s.t. CDF[i]<=P<CDF[i+1]  

   float Ycurr = (i+1)/N; 

   float adjustment = Y / Ycurr;  

   // Current exposure 

   float currExp = frame.exposure * frame.gain; 

   float desiredExp = adjustment * currExp ; 

   // Make the change smooth 

   desiredExp = (1-sm) * desiredExp + sm * currExp; 

   ... Set s.exposure and s.gain to fit desiredExposure 

} 

  



NVIDIA Research 

JPEG Encoding 

1.  Transform RGB to YUV or YIQ and subsample color 

2.  DCT on 8x8 image blocks 

3.  Quantization 

4.  Zig-zag ordering and run-length encoding 

5.  Entropy coding 



NVIDIA Research 

Alternatives? 

!   JPEG 2000 

!   ISO, 2000 

!   better compression, inherently hierarchical, random access, … 

!   but much more complex than JPEG 

!   JPEG XR 

!   Microsoft, 2006; ISO / ITU-T, 2010 

!   good compression, supports tiling (random access without 

having to decode whole image), better color accuracy (incl. 

HDR), transparency, compressed domain editing 

!   But JPEG stays 

!   too large an install base 



NVIDIA Research 

Traditional camera APIs 

!   Real image sensors are pipelined 

!   while one frame exposing 

!   next one is being prepared 

!   previous one is being read out 

! Viewfinding / video mode: 

!   pipelined, high frame rate 

!   settings changes take effect sometime later 

!   Still capture mode: 

!   need to know which parameters were used 

!    reset pipeline between shots  slow 

Exposure, 

Frame rate
Image Sensor

...

Conigure

1

Expose

2

Readout

3

Imaging 

Pipeline

Color corr

6

Receive

4

 Demosaic

5

Gain,

Digital Zoom

Format

Coeicients

White balance



NVIDIA Research 

The FCam Architecture 

!   A software architecture for programmable cameras  

!   that attempts to expose the maximum device capabilities 

!   while remaining easy to program 

 



NVIDIA Research 

Sensor 

!   A pipeline that converts requests into images 

!   No global state 

!   state travels in the requests through the pipeline 

!   all parameters packed into the requests 



NVIDIA Research 

Image Signal Processor (ISP) 

!   Receives sensor data, and optionally transforms it 

!   untransformed raw data must also be available 

!   Computes helpful statistics 

!   histograms, sharpness maps 



NVIDIA Research 

Devices 

!   Devices (like the Lens and Flash) can 

!   schedule Actions  

!   to be triggered at a given time into an exposure 

!   Tag returned images with metadata 



NVIDIA Research 

Everything is visible 

!   Programmer has full control over sensor settings 

!   and access to the supplemental statistics from ISP 

!   No hidden daemon running autofocus/metering 
!   nobody changes the settings under you  



NVIDIA Research 

Simple HDR Burst 

#include <FCam/Tegra.h> 

… 



NVIDIA Research 

Simple HDR Burst 

#include <FCam/Tegra.h> 

... 

Sensor sensor; 

Shot   shortReq, midReq, longReq;  

Frame  short, mid, long; 

 



NVIDIA Research 

Simple HDR Burst 

#include <FCam/Tegra.h> 

... 

Sensor sensor; 

Shot   shortReq, midReq, longReq;  

Frame  short, mid, long; 

 

shortReq.exposure =  10000; // microseconds 

midReq.exposure   =  40000;  

longReq.exposure  = 160000; 

shortReq.image = Image(sensor.maxImageSize(), RAW); 

midReq.image   = Image(sensor.maxImageSize(), RAW); 

longReq.image  = Image(sensor.maxImageSize(), RAW); 

 



NVIDIA Research 

Simple HDR Burst 

#include <FCam/Tegra.h> 

... 

Sensor sensor; 

Shot   shortReq, midReq, longReq;  

Frame  short, mid, long; 

 

shortReq.exposure =  10000; // microseconds 

midReq.exposure   =  40000;  

longReq.exposure  = 160000; 

shortReq.image = Image(sensor.maxImageSize(), RAW); 

midReq.image   = Image(sensor.maxImageSize(), RAW); 

longReq.image  = Image(sensor.maxImageSize(), RAW); 

 

sensor.capture(shortReq); 

sensor.capture(midReq); 

sensor.capture(longReq); 



NVIDIA Research 

Simple HDR Burst 

#include <FCam/Tegra.h> 

... 

Sensor sensor; 

Shot   shortReq, midReq, longReq;  

Frame  short, mid, long; 

 

shortReq.exposure =  10000; // microseconds 

midReq.exposure   =  40000;  

longReq.exposure  = 160000; 

shortReq.image = Image(sensor.maxImageSize(), RAW); 

midReq.image   = Image(sensor.maxImageSize(), RAW); 

longReq.image  = Image(sensor.maxImageSize(), RAW); 

 

sensor.capture(shortReq); 

sensor.capture(midReq); 

sensor.capture(longReq); 

 

short = sensor.getFrame(); 

mid   = sensor.getFrame(); 

long  = sensor.getFrame(); 



NVIDIA Research 



NVIDIA Research 

Shot specifies capture & post-process 

!   Sensor parameters 

!   analog gain (~= ISO) 

!   exposure time (in microseconds) 

!   total time (to set frame rate) 

!   output resolution 

!   format (raw or demosaicked [RGB, YUV]) 

!   white balance (only relevant if format is demosaicked) 

!   memory location where to place the Image data 

!   unique id (auto-generated on construction) 

!   Configures fixed-function statistics 

!   region for Histogram 

!   region and resolution for Sharpness Map 

 



NVIDIA Research 

A Shot is passed to a Sensor 

!   Sensor manages a Shot queue in  
a separate thread 

!   Sensor::capture() 

!   just sticks a Shot on the end of the queue 

!   Sensor::stream() 

!   adds a copy of Shot to queue when the queue becomes empty 

!   Change the parameters of a streaming Shot 

!   just alter it and call stream again with the updated Shot 

!   You can also specify a burst = vector of Shots 

!   e.g., to capture quickly a full HDR stack, or for HDR viewfinder 



NVIDIA Research 

Sensor produces Frames 

!   Sensor::getFrame() is the only blocking call 

!   A Frame contains 

!   image data and statistics 

!   the precise time the exposure began and ended 

!   the actual and requested (Shot) parameters 

!   Tags from Devices (in Frame::tags() dictionary) 

!   Exactly one Frame for each Shot  

!   If Image data is lost or corrupted 

!   a Frame is still returned 

–  with Image marked as invalid 

–  statistics may be valid 



NVIDIA Research 

Devices 

!   Lens 

!   focus  

!   measured in diopters: d * f = 1m 

–  20D => f = 5cm,  0D => f = inf 

!   the lens starts moving (at specified speed) in the background 

!   focal length (zooming factor)  (fixed on N900) 

!   aperture    (fixed on N900) 

!   Flash 

!   fire with a specified brightness and duration 

!   Other Devices can be created 

! FCam example 6 creates a Device for playing the click sound 



NVIDIA Research 

Actions allow Devices to coordinate 

!   Devices may have a set of Actions, with 

!   start time w.r.t. image exposure start 

!   Action::doAction() to initiate the action 

!   a latency field 

!   indicates the delay between the method call and the action begin 

!   Shots perform Actions during the exposure 

!   with predictable latency Actions can be precisely scheduled 

!   e.g., the timing of Flash in second-curtain sync must be accurate to 
within a millisecond 



NVIDIA Research 

Tags 

!   Frames are tagged with metadata  

!   after they leave the pipeline 

!   Devices need to keep a short state history 

!   match with time stamps 

!   Lens and Flash tag each Frame with their state 

!   writing an autofocus algorithm becomes straightforward 

!   the focus position of the Lens is known for each Frame 

!   Other appropriate uses of Tags 

!   sensor fusion 



NVIDIA Research 

Tegra implementation of FCam 



NVIDIA Research 

FCam image capture on Tegra 

(simplified) 
1.  Request comes in from client 



NVIDIA Research 

FCam image capture on Tegra 

(simplified) 
1.  Request comes in from client 

2.  Request is put into request queue 



NVIDIA Research 

FCam image capture on Tegra 

(simplified) 
1.  Request comes in from client 

2.  Request is put into request queue 

3.  Setter reads request from queue 



NVIDIA Research 

FCam image capture on Tegra 

(simplified) 
1.  Request comes in from client 

2.  Request is put into request queue 

3.  Setter reads request from queue 

4.  Setter computes timing for possible 

actions and puts actions in queue 



NVIDIA Research 

FCam image capture on Tegra 

(simplified) 
1.  Request comes in from client 

2.  Request is put into request queue 

3.  Setter reads request from queue 

4.  Setter computes timing for possible 

actions and puts actions in queue 

5.  Setter computes ETA for the image 

data from ISP and puts request info 

into in-flight shadow queue 



NVIDIA Research 

FCam image capture on Tegra 

(simplified) 
1.  Request comes in from client 

2.  Request is put into request queue 

3.  Setter reads request from queue 

4.  Setter computes timing for possible 

actions and puts actions in queue 

5.  Setter computes ETA for the image 

data from ISP and puts request info 

into in-flight shadow queue 

6.  Setter sets the sensor parameters 

according to the request 



NVIDIA Research 

FCam image capture on Tegra 

(simplified) 
1.  Request comes in from client 

2.  Request is put into request queue 

3.  Setter reads request from queue 

4.  Setter computes timing for possible 

actions and puts actions in queue 

5.  Setter computes ETA for the image 

data from ISP and puts request info 

into in-flight shadow queue 

6.  Setter sets the sensor parameters 

according to the request 

7.  Actions are triggered from the action 

queue at correct time by the Action 

thread and handled by Devices 



NVIDIA Research 

FCam image capture on Tegra 

(simplified) 
1.  Request comes in from client 

2.  Request is put into request queue 

3.  Setter reads request from queue 

4.  Setter computes timing for possible 

actions and puts actions in queue 

5.  Setter computes ETA for the image 

data from ISP and puts request info 

into in-flight shadow queue 

6.  Setter sets the sensor parameters 

according to the request 

7.  Actions are triggered from the action 

queue at correct time by the Action 

thread and handled by Devices 

8.  Handler thread reads incoming image 

data and metadata, connects them 

with the corresponding request in in-

flight queue, and gets Tags from 

Devices 



NVIDIA Research 

FCam image capture on Tegra 

(simplified) 
1.  Request comes in from client 

2.  Request is put into request queue 

3.  Setter reads request from queue 

4.  Setter computes timing for possible 

actions and puts actions in queue 

5.  Setter computes ETA for the image 

data from ISP and puts request info 

into in-flight shadow queue 

6.  Setter sets the sensor parameters 

according to the request 

7.  Actions are triggered from the action 

queue at correct time by the Action 

thread and handled by Devices 

8.  Handler thread reads incoming image 

data and metadata, connects them 

with the corresponding request in in-

flight queue, and gets Tags from 

Devices 

9.  Handler puts the assembled Frame 

object into Frame queue for client 

 



NVIDIA Research 

FCam image capture on Tegra 

(simplified) 
1.  Request comes in from client 

2.  Request is put into request queue 

3.  Setter reads request from queue 

4.  Setter computes timing for possible 

actions and puts actions in queue 

5.  Setter computes ETA for the image 

data from ISP and puts request info 

into in-flight shadow queue 

6.  Setter sets the sensor parameters 

according to the request 

7.  Actions are triggered from the action 

queue at correct time by the Action 

thread and handled by Devices 

8.  Handler thread reads incoming image 

data and metadata, connects them 

with the corresponding request in in-

flight queue, and gets Tags from 

Devices 

9.  Handler puts the assembled Frame 

object into Frame queue for client 

 



NVIDIA Research 

Android Camera 



NVIDIA Research 



NVIDIA Research 


